Skip to main content
  • 74 Accesses

Zusammenfassung

Am Anfang einer optischen Nachrichtenstrecke setzt ein elektrisch/optischer Wandler die elektrischen Signale in optische um. An diesen Wandler müssen unter anderem folgende Forderungen gestellt werden:

  • möglichst hoher Wirkungsgrad,

  • kleine Bauweise (damit eine gute Kopplung an den LWL gewährleistet werden kann),

  • möglichst monochromatische Lichtemission (Minderung der spektralen Dispersion im LWL und damit Erhöhung der Übertragungsbandbreite),

  • Abstrahlung möglichst hoher Lichtleistung (Überbrückung großer Entfernungen),

  • gute Modulationseigenschaften bis zu sehr hohen Frequenzen,

  • hohe Zuverlässigkeit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 4

  1. Gooch, C.H.: Injection Electroluminescent Devices; John Wiley & Sons 1973

    Google Scholar 

  2. Winstel, G.; Weyrich, C.: Optoelektronik I; Springer-Verlag, Berlin 1981

    Google Scholar 

  3. Dyment, J.C.: Properties of Optoelectronic Devices for Optical Communications, in: Semiconductor Optoelectronics; John Wiley & Sons, 597–620

    Google Scholar 

  4. Casey, H.C.; Panish, M.B.: Hetrostructure Lasers, Part A and B; Academic Press 1978

    Google Scholar 

  5. Thompson, G.H.: Physics of Semiconductor Laser Devices; John Wiley & Sons 1980

    Google Scholar 

  6. Kressel, H.: Semiconductor Devices for Optical Communication; Springer-Verlag, Berlin 1980, 9–62 und 213–258

    Google Scholar 

  7. Bergh, A.A.; Copeland, J.A.: Optical Sources for Fiber Transmission Systems; Proc. IEEE 68 (1980) 10, 1240–1247

    Google Scholar 

  8. Burrus, C.A.; Casey, H.C.; Li, T.: Optical Sources, in: Optical Fiber Communications; Academic Press 1979, 499–556

    Google Scholar 

  9. Pankove, J.I.: Optical Processes in Semiconductors; Prentice Hall 1971

    Google Scholar 

  10. Adams, M.J.; Cross, M.: Electromagnetic theory of heterostructure injection laser, Solid State Electron. 14 (1971), 865–883

    Google Scholar 

  11. Grau, G.: Optische Nachrichtentechnik; Springer-Verlag, Berlin 1981, 109–177

    Book  Google Scholar 

  12. Sharma, A.B.; Halme, S.J.; Butusov, M.M.: Optical Fiber Systems and their Components; Springer-Verlag, Berlin 1981, 5–30 und 116–125

    Google Scholar 

  13. Nuese, C.J.: III-V alloys for opto-electronic applications; J. of Electron. Materials 6 (1977) 3, 253–293

    Article  ADS  Google Scholar 

  14. Selway, P.R.: Semiconductor lasers for optical communications; Proc. IEE 123 (1976) 6, 609–618

    Article  Google Scholar 

  15. Dixon, R.W.: Current Directions in GaAs Laser Device Development; Bell Syst. Techn. J. 59 (1980) 5, 669–722

    ADS  Google Scholar 

  16. Kirkby, P.A.: Current Directions on GaAs Laser Development; Radio and Electron. Eng. 51 (1981) 7 /8, 362–376

    Article  Google Scholar 

  17. Kressel, H.: Semiconductor Laser Sources for Optical Communication; Radio Science 16 (1981) 4, 445–454

    Article  ADS  Google Scholar 

  18. Müller, R.: Grundlagen der Halbleiterelektronik; Springer-Verlag, Berlin 1971

    Google Scholar 

  19. Becker, R.: Theorie der Elektrizität, 2.Bd.; Teubner-Verlag 1970

    Google Scholar 

  20. Wagemann, H.G.: Skriptum, TU Berlin

    Google Scholar 

  21. Lax, M.: Cascade Capture of Electrons in Solids; Phys. Rev. 119 (1960), 1502–1523

    Article  ADS  Google Scholar 

  22. Benz, G.: Emissionsprozesse in III-V-Halbleitern oberhalb der Bandkante: Auger-Effekte und Intraband Lichtstreuung; Dissertation Univ. Stuttgart, 1975

    Google Scholar 

  23. Zschauer, K.H.: Auger Recombination in Heavily Doped p-type GaAs; Sol. State Commun. 7 (1969), 1709–1712

    Article  ADS  Google Scholar 

  24. Conradt, R.: Auger-Rekombination in Halbleitern; Festkörperprobleme XII; Vieweg 1972, 449–464

    Google Scholar 

  25. Landsberg, P.T.; Adams, M.J.: Radiative and Auger Processes in Semiconductors; J. Lumin. 7 (1973) 1, 3–34

    Article  Google Scholar 

  26. Peaker, A.R., et al.: Non-radiative recombination and structural defects in gallium phosphide; Inst. Phys. Conf. Ser. 33a (1977), 320–334

    Google Scholar 

  27. Hirao, M., et al.: Long Wavelength InGaAsP/InP Lasers for Optical Fiber Communication Systems; J. of Opt. Commun. 1 (1980) 1, 5–9

    Article  Google Scholar 

  28. Hsieh, J.J.: Laser Diodes for the 1.5 µm–2.0 µm Wavelength Range; J. of Opt. Commun. 2 (1981) 1, 11–19

    Google Scholar 

  29. Hsieh, J.J.; Rossi, J.A.; Donnelly, J.P.: Room temperature cw operation of GalnAsP/InP double heterostructure diode lasers emitting at 1.1 jam; Appl. Phys. Lett. 28 (1976) 12, 709–711

    Article  Google Scholar 

  30. Dolginov, L.M., et al.: Low Threshold Heterojunction AlGaAsSb/GaSb Lasers in the Wavelength Region of 1.5–1.8 µm, IEEE J. Quant. Electron. QE-17 (1981) 5, 593–597

    Article  ADS  Google Scholar 

  31. Sugiyama, K.; Saito, H.: GaAsSb-AlGaAsSb double heterojunction lasers; Japan J. Appl. Phys. 11 (1972), 1057

    Google Scholar 

  32. Lee, T.P.: Recent Development in LED’s for Optical Fiber Communication Systems; Int. Fiber Optics and Commun., Handbook and Buyers Guide 1980–1981, 6–16

    Google Scholar 

  33. Goodfellow, R.C. et al.: GalnAsP/InP Fast, High-Radiance, 1.05–1.3 µm Wavelength LED’s with Efficient Lens Coupling to Small Numerical Aperture Silica Optical Fibers; IEEE Trans. Electron. Dev. ED-26 (1979) 8, 1215–1220

    Article  Google Scholar 

  34. Okuda, H., et al.: High-Radiance Light Emitting Diodes for Optical Fiber Communications (GaAlAs Structure); Sumitomo Electr. Techn. Rev. 20 (1981) 1, 202–210

    Google Scholar 

  35. Carter, A.C.: Light-Emitting Diodes for Optical Fibre Systems; Radio and Electron. Eng. 51 (1981) 7 /8, 341–348

    Article  Google Scholar 

  36. Lastros-Martinez, A.: Internal Quantum Efficiency Measurements for GaAs Light Emitting Diodes; J. Appl. Phys. 49 (1978) 6, 3565–3570

    Article  ADS  Google Scholar 

  37. Burrus, C.A.; Miller, B.I.: Small-Area, Double-Heterosturcture AlGaAs Electroluminescent Diode Sources for Optical-Fiber Transmission Lines; Opt. Commun. 4 (1971), 307–309

    Article  ADS  Google Scholar 

  38. Botez, D.; Ettenberg, M.: Comparison of Surface and Edge-Emitting LED’s Use in Fiber Optical Communications; IEEE Trans. Electr. Dev. ED-26 (1979) 8, 1230–1238

    Article  Google Scholar 

  39. Kressel, H.; Ettenberg, M.: A New Edge-Emitting (Al,Ga)As Heterojunction LED for Fiber-Optic Communications; Proc. IEEE 63 (1975) 9, 1360–1361

    ADS  Google Scholar 

  40. Marcuse, D.: LED Fundamentals: Comparison of Front- and Edge-Emitting Diodes; IEEE J. Quant. Electr. QE-13 (1977) 10, 819–827

    Article  Google Scholar 

  41. Asatani, K.; Kimura, T.: Analysis of LED Nonlinear Distortions; IEEE Trans. Electron. Dev. ED-25 (1978) 2, 199–207

    Article  Google Scholar 

  42. Straus, J.: The Nonlinearity of High-Radiance Light-Emitting Diodes; IEEE J. Quant. Electron. QE-14 (1978) 11, 813–819

    Article  Google Scholar 

  43. Lee, T.P.: The Nonlinearity of Double-Heterostructure LED’s for Optical Communications; Proc. IEEE 65 (1977) 9, 1408–1410

    Article  Google Scholar 

  44. Harth, W.: Influence of Bias Current on the Modulation Behaviour of GaAs-GaAlAs LEDs; AEU 35 (1981) 9, 373–376

    Google Scholar 

  45. Rocks, M.: Digitale Mehrstufenübertragung auf Lichtleitfasern mit Lumineszenzdioden; Der Fernmelde-Ingenieur 35 (1981) 1–4

    Google Scholar 

  46. Lee, T.P.; Dentai, A.G.: Power and Modulation Bandwidth of AlGaAs-GaAs High Radiance LED’s for Optical Communication Systems; IEEE J. Quant. Electron. QE-14 (1978) 3, 150–159

    ADS  Google Scholar 

  47. Heinen, J., Huber, W., Harth, W.: Light Emitting Diodes with a Modulation Bandwidth of More than 1-GHz; Electron. Lett. 12 (1976) 21, 553–554

    Article  Google Scholar 

  48. Yamaoka, T., Abe, M., Hasegawa, O.: GaAlAs LEDs for Fiber-Optical Communication Systems; Fujitsu Scient. Techn. J. 14 (1978) 3, 133–146

    ADS  Google Scholar 

  49. Muska, W.M., et al.: Material-Dispersion-Limited Operation of High-Bit-Rate Optical Fiber Data Links Using LEDs; Electron. Lett. 13 (1977) 13, 605–607

    Article  Google Scholar 

  50. Klein, J.R.: Fiber Optic Light Source; telecommun. int. ed. 13 (1979) 9, 45–46

    Google Scholar 

  51. Yamakoshi, S., et al.: Reliability of High Radiance InGaAsP/InP LED’s Operating in the 1.2–1.3 µm Wavelength; IEEE J. Quant. Electr. QE-17 (1981) 2, 167–173

    Article  ADS  Google Scholar 

  52. Yamakoshi, S., et al.: Degradation of High Radiance InGaAsP/InP LED’s at 1.2 1.3 µm Wavelength; Techn. Dig., Int. Electron. Dev. Meet. 1979, 122–125

    Google Scholar 

  53. Hersee, S.D.: Long Lived High Radiance LEDs for Fiber Optic Communication Systems; Techn. Dig.; Int. Electr. Dev. Meet. 1977, 567 - 569

    Google Scholar 

  54. Burrus, C.A.; Dawson, R.W.: Small-Area High-Current-Density GaAs Electroluminescent Diodes and a Method of Operation for Improved Degradation Characteristics; Appl. Phys. Lett. 17 (1970) 3, 97–99

    Article  ADS  Google Scholar 

  55. Goodwin, A.R. et al.: The effects of processing stresses on residual degration in long lived Ga1-x Alx As lasers; Appl. Phys. Lett. 34 (1979) 10, 647–649

    Article  Google Scholar 

  56. Kobayashi, T., Kawakami, T., Furukawa, J.: Thermal diagnosis of dark lines in degraded GaAs-GaAlAs double heterostructure lasers; Japan J. Appl. Phys. 14 (1975), 508

    Article  ADS  Google Scholar 

  57. Mettler, K.: Effect or Dislocations on the Degradation of Silicon- Doped GaAs Luminescent Diodes; Siemens Forsch.-u. Entw. Ber. 1 (1972) 3, 274–278

    Google Scholar 

  58. Einstein, A.: Zur Quantentheorie der Strahlung; Phys. Z. 18 (1917) 6, 121–128

    Google Scholar 

  59. Maiman, T.H.: Optical and Microwave-Optical Experiments in Ruby; Phys. Rev. Lett. 4 (1960) 11, 564–566

    Article  Google Scholar 

  60. Welker, H.: Über neue halbleitende Verbindungen; Z. Naturf. 7a (1952), 744–749

    ADS  Google Scholar 

  61. Braunstein, R.: Radiative Transitions in Semiconductors; Phys. Rev. 99 (1955), 1892–1893

    Article  ADS  Google Scholar 

  62. Nathan, M.I., et al.: Stimulated Emission Radiation from GaAs pn-junctions; Appl. Phys. Lett. 1 (1962) 3, 62–64

    Article  ADS  Google Scholar 

  63. Hall, R.N., et al.: Coherent Light Emission from GaAs-Junctions; Phys. Rev. Lett. 9 (1962), 366–368

    Article  ADS  Google Scholar 

  64. Quist, T.M., et al.: Semiconductor Maser of GaAs; Appl. Phys. Lett. 1 (1962) 5, 91–92

    Article  ADS  Google Scholar 

  65. Holonyak, N.; Bevacqua, D.F.: Coherent (Visible) Light Emission from Ga(Asx-1Px) Junctions; Appl. Phys. Lett. 1 (1962) 4, 82–83

    Article  ADS  Google Scholar 

  66. Holonyak, N.; Bevacqua, D.F.: Special issue on light sources and detectors; IEEE Trans. Electron. Dev. ED-28 (1981) 4

    Google Scholar 

  67. Holonyak, N.; Bevacqua, D.F.: Special issue: Int. Laser Conf. 1981; IEEE J. Quant. Electr. QE-17 (1981) 5

    Google Scholar 

  68. Holonyak, N.; Bevacqua, D.F.: Special issue on quaternary III-V compounds; IEEE J. Quant. Electr. QE-17 (1981) 2

    Google Scholar 

  69. Hayashi, I., Panish, M.E., Foy, P.W.: A low threshold room temperature injection laser; IEEE J. Quant. Electron. QE-5 (1969) 4, 211–212

    Article  ADS  Google Scholar 

  70. Botez, D.: Single-Mode AlGaAs Diode Lasers; J. of Opt. Commun. 1 (1980) 2, 42–50

    Article  Google Scholar 

  71. Botez, D.: Constricted Double-Heterojunction AlGaAs Diode Lasers: Structures and Electrooptical Characteristics; IEEE J. Quant. Electron. QE-17 (1981) 12, 2290–2309

    Article  ADS  Google Scholar 

  72. Tsang, W.T.; Logan, R.A.: GaAs-Alx Ga1-xAs Strip Burried Heterostructure Lasers; IEEE J. Quant. Electron. QE-15 (1979) 6, 451–469

    Article  ADS  Google Scholar 

  73. Nakamura, M. Tsuji, S.: Single-Mode Semiconductor Injection Lasers for Optical Fiber Communications; IEEE J. Quant. Electron. QE-17 (1981) 6, 994–1005

    Article  ADS  Google Scholar 

  74. Wölk, C., et al.: Criteria for Designing V-Groove Lasers; IEEE J. Quant. Electr. QE-17 (1981) 5, 756–759

    Article  ADS  Google Scholar 

  75. Arnold, G., et al.: Long-Term Behaviour of V-Groove Lasers at Elevated Temperatures; IEEE J. Quant. Electron. QE-17 (1981) 5, 759–762

    Article  ADS  Google Scholar 

  76. Streifer, W.; Scifres, D.R., Burnham, R.D.: Coupled wave analysis of DFB and DBR Lasers; IEEE J. Quant. Electron. QE-13 (1977) 4, 134–141

    Article  ADS  Google Scholar 

  77. Streifer, W.; Scifres, D.R. Burnham, R.D.: Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides; IEEE J. Quant. Electron. QE-12 (1976) 7, 422–428

    Article  ADS  Google Scholar 

  78. Yariv, A.: Coupled-mode theory for guided-wave optics; IEEE J. Quant. Electron. QE-9 (1973) 9, 919–933

    Article  ADS  Google Scholar 

  79. Wang, S.: Principles of distributed feedback and distributed Bragg-reflector lasers; IEEE J. Quant. Electron. QE-10 (1974) 4, 413–427

    Article  ADS  Google Scholar 

  80. Kogelnik, H., Shank, C.V.: Coupled-wave theory of distributed feedback lasers; J. Appl. Phys. 43 (1972), 2327

    Google Scholar 

  81. Nakamura, M.,GaAs-Ga1-xAlxAs double heterostructure distributed et al. feedback SioSe lasers; Appl. Phys. Lett. 25 (1974) 9, 487–488

    Article  ADS  Google Scholar 

  82. Scifres, D.R.; Burnham, R.D.; Streifer, W.: Distributed feedback single heterojunction diode laser; Appl. Phys. Lett. 25 (1974) 4, 203–206

    Article  ADS  Google Scholar 

  83. Shank, C.V.; Schmidt, R.V.; Miller, B.I.: Double-Heterostructure GaAs Distributed-Feedback Laser; Appl. Phys. Lett. 25 (1977) 4, 200–201

    ADS  Google Scholar 

  84. Shams, M.; Wang, S.: GaAs-(GaAl)As L0C-DBR laser with high differential quantum efficiency; Appl. Phys. Lett. 33 (1978) 2, 170–173

    Article  ADS  Google Scholar 

  85. Reinhart, F.K.; Logan, R.A.; Shank, C.V.: GaAs-AlxGax-1As injection lasers with distributed Bragg reflectors; Appl. Phys. Lett. 27 (1975) 1, 45–48

    Article  ADS  Google Scholar 

  86. Tsang, W.; Wang, S.: GaAs-Gax-1AlxAs double heterostructure injection lasers with distributed Bragg reflectors; Appl. Phys. Lett. 28 (1976) 10, 596–598

    Article  Google Scholar 

  87. Namizaki, H.; Shams, M.K., Wang, S.: Large-optical cavity GaAs-(GaAl)As injection laser with low-loss distributed Bragg reflectors; Appl. Phys. Lett. 31 (1977) 2, 122–124

    Article  ADS  Google Scholar 

  88. Tsang, W.T., et al. Strip Burried Heterostructure Lasers with Passive Distributed Bragg Reflectors; IEEE J. Quant. Electron. QE-15 (1979) 10, 1091–1093

    Article  Google Scholar 

  89. Utaka, K., Kobayashi, K., Suematsu, Y.: Lasing Characteristics of 1.5–1.6 µm GaInAsP/InP; Integrated Twin-Guide Lasers with First-Order Distributed Bragg Reflectors; IEEE J. Quant. Electron. QE-17 (1981) 5, 651–658

    Article  ADS  Google Scholar 

  90. Sakakibara, Y., et al: Single-mode oscillation under high-speed direct modulation in GaInAsP/InP integrated twin guide lasers with distributed Bragg reflectors; Electron. Lett. 16 (1980) 12, 456–457

    Article  Google Scholar 

  91. Akhmedov, D., et al.: InGaAsP/InP Heterojunction Laser with Corrugated Wave-guide Laser; Pis’ma V Zh. Tekh. Fiz. 6 (1980) 11 /12, 708–712

    Google Scholar 

  92. Wang, S.: Design considérations for the DBR injection laser and the waveguiding structure for integrated optics; IEEE J. Quant. Electron. QE-13 (1977) 4, 176–186

    Article  ADS  Google Scholar 

  93. Chang, W.S.: Periodic Structures and Their Applications in Integrated Optics; IEEE Trans. Microw. Theory and Techniques MTT-21 (1973) 12, 775–785

    Article  Google Scholar 

  94. Dumke, W.P.: Current thresholds in stripe contact lasers; Sol. State Electron. 16 (1973), 1279–1281

    Article  ADS  Google Scholar 

  95. Ettenberg, M.; Nuese, C.J.; Kressel, H.: The Temperature Dependence of Threshold Current for Double Heterojunction Lasers; J. Appl. Phys. 50 (1979) 4, 2949–2950

    Article  ADS  Google Scholar 

  96. Hayakawa, T., et al.: Temperature Dependence of Threshold Current in (GaAl)As Double-Heterostructure Lasers with Emission Wavelengths of 0.74–0.9 nm; IEEE J. Quant. Electron. QE-17 (1981) 11, 2205–2210

    Article  Google Scholar 

  97. Pawlik, J.R., et al.: Reduced Temperature Dependence of Threshold of (Al,Ga)As Lasers Grown by Molecular Beam Epitaxy; Appl. Phys. Lett. 38 (1981) 12, 974–976

    Article  Google Scholar 

  98. Asada, M., et al.: The Temperature Dependence of the Threshold Current of GalnAsP/InP DH Lasers; IEEE J. Quant. Electron. QE-17 (1981) 5, 611–619

    Article  ADS  Google Scholar 

  99. Ikegami, T.: Reflectivity of mode at facet and oscillation mode in double heterostructure injection lasers; IEEE J. Quant. Electron. QE-8 (1972) 6, 470–476

    Article  ADS  Google Scholar 

  100. Kirkby, P.A., Thompson, G.H.B.: The effect of double heterojunction waveguide parameters on the far field emission pattern of lasers; Opto-electronics 4 (1972), 323

    Google Scholar 

  101. Reinhart, F.K.; Hayashi, I.; Panish, M.B. Mode reflectivity and waveguide properties of double heterostructure injection lasers; J. Appl. Phys. 42 (1971), 4466

    Google Scholar 

  102. Großkopf, G.; Küller, L.: Measurement of Nonlinear Distortions in Index- and Gain-Guiding GaAlAs Lasers; J. of Opt. Commun. 1 (1980) 1, 15–17

    Article  Google Scholar 

  103. Sato, K.; Asatani, K.: A study on analog video transmission using semiconductor laser diodes; Trans, of Inst. Electron. Commun. Eng. Jap., Part E, E6, 63 (1980) 11, 818

    Google Scholar 

  104. Petermann, K.; Storm, H.: Nichtlineare Verzerrungen bei der Modulation von Halbleiterlasern; Wiss. Ber. AEG-Telefunken 52 (1979) 5, 238–242

    ADS  Google Scholar 

  105. Lang, R.; Kobayashi, K.: External Optical Feedback Effects on Semiconductor Injection Laser Properties; IEEE J. Quant. Electron. QE-16 (1980) 3, 347–355

    Article  ADS  Google Scholar 

  106. Horimatsu, T.; Sasaki, M.; Aoyama, K.: Stabilization of diode laser output by beveled-end fiber coupling; Appl. Opt. 19 (1980) 12, 1984–1986

    Google Scholar 

  107. Hirota, O.; Suematsu, Y.; Kwok, K.: Properties of Intensity Noises of Laser Diodes due to Reflected Waves from Single-Mode Optical Fibers and Its Reduction; IEEE J. Quant. Electron. QE-17 (1981) 6, 1014–1020

    Article  ADS  Google Scholar 

  108. Kobayashi, K.; Seki, M.: Microoptic grating multiplexers and optical isolators for fiber-optic communications; IEEE J. Quant. Electron. QE-16 (1980) 1, 11–22

    Article  ADS  Google Scholar 

  109. Shibukawa, A., et al.: Compact optical isolator for near infrared radiation; Electron. Lett. 13 (1977) 24, 721–722

    Article  Google Scholar 

  110. Kobayashi, K., et al.: Stabilized 1.3 micron laser diode-isolator module for a hybrid optical integrated circuit; Digest of techn. papers, Top. Meet, on Integrated and Guided-Wave Optics, Incline Village 1980, USA, paper MD3

    Google Scholar 

  111. Kuwahara, H.: Optical isolator for semiconductor lasers; Appl. Opt. 19 (1980) 2, 319–323

    Article  ADS  Google Scholar 

  112. Arnold, G.; Petermann, K.: Intrinsic noise of semiconductor lasers in optical communication; Opt. and Quant. Electron. 12 (1980) 3, 207–219

    Article  ADS  Google Scholar 

  113. Baack, C., et al.: Modulation behaviour in the Gbit/s range of several GaAlAs lasers; Frequenz 32 (1978) 12, 346–350

    Google Scholar 

  114. Brouwer, P.P.; Velzel, C.H.F.; Yeh, B.S.: Lateral Modes and Self Oscillations in Narrow-Stripe Double-Heterostructure GaAlAs Injection Lasers; IEEE J. Quant. Electron. QE-17 (1981) 5, 694–701

    Article  ADS  Google Scholar 

  115. van der Ziel, J.P.: Self-Focusing Effects in Pulsating A1 Ga As Double-Heterostructure Lasers; IEEE J. Quant. Electron. QE-17 (1981) 1, 60–68

    Article  ADS  Google Scholar 

  116. Channin, D.J.; Olsen, G.H.; Ettenberg, M.: Self Oscillations and Dynamic Behaviour of Aged InGaAsP Laser Diodes; IEEE J. Quant. Electron. QE-17 (1981) 2, 207 - 210

    Article  ADS  Google Scholar 

  117. Streifer, W.; Scifres, D.R.; Burnham, R.D.: Longitudinal Mode Spectra of Diode Lasers; Appl. Phys. Lett. 40 (1982) 4, 305–307

    Article  ADS  Google Scholar 

  118. Hori, K.; Imai, H. Tokugasawa, M.: Long-Lived GaAlAs-GaAs DH-Laser Diodes for Optical Communications; Fujitsu Scient. & Techn. J. 15 (1979) 4, 95–109

    Google Scholar 

  119. Nannichi, Y.; Hayashi, I. Degradation of (Ga,Al)As Double Heterostructure Diode Lasers; J. Cryst. Growth 27 (1974), 126–132

    ADS  Google Scholar 

  120. Petroff, P.; Hartmann, R.L.: Rapid Degradation Phenomenon in Heterojunction GaAlAs-GaAs Lasers; J. Appl. Phys. 45 (1974), 3899

    Article  ADS  Google Scholar 

  121. Chinone, N.; Nakashima, H.; Ito, R.: Long term degradation of GaAs-Ga1-xAlxAs DH lasers due to facet erosion; J. Appl. Phys. 48 (1977) 3, 1160–1162

    Article  ADS  Google Scholar 

  122. Ladany, I.; Lockwood, H.F.; Kressel, H.: Al2O3 half-wave films for long-life c. w. lasers; Appl. Phys. Lett. 30 (1977) 2, 87–88

    Article  ADS  Google Scholar 

  123. Willardson, R.K.; Goering, H.L.: Compound Semiconductors, Vol. 1: Preparation of III-V Compounds; Reinhold Publ. Corp. 1962

    Google Scholar 

  124. von Münch, W.: Technologie der Galliumarsenid-Bauelemente; Springer- Verlag, Berlin 1969

    Google Scholar 

  125. Gremmelmaier, R.: Preparation of Single Crystals of InAs and GaAs; Z. Naturforsch. 11A (1956), 511–513

    ADS  Google Scholar 

  126. Gatos, H.C.: Properties of Compound and Elemental Semiconductors; Interscience Publ. New York 1960

    Google Scholar 

  127. Zschauer, K.H.: Liquid-Phase Epitaxy of GaAs and the Incorporation of Impurities; Festkörperprobleme XV; Pergamon/Vieweg 1975, 1–20

    Google Scholar 

  128. Köster, W.; Thoma, B.: The Systems Ga-Sb, Ga-As, and AI-As; Z. Metallk. 46 (1955), 291–293

    Google Scholar 

  129. Nakajima, K. Kusunoki, T. Akita, K.: InGaAsP Phase Diagram and LPE Growth Conditions for Lattice Matching on InP; Fujitsu Scient. & Techn. J. 16 (1980) 4, 59–83

    Google Scholar 

  130. Ng, W.; Dapkus, P.D.: Growth and Characterization of 1.3 µm CW GaInAsP/InP Lasers by Liquid-Phase Epitaxy; IEEE J. Quant. Electron. QE-17 (1981) 1, 193–198

    Article  ADS  Google Scholar 

  131. Tamari, N.: Liquid Phase Epitaxial Growth of Cadmium-Doped InGaAsP/InP Double Heterostructure Lasers; Appl. Phys. Lett. 39 (1981) 10, 792–794

    Article  Google Scholar 

  132. Bhattacharga, P. et al.: LPE and VPE In1-xGaxAsyP1-y/InP: Transport Properties, Defects, and Device iderations; IEEE J. Quant. Electron. QE-17 (1981) 2, 150–161

    Article  ADS  Google Scholar 

  133. Hsieh, J.J.: Phase Diagram for LPE Growth of GalnAsP Layers Lattice Matched to InP Substrates; IEEE J. Quant. Electron. QE-17 (1981) 2, 118–122

    Article  ADS  Google Scholar 

  134. Ladany, I.; Smith, R.T.; Magee, C.W.: Meltback and Pullover as Causes of Disturbances in Liquid-Phase Epitaxial Growth of InGaAsP/InP 1.3 µm Laser Material; J. Appl. Phys. 52 (1981) 10, 6064–6067

    Article  Google Scholar 

  135. Olsen, G. H.; Zamerowski, T.J.: Vapor-Phase Growth of (In,Ga)(As,P) Quaternary Alloys; IEEE J. Quant. Electron. QE-17 (1981) 2, 128–138

    Article  ADS  Google Scholar 

  136. Olsen, G. H.; Zamerowski, T.J.: Reliability of vapor-grown InGaAs and InGaAsP hetero-junction laser structures; IEEE J. Quant. Electron. QE-15 (1979) 8, 688–693

    Article  ADS  Google Scholar 

  137. Susa, N., et al.: Vapor-phase epitaxial growth of InGaAs on (100) InP substrate; Jap. J. Appl. Phys. 19 (1980) 1, L17–20, 4S

    Google Scholar 

  138. Susa, N.; Yamauchi, Y.: Punch-Through Type InGaAs Photodetector Fabricated by Vapor-Phase Epitaxy; IEEE J. Quant. Electron. QE-16 (1980) 5, 542–545

    Article  ADS  Google Scholar 

  139. Susa, N.; Yamauchi, Y.; Kanbe, H.: Vapor phase epitaxially grown InGaAs photodiodes; IEEE Trans. Electron. Dev. ED-27 (1980) 1, 92–98

    Article  Google Scholar 

  140. Stringfellow, G. Hall, H.T.: VPE Growth of AlxGa1-xAs; J. Cryst. Growth 43 (1978), 47–60

    Article  ADS  Google Scholar 

  141. Burnham, R.D.; Scifres, D.R.; Streifer, W.: Low-Threshold Stripe Geometry Lasers by Metalorganic Chemical Vapour Deposition (M0CVD); Electron. Lett. 17 (1981) 19, 714–715

    Article  Google Scholar 

  142. Ploog, K.: Molekular Beam Epitaxy in: Freyhardt, H.C. (ed.), Crystals, III-V Semiconductors, Springer-Verlag, Berlin 1980, 73–162

    Google Scholar 

  143. Tsang, W.T.: Extension of lasing wavelengths beyond 0.87 µm in GaAs/AlxGax-1As double-heterosturcture lasers by In incorporation m the GaAs active layers during molecular beam epitaxy; Appl. Phys. Lett. 38 (1981) 9, 661–663

    Article  ADS  Google Scholar 

  144. Lee, T.P., et al.: Zn-diffused back-illuminated p-i-n photodiodes in InGaAs/InP grown by molecular beam epitaxy; Appl. Phys. Lett. 37 (1980) 8, 730–731

    Article  ADS  Google Scholar 

  145. Tsang, W.T.: Extremely Low Threshold (AlGa)As Modified Multiquantum Well Heterostructure Lasers Grown by Molecular-Beam Epitaxy; Appl. Phys. Lett. 39 (1981) 10, 786–788

    Article  Google Scholar 

  146. Cho, A.Y.; Arthur, J.R.: Molecular Beam Epitaxy; Progr. in Sol. State Chem. 10 (1975), 157–191

    Article  Google Scholar 

  147. Lee, T.P.; Cho, A.Y.: Single-transverse-mode injection lasers with embedded stripe layer grown by molecular beam epitaxy; Appl. Phys. Lett. 29 (1976) 3, 164–166

    Article  ADS  Google Scholar 

  148. Winstel, G.; Weyrich, C.: Optoelektronik I, Springer-Verlag, Berlin 1981, 31

    Google Scholar 

  149. Casey, H.C.; Trumbore, F.A.: Single Crystal Electroluminescent Materials; Mater. Sci. Eng. 6 (1970), 69–109

    Article  Google Scholar 

  150. King, F.D.; Springthorpe, A.J. Szentesi, O.I.: High Power Long-Lived Double Heterostructure LED’s for Optical Communications; IEDM Washington 1975, 480–483

    Google Scholar 

  151. Kressel, H.: Semiconductor Devices for Optical Communication; Springer-Verlag, Berlin 1982

    Google Scholar 

  152. Iwamoto, K., et al.: Efficient Light Emitting Diodes for Optical Communications Systems; NEC Res. & Devel. 51 (1978) Oct., 69–78

    Google Scholar 

  153. Chinone, N., et al.: Highly efficient (GaAl)As buried heterostructure lasers with buried optical guide; Appl. Phys. Lett. 35 (1979) 7, 513–516

    Article  ADS  Google Scholar 

  154. Namizaki, H., et al.: Transverse-Junction-Stripe-Geometry Double-Heterostructure Lasers with Very Low Threshold Current; J. Appl. Phys. 45 (1975), 2785–2786

    Article  ADS  Google Scholar 

  155. Kumabe, H., et al.: High Temperature Single-Mode cw Operation with a Junction-Up TJS Laser; Appl. Phys. Lett. 33 (1978) 1, 38–39

    Article  ADS  Google Scholar 

  156. Nagano, M.; Kasahara, K.: Dynamic Properties of Transverse Junction Stripe Lasers; IEEE J. Quant. Electron. QE-13 (1977) 8, 632–637

    Article  ADS  Google Scholar 

  157. Aiki, K., et al.: Channeled-Substrate Planar Structure (AlGa)As Junction Laser; Appl. Phys. Lett. 30 (1977) 12, 649–651

    Article  Google Scholar 

  158. Botez, D.; Tsang, W.T.; Wang, S.: Growth Characteristics of GaAs-Ga1-xAlxAs Structures Fabricated by Liquid Phase Epitaxy over Preferentially Etched Channels; Appl. Phys. Lett. 28 (1976) 4, 234–237

    Article  ADS  Google Scholar 

  159. Botez, D.: cw high-power single-mode operation of constricted double-heterojunction AlGaAs lasers with a large optical cavity; Appl. Phys. Lett. 36 (1980) 3, 190–192

    Article  ADS  Google Scholar 

  160. Itoh, R.: Laser Application Manual; Firmenschrift Hitachi 1979

    Google Scholar 

  161. Maslowski, S.: Neue optische Sender-und Empfängerkonzepte; Professorenkonferenz der Deutschen Bundespost, Darmstadt Nov. 1981

    Google Scholar 

  162. Boers, P.M.; Vlaardingerbrock, M.T., Danielsen, M.: Dynamic Behaviour of Semiconductor Lasers; Electron, Lett. 11 (1975) 11, 206–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin/Heidelberg

About this chapter

Cite this chapter

Kersten, R.T. (1983). Sendeelemente. In: Einführung in die Optische Nachrichtentechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93234-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93234-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11923-4

  • Online ISBN: 978-3-642-93234-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics