Skip to main content

Why a Net Bond exists when it appears to be Nonexistent: The Electronic Structures of F2 and Inert Gas Fluorides

  • Chapter
Unified Valence Bond Theory of Electronic Structure

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 34))

Abstract

In a previous note1, I gave an example of why an effective bond can exist when a real bond is absent within Single Determinant SCF-MO (SD-SCF-MO) theory. I now consider a much more complex problem, which is soluble only at the level of SCF-MO-CI theory, in order to further illustrate the conceptual and formal advantages of VB-type theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See Chapter 13.

    Google Scholar 

  2. Epiotis, N.D., Larson, J.R., Eaton, H. “Unified Valence Bond Theory of Electronic Structure” in Lecture Notes in Chemistry, Vol. 29; Springer-Verlag: New York and Berlin, 1982.

    Google Scholar 

  3. Epiotis, N.D. Pure Appl. Chem. 1983, 000.

    Google Scholar 

  4. Epiotis, N.D. ; Larson, J.R. Israel J. Chem. 1983, 000.

    Google Scholar 

  5. Epiotis, N.D., unpublished results.

    Google Scholar 

  6. Wahl, A.C. J. Chem. Phys. 1964, 41, 2600.

    Article  CAS  Google Scholar 

  7. Das, D.;Wahl, A.C. J. Chem. Phys. 1966, 44, 87.

    Article  CAS  Google Scholar 

  8. The product sign is defined with respect to the signs preceding each negative interaction matrix element.

    Google Scholar 

  9. Copsey, D.N.; Murrell, J.N.; Stamper, J.G. Mol. Phys. 1971, 21, 193.

    Article  CAS  Google Scholar 

  10. Schaefer, III H.F., “The Electronic Structure of Atoms and Molecules”; Addison-Wesley: Reading, Mass., 1972.

    Google Scholar 

  11. According to the Independent Bond Model (IBM) F2 can be viewed as a composite of three subsystems; A, B, and C with the total wavefunction Ψ being a product of the subsystem wavefunctions and ΩA, ΩB, and ΩC. \( \begin{array}{*{20}{c}} {{{\Omega }_{{\text{A}}}}\quad :\quad 2{{{\text{p}}}_{{\text{x}}}},\;2{{{{\text{p'}}}}_{{\text{x}}}},\;2{\text{s,}}\;{\text{2s'}}\;/\;6} \\ {{{\Omega }_{{\text{B}}}}\quad :\quad 2{{{\text{p}}}_{{\text{y}}}},\;2{{{{\text{p'}}}}_{{\text{y}}}},\;/\;4} \\ {{{\Omega }_{{\text{C}}}}\quad :\quad 2{{{\text{p}}}_{{\text{Z}}}},\;2{{{{\text{p'}}}}_{{\text{y}}}},\;/\;4} \\ {\psi \quad = \quad {{\Omega }_{{\text{A}}}} \cdot \;{{\Omega }_{{\text{B}}}} \cdot \;{{\Omega }_{{\text{C}}}}} \\ \end{array} \) That subsystem A is C-aromatic in a monoelectronic CT sense can be seen without writing down the individual CW’s but, rather, by observing that the four orbitals 2pX, 2pX, 2s, and 2s1 interact in-phase in a cyclic manner and they contain six electrons.

    Google Scholar 

  12. The distinction between Hückel and Mobius atomic orbital overlap was first brought to the attention of chemists by Heilbronner and Zimmerman. The chemical implications of this distinction were first discussed by Zimmerman and Woodward and Hoffmann:

    Google Scholar 

  13. Heilbronner, E., Tetrahedron Lett. 1964, 1923.

    Google Scholar 

  14. Zimmerman, H.E. J. Am. Chem. Soc. 1966, 88, 1564, 1566.

    Article  CAS  Google Scholar 

  15. Woodward, R.B., Hoffmann, R., “The Conservation of Orbital Symmetry”; Academic Press: New York, 1971.

    Google Scholar 

  16. The way in which the signs of VB matrix elements determine stereoselection in N-electron/N-orbital systems was discussed in. Mulder, J.J.C., Oosterhoff, L.J., Chem. Commun. 1970, 305, 307.

    Google Scholar 

  17. The way in which the signs of VB matrix elements determine spin selection is discussed in; Fischer, H.; Murrell, J.N. Theor. Chim. Acta 1963, 1, 464.

    Google Scholar 

  18. For recent attempts toward the development of a qualitative VB theory, see, inter alia:

    Google Scholar 

  19. Hiberty, P.C., Leforestier, C., J. Am. Chem. Soc. 1978, 100, 2012.

    Google Scholar 

  20. Dauben, W.G.; Salem, L.; Turro, N.J. Acc. Chem. Res. 1975, 8, 41.

    Article  CAS  Google Scholar 

  21. Shaik, S.S. J. Am. Chem. Soc. 1981, 103, 3692.

    Article  CAS  Google Scholar 

  22. Harcourt, R.D., “Qualitative Valence-Bond Descriptions of Electron-Rich Molecules” in Lecture Notes in Chemistry, Vol. 30; Springer-Verlag: New York and Berlin, 1982.

    Google Scholar 

  23. Herndon, W.C., Ellzey, Jr. M.L., J. Am. Chem. Soc. 1974. 96, 6631.

    Article  CAS  Google Scholar 

  24. Klein, D.J. Pure Appl. Chem. 1983, 000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Epiotis, N.D. (1983). Why a Net Bond exists when it appears to be Nonexistent: The Electronic Structures of F2 and Inert Gas Fluorides. In: Unified Valence Bond Theory of Electronic Structure. Lecture Notes in Chemistry, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93239-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93239-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12000-1

  • Online ISBN: 978-3-642-93239-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics