Why do Organolithium Monomers have Strange Structures?

  • Nicolaos Demetrios Epiotis
Part of the Lecture Notes in Chemistry book series (LNC, volume 34)


“Replacement of hydrogen atoms by lithium atoms may radically alter the stereochemistry of the parent hydrocarbon”. Thus can be summarized some of the most important findings of the imaginative computational work of Schleyer and his coworkers.1 What fundamental property of lithium is primarily responsible for the unexpected geometrical preferences of perlithio hydrocarbons? Is there some way to predict the geometry of these molecules? These and related questions can be dealt with within the framework of MOVB theory in a way which illustrates the basic utility of the Induced Deexcitation (ID) model presented in the previous chapter as well as the way in which MOVB theory2,3 can be used in order to produce novel insights regarding the mechanism of vacant orbital participation in chemical bonding. The former illustrative application of the theory is made possible by the fact that Li is a weak overlap binding (overbinding) ligand which can readily induce core deexcitation while the latter is made possible by the fact that Li has low lying vacant 2p orbitals which can combine with doubly occupied orbitals to define new bonds or they can function as hybridization “holes” to promote more efficient “covalent” carbon-lithium bonding. At the outset, we state that this work has been totally motivated by the calculational work of Schleyer and his collaborators4 which was published at the time when we were in sore need of well established facts to test the central ideas of MOVB theory, such as the ones described in this and other chapters.


Atomic Orbital Valence Bond Match Procedure Bond Dissociation Energy Core Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    a) Apeloig, Y., Schleyer, P.V.R., Binkley, J.S., Pople, J.A., J. Am. Chem. Soc. 1976, 98 4332.CrossRefGoogle Scholar
  2. (b).
    Collins, J.B., Dill, J.D., Jemmis, E.D., Apeloig, Y., Schleyer, P.V.R., Seeger, R., Pople, J.A., J. Am, Chem. Soc. 1976, 98. 5419.CrossRefGoogle Scholar
  3. (c).
    Apeloig, Y., Schleyer, P.V.R., Binkley, J.S., Pople, J.A., Jorgensen, W.L., Tetrahedron Lett. 1976, 3923.Google Scholar
  4. (d).
    Jemmis, E.D., Poppinger, D., Schleyer, P.V.R., Pople, J.A., J. Am. Chem. Soc. 1977, 99, 5796.CrossRefGoogle Scholar
  5. (e).
    Rauscher, G., Clark, T., Poppinger, D., Schleyer, P.V.R., Angew. Chem. 1978, 90. 306.CrossRefGoogle Scholar
  6. (f).
    Clark, T., Jemmis, E.D., Schleyer, P.V.R, Binkley, J.S., Pople, J.A., J. Organomet. Chem. 1978, 150, 1.CrossRefGoogle Scholar
  7. (g).
    Clark, T., Schleyer, P.V.R., Pople, J.A., J. Chem. Soc., Chem. Commun. 1978, 137.Google Scholar
  8. (h).
    Jemmis, E.D., Schleyer, P.V.R., Pople, J.A., J. Organomet. Chem. 1978, 154, 327.CrossRefGoogle Scholar
  9. (i).
    Jemmis, E.D., Chandrasekhar, J., Schleyer, P.V.R., J. Am. Chem. Soc. 1979, 101, 537.CrossRefGoogle Scholar
  10. (j).
    Jemmis, E.D., Chandrasekhar, J., Schleyer, P.V.R., Am. Chem. Soc. 1979, 101, 2848.Google Scholar
  11. (k).
    Kos, H., Poppinger, D., Schleyer, P.V.R., Thiel, W., Tetrahedron Lett. 1980, 21, 2151.Google Scholar
  12. 2.
    Epiotis, N.D., Larson, J.R., Eaton, H., “Unified Valence Bond Theory of Electronic Structure” in Lecture Notes in Chemistry, Vol. 29; Springer-Verlag: New York and Berlin, 1982.Google Scholar
  13. 3.
    The complete MOVB theory of chemical bonding was first presented at the NATO Advanced Study Institute on “Topic in Theoretical Organic Chemistry” in Gargnano, Italy, in June, 1978.Google Scholar
  14. 4.
    Schleyer, P.V.R., Pure Appl. Chem., in press.Google Scholar
  15. 5.
    Slater, J.C., “Quantum Theory of Molecules and Solids”, Vol. 1; McGraw-Hill: New York, 1963.Google Scholar
  16. 6.
    Glasstone, S., Laidler, K.J., Eyring, H., “The Theory of Rate Processes”; McGraw-Hill: New York, 1941.Google Scholar
  17. 7.
    Herzberg, G., Monfils, A., J. Mol. Spectrosc. 1960. 5, 482.CrossRefGoogle Scholar
  18. 8.
    Gaydon, A.G., “Dissociation Energies and Spectra of Diatomic Molecules” Chapman and Hall: London, 1968.Google Scholar
  19. 9.
    James, H.M., J. Chem. Phys. 1935, 3, 9.CrossRefGoogle Scholar
  20. 10.
    Zemke, W.T., Lykos, P.G., Wahl, A.C., J. Chem. Phys. 1969, 51, 5635.CrossRefGoogle Scholar
  21. 11.
    Bertoncini, P.J., Das, G., Wahl, A.C., J. Chem. Phys. 1970, 52, 5112.CrossRefGoogle Scholar
  22. 12.
    Schaefer, III, H.F., “The Electronic Structure of Atoms and Molecules”; Addison-Wesley: Reading, Massachusetts, 1972.Google Scholar
  23. 13.
    Dixon, D.A., Stevens, R.M., Herschbach, D.R., Faraday Discussion of Chem. Soc. 1977, 62, 110.CrossRefGoogle Scholar
  24. 14.
    Pickup, B.T., Proc. Roy. Soc. A 1973, 333, 69.CrossRefGoogle Scholar
  25. 15.
    Gelb, A., Jordan, K.D., Silbey, R., Chem. Phys. 1975, 9, 175.CrossRefGoogle Scholar
  26. 16.
    a) Hoffmann, R., Lipscomb, W.N., J. Chem. Phys. 1962, 36, 2179, 3489; J. Chem.Phys. 1962, 37, 2873.Google Scholar
  27. (b).
    Hoffmann, R., J. Chem. Phys. 1963, 39, 1392.Google Scholar
  28. 17.
    Pople, J.A., Acc. Chem. Res. 1970, 3, 217.CrossRefGoogle Scholar
  29. 18.
    Pople, J.A.; Beveridge, D.L. “Approximate Molecular Orbital Theory”; McGraw-Hill: New York, 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Nicolaos Demetrios Epiotis
    • 1
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations