Skip to main content
  • 74 Accesses

Zusammenfassung

Der Aufbau und die Eigenschaften der in einem optischen Nachrichtensystem benutzten Komponenten wurden in den Kapiteln 2 bis 6 dargestellt. In einer optischen Übertragungstrecke müssen diese Komponenten miteinander verbunden werden [7.1–7.4], wobei drei Schnittstellen zu unterscheiden sind:

  • Kopplung Sender - LWL

  • Kopplung LWL - LWL (fest, lösbar)

  • Kopplung LWL - Detektor

Da die Fläche des Detektors üblicherweise groß gegen die strahlende Kernquerschnittsfläche des LWL ist, wird die Stoß-auf-Stoß-Kopplung bevorzugt. Dabei wird die LWL-Endfläche möglichst nahe an die lichtempfindliche Fläche des Detektors herangeführt. Es können dann nur noch Reflexionsverluste (siehe Kap. 6.3) auftreten, die jedoch durch Antireflexionsschichten weitgehend vermieden werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 7

  1. Bowen, T.; Gempe, H. Impact of coupling efficiency on fiber optic system performance; Electro-Opt. Syst. Des. 12 (1980) 8, 35–43

    Google Scholar 

  2. Grossmann, M. ; Focus on fiber-optic connections: Low-cost linking still a challenge; Electron. Des. 29 (1981) 23, 255–262, 264, 266–268

    Google Scholar 

  3. Williford, T.L.; Jackson, K.W.; Scholly, C. Interconnection for lightguide fibers. Part 1: Cable splice hardware and single fiber connectors. Theory of optical coupling; Western Electric Eng. 24 (1980) 1, 86–95

    Google Scholar 

  4. Böttcher, U. Jointing of Optical Fiber Cables; Ericsson Rev. 3 (1980) 92–96

    Google Scholar 

  5. Saruwatari, M.; Nawata, K. Semiconductor Laser to Single-Mode Fiber Coupler; Appl. Opt. 18 (1979) 11, 1847–1856

    Article  ADS  Google Scholar 

  6. Geckeler, S. Bestimmung des Koppelwirkungsgrades zwischen Lumineszenzdioden und Lichtwellenleitern mit Hilfe des Phasenraumdiagramms; private Mitteilung

    Google Scholar 

  7. Saruwatari, M.; Sugie, T. Efficient Laser Diode to Single-Mode Fiber Coupling Using a Combination of Two Lasers in Confocal Condition; IEEE J. Quant. Electron. QE-17 (1981) 6, 1021–1027

    Article  ADS  Google Scholar 

  8. Ackenhusen, J.G. Microlenses to Improve LED-to-Fiber Optical Coupling and Alignment Tolerance; Appl. Opt. 18 (1979) 21, 3694–3699

    Article  ADS  Google Scholar 

  9. Abram, R.A.; Allen, R.W.; Goodfellow, R.C. The Coupling of Light Emitting diodes to Optical Fibers Using Spherical Lenses; J. Appl. Phys. 46 (1975), 3468–3474

    Article  ADS  Google Scholar 

  10. Weidel, E. New coupling method for GaAs laser-fibre coupling; Electron. Lett. 11 (1975) 18, 436–437

    Article  ADS  Google Scholar 

  11. Kato, D. Light Coupling from a Strip-Geometry GaAs Diode Laser into an Optical Fiber with Spherical End; J. Appl. Phys. 44 (1973), 2756–2758

    Article  ADS  Google Scholar 

  12. Kawachi, M.; Edahiro, T.; Toba, H. Microlens Formation on VAD Single-Mode Fiber Ends; Electron. Lett. 18 (1982) 2, 71–72

    Article  Google Scholar 

  13. Cheng, W. The Optimum Coupling from GaAs Lasers into Spherical-Ended Fibers; Proc. IEEE 69 (1981) 3, 396–397

    Article  ADS  Google Scholar 

  14. Odemar, N.; Steinmann, P. Lichtwellenleiter-Verbindungstechnik; telcom report 4 (1981) 4, 300–307

    Google Scholar 

  15. Guttmann, J.; Krumpholz, O. Theoretische und experimentelle Untersuchungen zur Verkopplung zweier Glasfaser-Lichtwellenleiter; Wiss. Ber. AEG-Telefunken 46 (1973) 1, 8–15

    Google Scholar 

  16. Di Vita, P. Mismatches in optical fibres for communications; Laser u. Elektro-Opt. 13 (1981) 3, 16–18

    Google Scholar 

  17. Di Vita, P.; Rossi, U. Evaluation of splice losses induced by mismatch in fibre parameters; Opt. and Quant. Electron. 13 (1981) 1, 91–94

    Article  Google Scholar 

  18. Kashima, N. Splice Loss and Mode Conversion via Multimode Fiber; Appl. Opt. 19 (1980) 15, 2597–2601

    Article  ADS  Google Scholar 

  19. Dalgleish, J.F. Splices, Connectors, and Power Couplers for Field and Office Use; Proc. IEEE 68 (1980) 10, 1226–1232

    Article  Google Scholar 

  20. Gloge, D. Offset and Tilt Loss in Optical Fiber Splices; Bell Syst. Techn. J. 55 (1976) 7, 905–927

    Google Scholar 

  21. Miller, C.M.; Mettler, S.C. A Loss Model for Parabolic-Profile Fiber Splices; Bell Syst. Techn. J. 57 (1978) 9, 3167–3180

    Google Scholar 

  22. Mettler, S.C. A General Characterization of Splice Loss for Multimode Optical Fibers; Bell Syst. Techn. J. 58 (1979) 10, 2163–2183

    Google Scholar 

  23. Bond, D.J.; Hensel, P. The effects on joint losses of tolerances in some geometrical parameters of optical fibres; Opt. and Quant. Electron. 13 (1981) 1, 11–18

    Article  Google Scholar 

  24. Kashima, N. Transmission Characteristics of Splices in Graded-Index Multimode Fibers; Appl. Opt. 20 (1981) 22, 3859–3866

    Article  ADS  Google Scholar 

  25. Geckeler, S. Verluste bei Kopplung von Gradientenfasern mit unterschiedlichem Kerndurchmesser und unterschiedlicher numerischer Apertur; private Mitteilung

    Google Scholar 

  26. Zielinski, H.G.; Klinger, S. Lichtwellenleiter-Verbindungstechnik und Kabelzubehör; Wiss. Ber. AEG-Telefunken 53 (1980) 1/2, 34–41

    ADS  Google Scholar 

  27. Woods, J.G. Optical Fiber Communications Cable Connector; TRW, Inc., Philidephia; Army Commun. Res. and Developm. Command; Fort Monmouth, NJ, final report 1 May 79 — 17 Feb. 81

    Google Scholar 

  28. Best, S. Optische Nachrichtentechnik, Teil II: Lösbare Verbindungen (2); Nachr. Elektron. 35 (1981) 5, 182, 184

    Google Scholar 

  29. Millar, C.A.; Mallinson, S.R. Optical-Fibre Connectors for Telecommunication; Electron. and Power 27 (1981) 9, 637–639

    Article  Google Scholar 

  30. Nagasawa, S.; Murata, H. Optical fibre connectors using a fused and drawn multi-glass-rod arrangement; Electron. Lett. 17 (1981) 7, 268–270

    Article  Google Scholar 

  31. van der Wiel, A.F. Optical interconnection; New Electron. 13 (1980) 2, 116

    Google Scholar 

  32. Turley, W. Demountable connections for optical fibres; Electron. and Instrum. 11 (1980) 2, 83, 85, 87

    Google Scholar 

  33. Field-installable fiber optic connecting devices developed; Electron. Pack, and Prod. 20 (1980) 2, 14, 18, 20

    Google Scholar 

  34. Payne, D.B.; Millar, C. A. Triple-ball connector using fibre-bead location; Electron. Lett. 16 (1980) 1, 11–12

    Article  Google Scholar 

  35. Knoblauch, G. Lichtwellenleiter Steckverbinder; Siemens Bauteile Rep. 18 (1980) 1, 1–7

    Google Scholar 

  36. Furuta, H.; Oguro, S.; Kudo, T. Optical Fiber Connector; Fujitsu Scient. & Techn. J. 14 (1978) 3, 119–132

    Google Scholar 

  37. Makuch, J.A. Review and Update Interconnect Standardization; SPIE Vol 224 (1980): Fiber Optics for Communications and Control, 159–165

    Google Scholar 

  38. Cheung, N.K. Transfer-Molded Biconical Connector for Single-Mode Fiber Interconnections; Int. Conf. on Integrated Optics and Optical Fiber Communication IOOC’81, San Francisco, Techn. Dig., 98–99

    Google Scholar 

  39. Shimizu, N.; Tsuchiya, H. Single-mode-fibre connectors; Electron. Lett. 14 (1978) 19, 611–613

    Article  Google Scholar 

  40. Kaiser, M. Optische Stecker; Elektronik 28 (1979), 90–96

    ADS  MathSciNet  Google Scholar 

  41. Hirai, M.; Uchida, N. Melt Splice of Multimode Optical Fiber with an Electric Arc; Electron. Lett. 13 (1977) 5, 123–125

    Article  Google Scholar 

  42. Hatakeyama, I.; Tsuchiya, H. Fusion Splices for Optical Fibers by Discharge Heating; Appl. Opt. 17 (1978) 12, 1959–1964

    Article  ADS  Google Scholar 

  43. Pacey, G.K.; Dalgleish, J.F. Fusion Splicing of Optical Fibers; Electron. Lett. 15 (1979) 1, 32–34

    Article  Google Scholar 

  44. Khoe, K.D. Practical Machine for Electric Arc Splicing of Optical Fiber in the Field; Electron. Lett. 15 (1979) 5, 152–153

    Article  Google Scholar 

  45. Bisbee, D.L. Splicing silica fibres with an electric arc; Appl. Opt. 15 (1976) 3, 796–798

    Article  ADS  Google Scholar 

  46. Hatakeyama, I. Tsuchiya, H. Fusion splices for single-mode optical fibers; IEEE J. Quant. Electron. QE-14 (1978) 8, 614–619

    Article  ADS  Google Scholar 

  47. Research on Optical fiber Transmission Systems in ECL, NTT; The Electrical Communication Laboratories, NTT 1978

    Google Scholar 

  48. Stueflotten, S. Protection of Optical Fiber Arc Fusion Splices; J. Opt. Commun. 3 (1982) 1, 19–25

    Article  Google Scholar 

  49. Payne, D.B.; McCartey, D.J.; Healey, P. Fusion Splicing of a 31.6 km Monomode Optical Fiber System; Electron. Lett. 18 (1982) 2, 82–84

    Article  Google Scholar 

  50. Tachikura, M. Fusion Mass-Splicing for Optical Fibers by Discharge Heating; Eletron. Lett. 17 (1981) 19, 694–695

    Article  Google Scholar 

  51. Light, W.D.; Smolka, F.M. Optical Characteristics of a Clear Epoxy; Appl. Opt. 17 (1978) 22, 3518–3519

    Article  ADS  Google Scholar 

  52. Epworth, R.E. The Phenomenon of Modal Noise in Analogue and Digital Optical Fiber Systems; Proc. 4th European Conference on Optical Communications; Genova, 12–15 Sep. 1978, 492–501

    Google Scholar 

  53. Crosignani, B.; Daino, B.; diPorto, P. Interference of Mode Patterns in Optical Fibers; Opt. Commun. 11 (1974) 2, 178–179

    Article  ADS  Google Scholar 

  54. Imai, M.; Asakura, T. Speckle Contrast of Laser Light Transmitted through Multimode Optical Fibers; Optik 48 (1977) 3, 335–340

    Google Scholar 

  55. Imai, M.; Tida, M.; Asakura, T. Off-Axis Speckle Contrast of Laser Light Transmitted through Multimode Optical Fibers; Optik 51 (1978) 4, 429–434

    Google Scholar 

  56. Crosignani, B.; Daino, B.; diPorto, P. Speckle-Pattern Visibility of Light Transmitted through a Multimode Optical Fiber; J. Opt. Soc. Am. 66 (1976) 11, 1312–1313

    Article  Google Scholar 

  57. Goodman, J.W. Statistical Properties of Laser Speckle Patterns, in: Laser Speckle and Related Phenomena, Springer-Verlag, Berlin 1975

    Google Scholar 

  58. Piazzolla, S.; de Marchis, G. Spatial coherence in optical fibers; Opt. Commun. 32 (1980) 3, 380–382

    Article  ADS  Google Scholar 

  59. Imai, M.; Ohtsuka, Y. Speckle-pattern contrast of semiconductor laser; Opt. Commun. 33 (1980) 1, 4–8

    Article  ADS  Google Scholar 

  60. Petermann, K. Wavelength-Dependent Transmission at Fiber Connectors; Electron. Lett. 15 (1979) 22, 706–708

    Article  MathSciNet  Google Scholar 

  61. Petermann, K. Nonlinear distortions and noise in optical communication systems due to fiber connectors; IEEE J. Quant. Electron. QE-16 (1980) 7, 761–770

    Article  ADS  Google Scholar 

  62. Culshaw, B. Minimization of Modal Noise on Optical Fiber Connectors; Electron. Lett. 15 (1979) 17, 529–531

    Article  ADS  Google Scholar 

  63. Pask, C. Analysis of Optical Fiber Connectors and Modal Noise Generation; Proc. IEE 127 (1980) 5, 282–286

    Google Scholar 

  64. Oleson, H. Dependence of Modal Noise on Source Coherence and Fiber Length; Electron. Lett. 16 (1980) 6, 217–218

    Article  Google Scholar 

  65. Rawson, E.G.; Goodman, J.W.; Norton, R.E. Frequency Dependence of Modal Noise in Multimode Optical Fibers; J. Opt. Soc. Am. 70 (1980) 8, 968–976

    Article  ADS  Google Scholar 

  66. Daino, B.; de Marchis, G.; Piazzolla, S. Analysis and Measurement of Modal Noise in an Optical Fiber; Electron. Lett. 15 (1979) 23, 755–765

    Article  ADS  Google Scholar 

  67. Daino, B.; de Marchis, G.; Piazzolla, S. Speckle and Modal Noise in Optical Fibers: Theory and Experiment; Optica Acta 27 (1980) 8, 1151–1159

    Article  ADS  Google Scholar 

  68. Hill, K.O.; Tremblay, Y.; Kawasaki, B.S. Modal Noise in Multimode Fibers: Theory and Experiment; Opt. Lett. 5 (1980) 1, 270–272

    Article  ADS  Google Scholar 

  69. Rawson, E.G.; Norton, R.E.; Goodman, J.W. Temporal Frequency Dependence of Modal Noise in Fibers; Electron. Lett. 16 (1980) 8, 301–303

    Article  Google Scholar 

  70. Epworth, R.E. Modal Noise: Causes and Cures; Laser Focus Sept. 1981, 109–115

    Google Scholar 

  71. Baack, C., et al. Modal Noise and Optical Feedback in High-Speed Optical Systems at 0.85 µm; Electron. Lett. 16 (1980) 15, 592–593

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Kersten, R.T. (1983). Kopplung zwischen Einzelkomponenten. In: Einführung in die Optische Nachrichtentechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93234-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93234-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11923-4

  • Online ISBN: 978-3-642-93234-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics