Bone Marrow Cell Image Analysis by Color Cytophotometry

  • Gérard Brugal
Conference paper
Part of the Lecture Notes in Medical Informatics book series (LNMED, volume 17)

Abstract

A cell image analyzing system is described and recent advances in color processing algorithms are reported. Images of human bone marrow cells are acquired using red, green and blue broad band filters and processed according to a model based on the perceptual vision of color. The discriminatory power of hue, luminance and saturation computed on cells is discussed.

Keywords

Corn Leukemia Dition Thyroxine Teme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADELH, D.; BRUGAL, G.; CHASSERY, J. M.; CHIBON, P. and GARBAY, C., Microscopic image analysis system. Applications to biology: cell cycle, cancerous blood and bone marrow cells. Proc. IV th Int. Joint Conf. on Pattern Recog. Kyoto (Japon): 864–871 (1978)Google Scholar
  2. AUS, H. M.; RUTER, A.; MEULEN, V. T.; GUNZER, U. and NURNBERGER, R., Bone marrow cell scene segmentation by computer-aided color cytophotometry. J. Histochem. Cytochem., 25: 662–667 (1977).CrossRefGoogle Scholar
  3. BACUS, J. W., A whitening transformation for two-color blood cell images. In Pattern Recognition. Pergamon Press, 8: 53–60 (1976).Google Scholar
  4. BRENNER, J. F.; GELSEMA, E. S.; NECHELES, E. S.; NECHELES, T. F.; NEURATH, P. W.; SELLES, W. D. and VASTOLA, E., Automated classification of normal and abnormal leucocytes. J. Histochem. Cytochem., 22: 697–706 (1974).CrossRefGoogle Scholar
  5. BRENNER, J. F.; NECHELES, T. F.; BONACOSSA, I. A.; FRISTENSKY, R., WEINTRAUB, B. A. and NEURATH, P. W., Scene segmentation techniques for the analysis of routine bone marrow smears from acute lymphoblastic leukemia patients. J. Histochem. Cytochem., 25: 601–613 (1977).CrossRefGoogle Scholar
  6. BRUGAL, G.; GARBAY, C.; GIROUD, F. and ADELH, D., A double-scanning microphotometer for image analysis: hardware, software and biomedical applications. J. Histochem. Cytochem., 21: 144–152 (1979)CrossRefGoogle Scholar
  7. CASPERSSON, T., Uber den Chemischen Aufbau der Strukturen des Zellkernes. Scand. Arch. Physiol., 73, suppl. 8: 1–151 (1936).Google Scholar
  8. CHASSERY, J. M., Connectivity and consecutivity in digital pictures. Comp. Graph. and Image Proc., 9: 294–300 (1979).Google Scholar
  9. FU, K. S.; PAVLIDIS, T., Life Sciences Research Report 15. Biomedical Pattern Recognition and Image Processing. K.S. FU and T. PAVLIDIS eds. 441 p. Verlag Chemie (1979).Google Scholar
  10. GARBAY, C., Modélisation de la couleur dans le cadre de l’analyse d’images et de son application A la cytologie automatique. Thèse Ingénieur-Docteur. Institut National Polytechnique de Grenoble, (1979).Google Scholar
  11. GIROUD, F., Effets de la thyroxine exogène sur la cinétique cellulaire chez la larve du triton Pleurodeles waltlii Michah. étudiés dans le cadre du perfectionnement d’un système automatique d’analyse des images microscopiques. Thèse de Spécialité. Université de Grenoble (1979).Google Scholar
  12. GREEN, J. E., A practical application of computer pattern recognition research. The ABBOTT ADC-500 differential classifier. J. Histochem. Cytochem., 27: 160–173 (1979).Google Scholar
  13. MATHE, G.; POUILLART, P.; STERESCU, M.; AMIEL, J. L.; SCHWARZENBERG, L.; SCHNEIDER, M.; HAYAT, M.; DE VASSAL, F.; JASMIN, C. and LAFLEUR, M., Subdivision of classical varieties of acute leukemia. Correlation with prognosis and cure expectancy. Europ. J. Clin. Biol. Res., 16: 554–560 (1971).Google Scholar
  14. MATHERON, G., Théorie des ensembles aléato ires. Cahiers Centre Morph. Math., ENMP ed., Paris (1969).Google Scholar
  15. MERTZ, P. and GRAY, F.,A theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television. Bell System Tech. J., 13: 464–473 (1934).Google Scholar
  16. MILLER, N. M., Design and clinical results of HEMATRAK: an automated differential counter. IEEE Trans biomed. Eng., 23: 400 (1976).CrossRefGoogle Scholar
  17. MURPHY, S. B.; BORELLA, L.; SEN, L. and MAUER, A., Lack of correlation of lymphoblast cell size with presence of T-cell markers with outcome in childhood acute lymphoblastic leukemia. Brit. J. Haemat., 31: 95 (1975).CrossRefGoogle Scholar
  18. NADEL, E. M., Computer Analysis of cytometric fields by the CYDAC and its historical evolution from the CYTOANALYZER. Acta Cytol., 9: 203 (1965).Google Scholar
  19. NECHELES, T. F.; BRENNER, J. F.; BONACOSSA, I. A.; FRISTENSKY, R. and NEURATH, P. W., The computer-assisted morphological classification of acute leukemia. I-Preliminary results. Biomed. 25: 241 (1976).Google Scholar
  20. PANTAZOPOULOS, N. and SINKS, L. F., Morphological criteria for prognostication of acute lymphoblastic leukaemia. Brit. J. Naemat., 27: 25 (1974).CrossRefGoogle Scholar
  21. PREWITT, J. M. S. and MENDELSOHN, M. L., The analysis of cell images. An. N. Y. Acad. Sci., 128: 1035–1953 (1966).CrossRefGoogle Scholar
  22. ROSENFELD, A., Topics in applied physics. Digital picture analysis. A. ROSENFELD Ed. Springer Verlag, Berlin, 351 p. (1976).Google Scholar
  23. TOLLES, W. E., The CYTOANALYZER, an example of physics on medical research. Trans N. Y. Acad. Sci., 17: 250–256 (1955).Google Scholar
  24. VEILLON, F., One-pass computation of morphological and geometrical properties of objects in digital pictures. Signal Proc., 1: 175–189 (1979).Google Scholar
  25. WIED, G. L.; BARTELS, P. H.; BAHR, G. F. and OLFIELD, D. G., Taxonomic intra-cellular analytic system (TICAS) for cell identification. Acta Cytol., 12: 180–204 (1968).Google Scholar
  26. YOUNG, I. T., Automated leucocyte recognition. Ph. D. Dissertation. M. I. T. Cambridge, (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Gérard Brugal
    • 1
  1. 1.Equipe de Microscopie Quantitative — C.E.R.M.O.Université Scientifique et Médicale de GrenobleGrenoble CedexFrance

Personalised recommendations