Conformational Isomerism of N2H4 and Derivatives. The Stereochemical Consequences of “Forbiddenness” Removal

  • Nicolaos Demetrios Epiotis
Part of the Lecture Notes in Chemistry book series (LNC, volume 34)


According to Molecular Orbital-Valence Bond (MOVB) theory,1 the vast majority of organic molecules in a reference geometry can be viewed as the result of a “forbidden” union of a core(C) and a ligand(L) fragment.1–3 The transition from the reference geometry to the lowest energy geometry of the molecule is accompanied by an energy reduction which is a reflection of “forbiddeness” removal.4 The purpose of this paper is to focus on one and only one type of system, namely, A2X4 with fourteen valence electrons, in order to demonstrate how radically MOVB theory has changed our view of molecular stereochemistry.


Conformational Isomerism Symmetry Orbital Reference Geometry Lower Energy Form Ligand Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. a.
    Morino, Y.; Iijima, R.; Murata, Y. Bull. Chem. Soc. Japan 1960, 33, 46CrossRefGoogle Scholar
  2. b.
    Yamaguchi, A.; Ichishima, I.; Shimanouchi, T.; Mizushima, S.I. Spectro. Chim. Acta. 1960, 16, 1471.CrossRefGoogle Scholar
  3. c.
    Kasuya, T.; Kojima, T. J. Phys. Soc. Japan 1963, 18, 364.CrossRefGoogle Scholar
  4. d.
    d. Durig, J. R., MacNamee, R. W., Knight, L.B., Harris, W.C., Inorg. Chem. 1973, 12, 804.Google Scholar
  5. e.
    Durig, J. R., Thompson, J.W., Witt, J.D., Inorg. Chem. 1972, 11, 2477.Google Scholar
  6. f.
    Cardillo, M.J., Bauer, S.H., Inorg. Chem. 1969, 8, 2086.Google Scholar
  7. g.
    g. Elbel, S., Dieck, H.; Becker, G., Ensslin, W., Inorg. Chem. 1976, 15, 1235.CrossRefGoogle Scholar
  8. k.
    k. Hodges, L., Bartell, L.S., Fourth Austin Meeting on Molecular Structure, Austin, Texas, 1972.Google Scholar
  9. 1.
    The “seeds” of the formal MOVB theory can be found in:Google Scholar
  10. (a).
    Epiotis, N.D. Angew Chimie, Int. Ed. Engl. 1974, 13, 751.CrossRefGoogle Scholar
  11. (b).
    Epiotis, N.D., Shaik, S., Prog. Theor. Org. Chem. 1977, 2, 348.Google Scholar
  12. (c).
    Epiotis, N.D., Shaik, S., J. Am. Chem. Soc. 1978, 100 1, and subsequent papers.Google Scholar
  13. (d).
    Epiotis, N.D., “Theory of Organic Reactions”; Springer-Verlag: Berlin and New York, 1978.CrossRefGoogle Scholar
  14. (e).
    Epiotis, N.D., Pure and Appi. Chem. 1979, 51 203CrossRefGoogle Scholar
  15. (f).
    Epiotis, N.D., Shaik, S., Zander, W., in “Rearrangements in Ground and Excited States”, Vol. 2, De Mayo, P., Ed.; Academic Press: New York, 1980.Google Scholar
  16. 2.
    Epiotis, N.D., Larson, J.R., Eaton, H., “Unified Valence Bond Theory of Electronic Structure” in Lecture Notes in Chemisty, Vol. 29; Springer-Verlag: New York and Berlin, 1982.Google Scholar
  17. 3.
    Epiotis, N.D., Pure Appl. Chem., in press.Google Scholar
  18. 4.
    The reference “forbidden” geometry remains the preferred geometry of the system if “forbiddenness” removal may take place only at the expense of substantial spatial overlap reduction.Google Scholar
  19. 5. (a)
    Wheland, G.W. J. Chem. Phys. 1934, 2, 474.CrossRefGoogle Scholar
  20. (b).
    Pauling, L., Springall, H.S., Palmer, K.J., J. Am. Chem. Soc. 1939, 61, 927.CrossRefGoogle Scholar
  21. (c).
    Mulliken, R.S. J. Chem. Phys. 1939, 7, 339.CrossRefGoogle Scholar
  22. (d).
    Mulliken, R.S., Rieke, C.A., Brown, W.G., J. Am. Chem. Soc. 1941, 63, 41.CrossRefGoogle Scholar
  23. (e).
    Dewar, M.J.S., “Hyperconjugation”, Ronald Press Co.: New York, 1962.Google Scholar
  24. 6.
    The “father” of the concept of aromaticity is E. Hückel.Google Scholar
  25. Hückel, E., Z. Physik. 1931, 70, 204; ibid. 1932, 76, 628.Google Scholar
  26. Hückel, E., Z. Electrochem. 1937, 43, 752.Google Scholar
  27. Its applicability to problems of chemical reactivity and, in particular, pericyclic reactions was recognized independently, under different theoretical disguises, by M. G. Evans, M.J.S., Dewar, and H. E. Zimmerman:Google Scholar
  28. (a).
    Evans, M.G., Trans. Faraday Soc. 1939, 35, 824.CrossRefGoogle Scholar
  29. (b).
    Dewar, M.J.S. Angew. Chem., Int. Ed. Engl. 1971, 10, 761.CrossRefGoogle Scholar
  30. (c).
    Zimmerman, H.E. Acc. Chem. Res. 1971, 4, 272.CrossRefGoogle Scholar
  31. 7.
    The father of the FO approximation in “qualitative” MO theory is K. Fukui.Google Scholar
  32. (a).
    Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722.CrossRefGoogle Scholar
  33. (b).
    Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. J. Chem. Phys. 1954, 22. 1433.CrossRefGoogle Scholar
  34. 8.
    In most practical applications, PMO theory is implemented with the integral approximations of Hückel MO theory. For early formulation and application, see:Google Scholar
  35. Dewar, M.J.S., “The Molecular Orbital Theory of Organic Chemistry”; McGraw-Hill: New York, 1969.Google Scholar
  36. 9.
    Epiotis, N.D., Cherry, W.R., Shaik, S., Yates, R.L., Bernardi, F., Top. Curr. Chem. 1977, 70, 1, and references therein.Google Scholar
  37. 10.
    Yokozeki, A.; Bauer, S.H. Top. Curr. Chem. 1975, 93, 289.Google Scholar
  38. 11.
    H2O2: Redington, R.L., Olson, W.B., Cross, P.C., J. Chem. Phys. 1962, 36, 1311.Google Scholar
  39. Oelfke, W.C.; Gordy, W. J. Chem. Phys. 1969, 51, 5336.Google Scholar
  40. 12.
    F2O2: Jackson, R.H., J. Chem. Soc. 1962, 4585.Google Scholar
  41. 13.
    N2H4: Kasuya, T., Sci. Papers Inst. Phys. Chem. Res. Tokyo 1962, 56, 1.Google Scholar
  42. 14.
    N2F4: Cardillo, M.J., Bauer, S.H., Inorg. Chem. 1969, 8, 2086.Google Scholar
  43. 15.
    An excellent text: Jorgensen, W.L.; Salem, L. “The Organic Chemist’s Book of Orbitals”; Academic Press: New York, 1973.Google Scholar
  44. 16.
    Epiotis, N.D., Larson, J.R., Eaton, H., submitted for publication.Google Scholar
  45. 17.
    The detailed nature of o)2 is such that it makes it deserving of the epithet nonbonding. For more details, see ref. 2.Google Scholar
  46. 18.
    a) The N-N bond lengths of N£H4 and N£F4 are 1.453 A and 1.489 A, respectively.Google Scholar
  47. (b).
    Colburn, C.B., Johnson, F.A., Kennedy, A., McCallum, K., Metzger, L.C., Parker, C.O., J. Am. Chem. Soc. 1959, 81, 6397.CrossRefGoogle Scholar
  48. 19.
    Durig, J.R., Gimarc, B.M., Odom, J.D., in “Vibrational Spectra and Structure”, Vol. 2, Durig, J.R., Ed.; Marcel Dekker: New York, 1973.Google Scholar
  49. 20.
    Cowley, A.H.; Dewar, M.J.S.; Goodman, D.W.; Padolina, M.C. J. Am. Chem. Soc. 1974, 96, 2648.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Nicolaos Demetrios Epiotis
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations