Skip to main content

Planar Imaging and Picture Analysis in Nuclear Medicine

  • Conference paper

Part of the book series: Lecture Notes in Medical Informatics ((LNMED,volume 15))

Abstract

The first radionuclide image was an autoradiograph of crystals of the double sulfate of uranium and potassium. It lead H. BECQUEREL to the discovery of natural radioactivity on Sunday, 1 March 1896 (1). He published it in his Nobel Lecture in 1903 (2).

Wenn die Anschauung sich nach der Beschaffenheit der Gegenstände richten müßte, so sehe ich nicht ein, wie man a priori von ihr etwas wissen könne; richtet sich aber der Gegenstand (als Objekt der Sinne) nach der Beschaffenheit unseres Anschauungsvermögens, so kann ich mir diese Möglichkeit ganz wohl vorstellen.

I. KANT, Vorrede zur 2. Auflage, Critik der reinen Vernunft, Riga, 1787

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becquerel, H.: Sur les radiations invisibles emises par les corps phosphorescents. C.R. Acad. Sei. (Paris) 122: 501–503, 1896

    Google Scholar 

  2. Nobel Lectures, Including Presentation Speeches and Laureates’ Biographies. Physics, 1901–1921. Elsevier, New York: 47–73, 1967

    Google Scholar 

  3. Anger, H.O.: Tomography and other depth-discrimination techniques. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson) Vol. 2, Academic Press, New York-London: 62–100, 1974

    Google Scholar 

  4. Jaszczak,R.J., Coleman, R.E., Chun Bin Lim: SPECT: single photon emission computed tomography. IEEE Trans. Nucl. Sei., NS-27: 1137–1153, 1980

    Google Scholar 

  5. Brownell, G.L., Correia, J.A., Zamenhof, R.G.: Positron Instrumentation. In: Recent Advances in Nuclear Medicine (eds.: J.H. Lawrence, T.F. Budinger), Vol. 5, Grune & Stratton, New York-San Francisco-London: 1–49, 1978

    Google Scholar 

  6. Hevesy, G.: The absorption and translocation of lead by plants. A contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem. J. 17: 439–445, 1923

    Google Scholar 

  7. Blumgart, H.L., Yens, O.C.: Studies on the velocity of blood flow. J. Clin. Invest. 4: 1–13, 1926

    Article  Google Scholar 

  8. Chievitz, O., Hevesy, G.: Radioactive indicators in the study of phosphorus metabolism in rats. Nature 136: 754–755, 1935

    Article  Google Scholar 

  9. Joliot, F., Curie, I.: Artificial production of a new kind of radio-element. Nature 133: 201, 1934

    Article  Google Scholar 

  10. Livingood, J.J., Seaborg, C.T.: Radioactive iodine isotopes. Phys. Rev. 53: 1015, 1938

    Article  Google Scholar 

  11. Sorenson, J.A., Phelps, M.E.: Image quality in nuclear medicine. In: Physics in Nuclear Medicine, Grune & Stratton, New York-London-Toronto-Sydney-San Francisco:328–344, 1980

    Google Scholar 

  12. Cassen, B., Curtis, L., Reed, C., Libby, R.: Instrumentation for 1-131 use in medical studies. Nucleonics 9: 46–50, 1951

    Google Scholar 

  13. Newell, R.R., Saunders, W., Miller, E.: Multichannel collimators for gamma-ray scanning with scintillation counters. Nucleonics 10: 36–40, 1952

    Google Scholar 

  14. Hofstadter, R.: Alkali halide scintillation counters.Physic.Rev. 74: 100, 1948

    Google Scholar 

  15. Anger, H.O.: Scintillation camera. Rev. Sei. Instr. 29: 27–33, 1958

    Article  Google Scholar 

  16. Hundeshagen, H.: Der Einsatz eines Magnetband-Magnetkern-Speichersystems zur szintigraphischen Darstellung von Organen. Picker-Bulletin 4, 1966

    Google Scholar 

  17. Winkler, G., Schepers, H.: Digitalregistrierung, -speicherung und Computerauswertung von Meßergebnissen einer Szintillationskamera. Atompraxis, Direct Info. 3/1966

    Google Scholar 

  18. Winkler, G.: Entwicklung und gegenwärtiger Stand der Datenverarbeitung in der klinischen Nuklearmedizin. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer-Verlag, Berlin-Heidelberg- New York: 1–14, 1981

    Google Scholar 

  19. Budinger, T.F.: Quantitative nuclear medicine imaging: application of computers to the gamma-camera and whole-body scanner. In: Recent Advances in Nuclear Medicine (ed.: J.H. Lawrence), Vol. 4, Grune & Stratton, New York - San Francisco - London: 41–130, 1974

    Google Scholar 

  20. Larson, K.B., Cox, J.R. (eds.) Computer processing of dynamic images from an Anger scintillation camera. Soc. of Nucl. Med., New York, 1974

    Google Scholar 

  21. O’Neill, W., Sorenson, J.A.: On-line computer systems for scintigraphic data processing. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol. 2, Academic Press, New York-London: 203–227, 1974

    Google Scholar 

  22. Pratt, W.K.: Digital image processing. John Wiley & Sons, New York-Chichester-Brisbane-Toronto, 1978

    Google Scholar 

  23. Pfeiler, M.: Lineare Systeme zur Übertragung zeitabhängiger Ortsfunktionen und Bilder. NTZ: 97–108, 1968

    Google Scholar 

  24. Rollo, F.D., Harris, C.C.: Factors affecting image formation. In: Nuclear Medicine Physics, Instrumentation and Agents (ed.: F.D. Rollo), C.V. Mosby Co., St Louis: 387–435, 1977

    Google Scholar 

  25. Hine, G.J., Sorenson, J.A. (eds.) Instrumentation in Nuclear Medicine. Vol. 2, Academic Press, New York-London, 1974

    Google Scholar 

  26. Rollo, F.D. (ed.) Nuclear Medicine Physics, Instrumentation, and Agents. C. V. Mosby Co., St.Louis, 1977

    Google Scholar 

  27. Sorenson, J.A., Phelps, M.E.: Physics in Nuclear Medicine.Grune & Stratton, New York-London-Toronto-Sydney-San Francisco, 1980

    Google Scholar 

  28. Patton, J.A., Rollo, F.D., Brill, A.B.:Recent developments in nuclear medicine instrumentation. IEEE Trans. Nucl. Sei. NS-27: 1066–1072, 1980

    Google Scholar 

  29. Pretschner, D.P.: Nuclear medicine in Europe, Considerations of present status and future trends. Eur. J. Nucl. Med. 5: 175–184, 1980

    Article  Google Scholar 

  30. Grenier, R.P., Bender, M.A., Jones, R.H.: A computerized multi-crystal scintillation gamma camera. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol. 2, Academic Press, New York-London: 102–134, 19?4

    Google Scholar 

  31. Graham, L.S., Perez-Mendez, V.: Special imaging devices. In: Nuclear Medicine Physics, Instrumentation, and Agents (ed.: Rollo, F.D.), C.V. Mosby Company, St. Louis: 271–321, 1977

    Google Scholar 

  32. Budinger, T.F., Derenzo, S.E., Gullberg, G.T., Greenberg, W.L., Heusman, R.H.: Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J. Comput. Assist. Tomog. 1: 131–145, 1977

    Article  Google Scholar 

  33. Jordan, K.: Die Verfahren der Emissions-Computertomographie und ihre Grenzen. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D. P. Pretschner), Springer-Verlag, Berlin-Heidelberg-New York: 222–244, 1981

    Google Scholar 

  34. Todd-Pokropek, A.E., Pizer, S.M.: Displays in scintigraphy. In: Medical Radio-nuclide Imaging, Vol.1, IAEA, Vienna: 505–536, 1977

    Google Scholar 

  35. Pizer, S.M., Chan, F.H.: Evaluation of the number of discernible levels produced by a display. In: Information processing in medical imaging(eds.: R. Di Paola, E. Kahn) INSERM, Paris, Vol. 88: 561–580, 1980

    Google Scholar 

  36. Wolf, A.P.: Medical cyclotrons. Medical Radionuclide Imaging I, IAEA, Vienna: 343–355, 1977

    Google Scholar 

  37. Colombetti, L.G. (ed.): Principles of Radiopharmacology, Vol.I–IV, CRC Press, Inc., Florida, 1979

    Google Scholar 

  38. Cohen, K., Besnard, M.: Radionuclides. Pharmacokinetias. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H.Hundeshagen), Bd.XV, Teil 1A, Springer Verlag, Berlin, Heidelberg, New York: 3–76, 1980

    Google Scholar 

  39. Junker, D., Fitschen, J.: Dosimetrie inkorporierter Strahler. In: Handbuch der Med. Radiologie, Bd.XV, Teil 1A, (ed.: H. Hundeshagen), Springer-Verlag, Berlin-Heidelberg: 425–482, 1980

    Google Scholar 

  40. Welch, M.J., Wagner, S.J.: Preparation of poätron-emitting radiopharmaceuticals. In: Recent Advances in Nuclear Medicine (ed.: J.H. Lawrence, T.F. Budinger), Vol.5, Grune & Stratton, New York-San Francisco-London: 1–49, 1978

    Google Scholar 

  41. Jahns, E.G.H., Helmeke, H.-J,: Prediction of collimator performance by Monte- Carlo techniques. In: Medical Radionuclide Imaging, II, IAEA, Vienna: 207–218, 1977

    Google Scholar 

  42. Rajai Rizi, H., Kline, R.C., Thrall, J.H., et al.: Thallium-201 myocardial scintigraphy: a critical comparison of seven-pinhole tomography and conventional planar imaging. J. Nucl. Med. 22: 493–499, 1981

    Google Scholar 

  43. Pizer, S.M., Brownell, G.L., Chesler, D.A.: Scintigraphic data processing. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol.2, Academic Press, New York, London: 229–262, 1974

    Google Scholar 

  44. Brookeman, V.A.: Component resolution indices for scintillation camera systems. J. Nucl. Med. 16: 228–230, 1975

    Google Scholar 

  45. Rollo, F.D.: An index to compare the performance of scintigraphic imaging systems. J. Nucl. Med. 15: 757–762, 1974

    Google Scholar 

  46. Rollo, F.D., Schulz, A.G.: A contrast efficiency function for quantitatively measuring the spatial resolution characteristics of scanning systems. J. Nucl. Med. 11: 53–60, 1970

    Google Scholar 

  47. Whitehead, F.R.: Quantitative analysis of minimum detectable lesion-to-background uptake ratios for nuclear medicine imaging systems. In: Medical Radionuclide Imaging, Vol.1, IAEA, Vienna: 409–432, 1977

    Google Scholar 

  48. Sharma, R.R., Fowler, J.F.: Threshold detection tests in radioisotope scanning. Phys. Med. Biol. 15: 289–300, 1970

    Article  Google Scholar 

  49. Performance measurements of scintillation cameras, Standards Publication/No. NU 1 - 1980. NEMA, 2101 L Street, N.W., Washington, D.C. 20037

    Google Scholar 

  50. Pizer, S.M., Todd-Pokropek, A.E.: Improvement of scintigrams by computer processing. Sem. Nucl. Med. VII: 125–146, 1978

    Google Scholar 

  51. Enos, G.W.: The result of improved detector performance on system imaging ability. Picker J. Nucl. Med. Instr. 2: 40–43, 1981

    Google Scholar 

  52. Todd-Pokropek, A.E.: Image processing in nuclear medicine. IEEE Trans. Nucl. Sei., NS-27, 1080–1094, 1980

    Google Scholar 

  53. Pizer, S.M., Todd-Pokropek, A.E.: Noise character in processed scintigrams. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 1–16, 1976

    Google Scholar 

  54. Characteristics and test conditions of radionuclide imaging devices, 62 C Rev. March 1979 (Paris), Techn. Committee No. 62, Sub-Committee 62C. High-energy radiation equipment and equipment for Nucl.Med., Int. Electrotechnical Comm., 1, Rue de Verembe, Geneva

    Google Scholar 

  55. Sano, R.M.: Performance standards-characteristics and test conditions for scintillation cameras. Int. Symp. Med. Radionuclide Imaging, Heidelberg, IAEA -SM - 247, 1980

    Google Scholar 

  56. Knoop, B., Pretschner, P., Dopslaff, H., Jordan, K.: Zur Anpassung des Bildrasters an die Übertragungsfunktion der Gamma-Kamera bei der kardialen Funktionsszintigraphie. In: Nukelarmedizin, Die klinische Relevanz der Nuklear- medizin(eds.: H.A.E. Schmidt, G. Riccabona), F.K. Schattauer Verlag, Stuttgart-New York: 56–59, 1980

    Google Scholar 

  57. Rosenfeld, A.: Picture Processing by computer. Academic Press, New York, London, 1969

    Google Scholar 

  58. Rosenfeld, A., Kak, A.C.: Digital picture processing. Academic Press, New York, San Francisco, London, 1976

    Google Scholar 

  59. Niemann, H.: Methoden der Mustererkennung. Akademische Verlagsgesellschaft, Frankfurt, 1974

    MATH  Google Scholar 

  60. Andrews, H.C.: Computer techniques in image processing. Academic Press, New York, 1970

    Google Scholar 

  61. Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. J. Wiley & Sons, New York, 1973

    Google Scholar 

  62. Kazmierczak, H.: Automatische Zeichenerkennung. In: Taschenbuch der Informatik (eds.: K. Steinbuch, W. Weber), Bd. 3, Springer Verlag, Berlin-Heidelberg- New York: 219–269, 1974

    Google Scholar 

  63. Rosenfeld, A. (ed.): Digital picture analysis, Springer Verlag, Berlin- Heidelberg- New York, 1976

    MATH  Google Scholar 

  64. Papoulis, A.: Probability, random variables and stochastic processes, Mc Graw Hill, New York, 1965

    MATH  Google Scholar 

  65. Lodwick, G.S.: Progress report of diagnostic content and redundancy in radiant images for Sept. 1973–May 1975. The College of Engineering, Univ. Missouri-Columbia, 1975

    Google Scholar 

  66. Ehrich, R.W., Foith, J.P.: Structural processing of visual information. Virginia Polytechnic Institute and State University Blacksburg, CS 77004-R, 1977

    Google Scholar 

  67. Pretschner, D.P., Freihorst, J., Gleitz, C.-D., Hundeshagen, H.: 201-T1 -myocardial scintigraphy: a 3-dimensional model for the improved quantification of zones with decreased uptake. In: Information Processing in Medical Imaging (eds.: R. di Paola, E. Kahn), INSERM, Paris, Vol. 88: 409–426, 1979

    Google Scholar 

  68. Pretschner, D.P., Freihorst, J., Gleitz, C.-D., Hundeshagen, H.: A computer generated 3-D model of the left ventricle for quantification of myocardial morphology and function using radiopharmaceuticals. In: Computers in Cardiology, IEEE, Genf: 415–418, 1979

    Google Scholar 

  69. Narasimhan, R.: Labelling schemata and syntactic description of pictures. Information and Control 7: 151–179, 1964

    Article  Google Scholar 

  70. Narasimhan, R.: Syntax-directed interpretation of classes of pictures. CACM 9: 166–173, 1966

    Google Scholar 

  71. Shaw, A.C.: A formal picture description scheme as a basis for picture processing systems. Information and Control 14: 9–52, 1969

    Article  MATH  Google Scholar 

  72. Shaw, A.C.: Parsing of graph-representable pictures. JACM 17: 453–481, 1970

    Google Scholar 

  73. Ledley, R.S.: High-speed automatic analysis of biomedical pictures. Science 146: 216–223, 1964

    Article  Google Scholar 

  74. Miller, W.F., Shaw, A.C.: Linguistic methods in picture processing: a survey. AFIPS Proc. FJCC: 279–290, 1968

    Google Scholar 

  75. Gilbert, B.K., Harris, L.D.: Advances in processor architecture, display, and device technology for biomedical image processing. IEEE Trans. Nucl. Sei., NS-27: 1197–1206, 1980

    Google Scholar 

  76. Harris, L.D., Robb, R.A., Yuen, T.S., Ritman, E.L.: The display and visualization of 3-D reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs. J. Comp. Ass. Tom. 3: 439–446, 1979

    Article  Google Scholar 

  77. Budinger, T.F.: Clinical and research quantitative nuclear medicine system. In: Medical Radioisotope Scintigraphy 1972, Vol. I, IAEA, Vienna: 501–555, 1973

    Google Scholar 

  78. Budinger, T.F.: Harpootlian, J.: Developments in digital computer implementation in nuclear medicine imaging.Comput.Biomed. Res. 8: 26–52, 1975

    Google Scholar 

  79. Bacharach, S.L., Green, M.V., Ostrow, H.G., Borer, J.S. et al.: Developments in nuclear medicine computer systems: application to cardiology. IEEE Trans. Nucl. Sei., NS-27: 1095–1102, 1980

    Google Scholar 

  80. Nuclear Cardiology: selected computer aspects Symp. Proc., Atlanta, Georgia, 1978, Soc. of Nucl. Med.. Inc.. New York. 1978

    Google Scholar 

  81. Knopp, R., Winkler, C.: Ein universell anwendbares, neues DV-System für die klinische Nuklearmedizin. Med..Technik 5: 102, 1976

    Google Scholar 

  82. Pfeiffer, G., Höhne, K.H.: Improvements of programming efficiency in medical image processing by a dialog language. Proc. of MIE 78, Lecture Notes in Med. Inf., Springer Verlag, New York: 221–231, 1978

    Google Scholar 

  83. Pfeiffer, G., Höhne, K.H.: A dialog language for interactive processing of scintigraphic data. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 221–231, 1976

    Google Scholar 

  84. Pfeiffer, G.: Entwurf und Implementierung eines Dialogsystems zur Erzeugung interaktiver Bildverarbeitungssysteme in der Medizin. Dissertation, Fachbereich Informatik der Univ. Hamburg, 1981

    Google Scholar 

  85. Pretschner, D.P., Pfeiffer, G.: Erzeugung einer Kommandosprache für nuklearmedizinische Signal- und Bildverarbeitung aus einem allgemeinen Dialogsystem. In: Systeme und Signalverarbeitung in der Nuklearmedizin (-eds.: S.J. Pöppl. D. P. Pretschner), Springer Verlag, Berlin-Heidelberg-New York: 187–204, 1981

    Google Scholar 

  86. Erickson, J., Wilson, S.: Interactive image manipulative system and image manipulative extensions to higher level languages for use by non-computer oriented personnel. In: Proc. 2nd Symp. Sharing Comp. Prog, and Technol. in Nucl. Med., Oak Ridge: 15–25, 1972

    Google Scholar 

  87. Hoare, C.A.R.: Hints on programing language design. Stanford, MEMO AIM 224 STAN-Cs-73-403: 1–29, 1973

    Google Scholar 

  88. Pretschner, D.P.: FORTRAN - Pflicht für Nuklearmediziner? In: Nuklearmedizin, Stand und Zukunft (eds.: H.A.E. Schmidt, M. Woldring), F.K. Schattauer Verlag, Stuttgart, New York, 827–831, 1978

    Google Scholar 

  89. Kupka, I., Wilsing, N.: Dialogsprachen. Teubner Studienbücher Informatik, Vol. 32, 1975

    Google Scholar 

  90. Gram, C., Hertweck, F.: Command languages: design considerations and basic concepts. In: Command languages (ed.: G. Unger), North-Holland, Amsterdam: 43–69, 1975

    Google Scholar 

  91. Sveinsdottir, E., Schomacker, T., Lassen, N.A.: Interactive handling of regional cerebral blood flow data using a macrolanguage. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 209–220, 1976

    Google Scholar 

  92. Todd-Pokropek, A.E., Plummer, D., Pizer, S.M.: Modularity and command languages in medical computing. In: Proc. Vth Int. Conf., Nashville, 1977, ORNL/BCTIC-2: 426–455, 1978

    Google Scholar 

  93. Line, B.R., Johnston, G.S., Bailey, J.J.: The design and evaluation of a command processing system for scintigraphic image analysis. In: Inf. Proc. in Med. Imaging, Proc. Vth Int. Conf., Nashville, 1977, ORNL/BCTIC-2:456–467, 1978

    Google Scholar 

  94. Maskewitz, B.F., Henne, R.L., Mc Ciain, W.J.: The Biomedical Computing Technology Information Center. In: Medical Radionuclide Imaging, Vol.1, IAEA, Vienna: 435–441, 1977

    Google Scholar 

  95. Klement, V.: Bilddarstellung und -Verarbeitung in der Szintigraphie. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen), Bd.XV, Teil 1A, Springer Verlag, Berlin-Heidelberg-New York: 385–422, 1980

    Google Scholar 

  96. Lorenz, W.J.: Radionuklidproduktion mit Forschungsreaktoren für medizinisch- bilogische Anwendungen. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen),Bd. XV, Teil 1A, Springer Verlag, Berlin-Heidelberg-New York: 89–109, 1980

    Google Scholar 

  97. Müller-Schauenburg, W.: Bewegungsmuster des Harnleiters: Datenkompression und Statistik. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer Verlag, Berlin-Heidelberg-New York: 142–151, 1981

    Google Scholar 

  98. Schmidlin, P.: Bewertung von Funktionskurven mit Hilfe der Hauptkomponentenanalyse. In: Systeme und SignalVerarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer Verlag, Berlin-Heidelberg-New York: 132–141, 1981

    Google Scholar 

  99. Schmidlin, P., Clorius, J., Lorenz, W.J.: Pattern recognition in renography. In: Information Processing in Medical Imaging (eds.: R. Di Paola, E. Kahn), INSERM, Paris, Vol. 88: 335–344, 1980

    Google Scholar 

  100. Pretschner, P.: Prinzipien parametrischer Darstellung der Herzfunktion in der Nuklearmedizin. Nuklearmediziner 2: 91–106, 1980

    Google Scholar 

  101. Oppenheim, B.E., Appledorn, C.R.: Functional renal imaging using factor analysis. In: Information Processing in Medical Imaging (eds.: R. Di Paola, E. Kahn) INSERM, Paris, Vol. 88: 321–334, 1980

    Google Scholar 

  102. Barber, D.C.: The use of principle components in the quantitative analysis of gamma camera dynamic studies. Phys. Med. Biol. 25: 283–292, 1980

    Article  Google Scholar 

  103. Bazin, J.P., Di Paola, R., Gibaud, B., Rougier, P., Tubiana, M.: Factor analysis of dynamic scintigraphic data as a modelling method. An application to the detection of metastases. In: Information Processing in Medical Imaging (eds.: R. di Paola, E. Kahn), INSERM, Paris, Vol. 88: 345–366, 1980

    Google Scholar 

  104. Houston, A.S.: Classification of dynamic function studies in nuclear medicine. Does feature extraction help? In: Information Processing in Medical Imaging (eds.: R. di Paola, E. Kahn), INSERM, Paris, Vol. 88: 381–394, 1979

    Google Scholar 

  105. Ammann, W.W., Vaknine, R.: Structure analysis - A new method for evaluating scintigrams. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A. Todd-Pokropek), CEA, Orsay: 66–79, 1976

    Google Scholar 

  106. Blahd, W.H.: History of external counting procedures. Sem. Nucl. Med. 9: 159–163, 1979

    Article  Google Scholar 

  107. Pretschner, D.P.: Ein neues System zur Erfassung und Auswertung von Kernstrahlungsfeldern bei nuklearmedizinischen Untersuchungen (Engymetrie). In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner) Springer Verlag, Berlin-Heidelberg-New York: 74–95, 1981

    Google Scholar 

  108. Hundeshagen, H.: Radiokardiographie. Dr. Alfred Hüthig Verlag, Heidelberg, 1970

    Google Scholar 

  109. Donato, L., Rochester, D.F., Lewis, M.L. et al.: Quantitative radiocardiography. II. Technic and analysis of curves. Circulation 26: 183–188, 1972

    Google Scholar 

  110. Steele, P.P., van Dyke, D., Trow, R.S., Anger, H.O., Davies, H.: Simple and safe besides method for serial measurement of left ventricular ejection fraction, cardiac output, and pulmonary blood volume. Br. Heart J. 36: 122–131, 1974

    Article  Google Scholar 

  111. Strashun, A., Horowitz, S.F., Goldsmith, S.J., et al.: Noninvasive detection of left ventricular dysfunction with a portable electrocardiographic gated scintillation probe device. Am. J. Cardiol. 47: 610–617, 1981

    Article  Google Scholar 

  112. Britton, K.E.: Renal radionuclide techniques in their clinical context. In: Medical Radionuclide Imaging, Vol. II, IAEA, Vienna: 401–419, 1977

    Google Scholar 

  113. Sveinsdottir, E., Lassen, N.A.: A 254 detector system for measuring regional cerebral blood flow. Stroke 4: 365, 1973

    Google Scholar 

  114. Holman, B.L.: Concepts and clinical utility of the measurement of cerebral blood flow. Sem. Nucl. Med. VI: 233–251, 1976

    Google Scholar 

  115. Gielow, P.: Radionuklidgeneratoren. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen) Bd. XV, Teil 1A, Springer Verlag, Berlin- Heidelberg-New York: 77–88, 1980

    Google Scholar 

  116. Glass, H.I.: Cyclotron Production. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen) Bd. XV, Teil 1A, Springer Verlag, Berlin-Heidelberg- New York: 111–127, 1980

    Google Scholar 

  117. Jordan, K.: Grundlagen der Strahlenmeßtechnik. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen) Bd. XV, Teil 1A, Springer Verlag, Berlin- Heidelberg-New York: 131–206, 1980

    Google Scholar 

  118. Brill, A.B., Erickson, J.J.: Display systems in Nuclear Medicine. Sem. Nucl. Med. VIII: 155–161, 1978

    Google Scholar 

  119. Oberhausen, E., Berberich, R.: Die Bedeutung von Funktionsmeßplätzen und Ganzkörperzählern in der Nuklearmedizin. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen), Bd.XV, Teil 1A, Springer Verlag, Berlin-Heidelberg-New York: 215–247, 1980

    Google Scholar 

  120. Boardman, A.K.: Constrained optimisation and its application to scintigraphy. Phys. Med. Biol. 24: 363, 1979

    Google Scholar 

  121. Cole, E.R.: The removal of unknown image blurs by homomorphic filtering. Ph. D. dissertation, Dep. El. Eng., Univ. Utah, Salt Lake City, 1973

    Google Scholar 

  122. Hunt, B.R.: The application of constrained least squares estimation to image restoration by digital computer. IEEE Trans. Computers, C-23: 805–812, 1973

    Google Scholar 

  123. Bassingthwaighte, J.B.: Approaches to modeling radiocardiographic data: comments on F.Castellana’s modeling of the central circulation. In: Quantitative Nuclear Cardiography (eds.: R.N. Pierson Jr., J.P. Kriss, et al.), J. Wiley & Sons, New York: 226–230, 1975

    Google Scholar 

  124. Bassingthwaighte, J.B., Yipintsoi, T.: Organ blood flow, wash-in, wash-out, and clearance of nutrients and metabolites. Mayo Clin. Proc. 49: 248–255, 1974

    Google Scholar 

  125. Bassingtwaighte, J.B.: Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: flow estimation from tracer washout. Progr. Cardiovasc. Dis. 20: 165–189, 1977

    Article  Google Scholar 

  126. Bassingthwaighte, J.B., Chinard, F.P., Crone, C., Lassen, N.A., Perl, W.: Definitions and terminology for indicator dilution methods. In: Capillary permeability (eds.: C. Crone, N.A. Lassen), Copenhagen, Ejnar Munksgaard:665–669, 1970

    Google Scholar 

  127. Bassingthwaighte, J.B.: Blood flow and diffusion through mammalian organs. Science 167: 1347–1353, 1970

    Article  Google Scholar 

  128. Meier, P., Zierler, K.L.: On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6: 731, 1954

    Google Scholar 

  129. Zierler, K.L.: Equations for measuring blood flow by external monitoring of radioisotopes. Circ. Res. 16: 309–321, 1965

    Google Scholar 

  130. Zierler, K.L.: Why tracer dilution curves through a vascular system have the shape they do. In: Computer processing of dynamic images from an Anger scintillation camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., New York:70–94, 1974

    Google Scholar 

  131. Larson, K.B.: Physical principles of tracer kinetics. In: Computer processing of dynamic images from an Anger scintillation camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., New York: 70–94, 1974

    Google Scholar 

  132. Gonzales-Fernandez, J.M.: Theory of the measurement of the dispersion of an indicator in indicator-dilution studies. Circ. Res. 10: 409–428, 1962

    Google Scholar 

  133. Lassen, N.A., Perl, W.: Tracer kinetik methods in medical physiology. Raven Press, New York, 1979

    Google Scholar 

  134. Fried, J.: Use of computers for dynamic radionuclide studies. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol.2, Academic Press, New York, London: 263–310, 1974

    Google Scholar 

  135. Rockoff, M.L.: Interpretation of the clearance curve of a diffusible tracer by blood flow in terms of a parallel-compartment model. In: Computer processing of dynamic images from Anger scintillation camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., New York: 108–126, 1974

    Google Scholar 

  136. Kelly, P.J., Yipintsoi, T., Bassingthwaighte, J.B.: Blood flow in canine tibial diaphysis estimated by iodoantipyrine-125-I washout. J. Appl. Physiol. 31: 38–47, 1971

    Google Scholar 

  137. Bassingthwaighte, J.B., Strandeil, T., Donald, D.E.: Estimation of coronary blood flow by washout of diffusible indicators. Circ. Res. 23: 259–278, 1968

    Google Scholar 

  138. Guller, B., Yipintsoi, T., Orvis, A.L., Bassingthwaighte, J.B.: Myocardial sodium extraction at varied coronary flows in the dog. Circ. Res. 37: 359–378, 1975

    Google Scholar 

  139. Suenson, M., Richmond, D.R., Bassingthwaighte, J.B.: Diffusion of sucrose, sodium, and water in ventricular myocardium. Am. J. Physiol. 227: 1116–1123, 1974

    Google Scholar 

  140. Yipintsoi, T., Bassingthwaighte,J.B.: Circulatory transport of iodoantipyrine and water in the isolated dog heart. Circ. Res. 17: 461–477, 1970

    Google Scholar 

  141. Bassingthwaighte, J.B.: Circulatory transport and the convolution integral. Mayo Clin. Proc. 42: 137–154, 1967

    Google Scholar 

  142. Coulam, C.M., Warner, H.R., Wood, E.H., Bassingthwaighte, J.B.: A transfer function analysis of coronary and renal circulation calculated from upstream and downstream indicator-dilution curves. Circ. Res. 19: 879–890, 1966

    Google Scholar 

  143. Knopp, T.J., Bassingthwaighte, J.B.: Effect of flow on transpulmonary circulatory transport functions. J. Appl. Physiol. 27: 36–43, 1969

    Google Scholar 

  144. Chinard, F.P.: Estimation of extravascular lung water by indicator-dilution techniques. Circ. Res. 37: 137–145, 1975

    Google Scholar 

  145. Berman, M.: Compartmental Modeling. In: Advances in Medical Physics (eds.: J.S. Laughlin, E.W. Webster), 2nd Int. Conf. on Med. Physics, Inc. Boston: 279, 1971

    Google Scholar 

  146. Berman, M., Weiss, M.F.: SAAM Manual. Washington, DC, Dep. of Health, Education & Welfare, Publ. (NIM): 78–180, 1978

    Google Scholar 

  147. Cerretelli, P., Blau, M., Pendergast, D., Eisenhardt, C., et al.: Cadmium telluride Xe-133 clearance detector for muscle blood flow studies. IEEE Trans. Nucl. Sei., NS-25: 620–623, 1978

    Google Scholar 

  148. Larson, O.A.: Xe-133 methods for determining peripheral blood flow and blood pressure in patient with occlusive arterial disease. Angiology 23: 153, 1972

    Google Scholar 

  149. in children. Circulation 51: 1136, 1975

    Google Scholar 

  150. Pretschner, D.P., Hundeshagen, H., Kallfelz, H.C., Freymann, R.: Zur radiokardiographisehen Bestimmung von Links-Rechts-Shunts. In: Nuklearmedizin und Biokinetik (eds.: K. Oeff, H.A.E. Schmidt), Bd.l, Medico-Informationsdienste, Berlin: 460–464, 1978

    Google Scholar 

  151. Keyes, J.W., Jr.: Manual of Nuclear Medicine Procedures. CRC Press, Inc., Florida, 1978

    Google Scholar 

  152. Pfannenstiel, P.: 30 Jahre Nuklearmedizin. Electromedica 3: 71–76, 1980

    Google Scholar 

  153. Metz, C.E., Starr, S.J., Lusted, L.B., Rossmann, K.: Progress in evaluation of human observer visual detection performance using the ROC curve approach. In: Information Processing in Scintigraphy (eds.: G. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 420–439, 1976

    Google Scholar 

  154. Metz, C.E.: Basic principles of ROC analysis. Sem.Nucl.Med. VIII: 283–298, 1978

    Google Scholar 

  155. Lusted, L.B.: General problems in medical decision making with comments on ROC analysis. Sem. Nucl. Med. VIII: 299–306, 1978

    Google Scholar 

  156. Parkey, R.W., Bonte, F.J., Buja, L.M., Willerson, J.T. (eds.): Clinical Nuclear Cardiology, Appleton-Century-Crofts/New York, 1979

    Google Scholar 

  157. Strauss, H.W., Pitt, B., Rouleau, J., Bailey, I.K., Wagner, H.N. (eds.): Atlas of Cardiovascular Nuclear Medicine, C. V. Mosby Comp., St. Louis, 1977

    Google Scholar 

  158. Strauss, H.W., Pitt, B. (eds.): Cardiovascular nuclear medicine, 2nd ed., C.V. Mosby Comp., St. Louis, 1979

    Google Scholar 

  159. Serafini, A.N., Gilson, A.J., Smoak, W.M. (eds.): Nuclear Cardiology. Principles and Methods, Plenum Medical Book Company, New York, London, 1976

    Google Scholar 

  160. Ritchie, J.L., Hamilton, G.W., Wackers, F.J.T. (eds.): Thallium-201 Myocardial Imaging, Raven Press, New York, 1978

    Google Scholar 

  161. Wackers, F.J.T. (ed.): Myocardial imaging in the coronary care unit, Martinus Nijhoff Pubi., The Hague, Boston, London, 1980

    Google Scholar 

  162. Pierson, R.N., Jr., Kriss, J.P., Jones, R.H., Maclntyre, W.J. (eds.): Quantitative Nuclear Cardiography, J. Wiley & Sons, New York, 1975

    Google Scholar 

  163. Kirchner, P.T. (ed.): Nuclear Medicine Review Syllabus, Soc.Nucl.Med., Inc., 1

    Google Scholar 

  164. Budinger, T.F., Rollo, F.D.: Physics and Instrumentation. Progr. Cardiovasc. Dis. 20: 19–53, 1977

    Article  Google Scholar 

  165. Pretschner, D.P., Hundeshagen, H.: Ein gekammertes Herzmuskelphantom für die Myokardszintigraphie. Nuc Compact 11: 269–272, 1980

    Google Scholar 

  166. Watson, D.D., Campell, N.P., Read, E.K., et al.: Spatial and temporal quantitation of plane thallium myocardial images. J. Nucl. Med. 22: 577–584, 1981

    Google Scholar 

  167. Snyder, D.L.: Statistical analysis of dynamic tracer data. In: Computer Processing of Dynamic Images from an Anger Scintillation Camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., Inc.: 127–147, 1974

    Google Scholar 

  168. Larson, K.B.: Models for dynamic tracer studies. In: Computer Processing of Dynamic Images from an Anger Scintillation Camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., Inc.: 152–172, 1974

    Google Scholar 

  169. Brownell, G.L., Callahan, A.B.: Transform methods for tracer data analysis. Ann. N.Y. Acad. Sci. 108: 172–181, -1964

    Google Scholar 

  170. Callahan, A.B., Pizer, S.M.: The applicability of Fourier transform analysis to biological compartmental models. In: Natural Automata and Useful Simulations (eds.: H.H. Pattee, E.A. Edelsack, et al.), Spartan Books, Washington: 149–177, 1964

    Google Scholar 

  171. Heiss, W.-D., Prosenz, P., Roszuczky: Technical considerations in the use of a gamma camera 1600-channel analyser system for the measurement of regional cerebral blood flow. J. Nucl. Med. 13: 534–543, 1972

    Google Scholar 

  172. Jacquez, J.A.: Compartmental Analysis in Biology and Medicine. Elsevier Pubi. Co., Amsterdam-London-New York, 1972

    Google Scholar 

  173. Shipley, R.A., Clark, R.E.: Tracer Methods for in vivo Kinetics. Academic Press, New York, London, 1972

    Google Scholar 

  174. Lewis, S.E., Stokely, E.M., Bonte, F.J.:PhysicsandInstrumentation. In: Clinical Nuclear Cardiology (eds.: R.W. Parkey, F.J. Bonte, L.M. Buja, J.T. Willerson ), Appleton-Century-Crofts/New York: p. 39, 1979

    Google Scholar 

  175. Arnold, J.E., Wilson, B.C.: Computer processing of perfusion, ventilation, and V/Q images to highlight pulmonary embolism. Eur. J. Nucl. Med. 6: 309–315, 1981

    Article  Google Scholar 

  176. Alpert, N.M., McKusick, K.A., Correia, J.A,, Shea, W., Brownell, G.L., Potsaid, M.S.: Initial assessment of a simple functional image of ventilation. J. Nucl. Med. 17: 88–92, 1976

    Google Scholar 

  177. Knopp, R., Breuel, H.-P., Schmidt, H., Winkler, C.: Funktionsscintigraphie des Herzens. I. Datentechnische Grundlagen und Methodik. Fortschr. Röntgenstr. 128: 44–47, 1978

    Article  Google Scholar 

  178. Agress, H., Jr., Green, M.V., Reswood, D.R., et al.: Functional imaging methodology: recent clinical and research applications. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A. Todd-Pokropek), CEA, Orsay: 189–207, 1976

    Google Scholar 

  179. Wiener, S.N., Borkat, F.R., Floyd, R.M.: Functional imaging: a method of analysis and display using regional rate constants. J.Nucl.Med. 15: 65–68, 1974

    Google Scholar 

  180. Raynaud, C., Todd-Pokropek, A.E., Cornar, D., et al.: A method for investigating regional variations of the cerebral uptake rate of11-C-labelled psychotopic drugs in man. In: Dynamic Studies with Radioisotopes in Medicine 1974, Vol. I, IAEA, Vienna: 45–58, 1975

    Google Scholar 

  181. Natarajan, T.K., Wagner, H.N., Jr.: Functional images of the lung. In: Dynamic Studies with Radioisotopes in Medicine 1974, Vol.11, IAEA, Vienna:357–366, 1975

    Google Scholar 

  182. Pretschner, D.P., Kießling, D., Freihorst, J., Gleitz, C.-D., Hundeshagen, H.: Ergebnisse der quantitativen 201-Tl-Myokardszintigraphie vor und nach aortocoronarer Venenbypass-Operation. 18th Int. Ann. Meeting, Soc. Nucl. Med., Nürnberg (FRG), Sept. 9–12, 1980 (in press)

    Google Scholar 

  183. Pretschner, D.P., Wolf, R., Lichtlen, P., Hundeshagen, H.: Quantitative Auswertung von Myokardszintigrammen. Nuklearmediziner 2 (Suppl.): 48–58, 1979

    Google Scholar 

  184. Höhne, K.H., Pfeiffer, G.: The role of the physician-computer interaction in the acquisition and interpretation of scintigraphic data. Meth. Inform. Med. 13: 65–70, 1974

    Google Scholar 

  185. Rosenfeld, A. (ed.): Digital Picture Analysis, Springer Verlag, Berlin-Heidelberg-New York, 1976

    MATH  Google Scholar 

  186. Huang, T.S. (ed.): Picture Processing and Digital Filtering, Springer Verlag, Berlin-Heidelberg-New York, 1975

    Google Scholar 

  187. Fu, K.S.: Digital Pattern Recognition, Springer Verlag, Berlin-Heidelberg- New York, 1976

    MATH  Google Scholar 

  188. Touya, E., Perillo, W., Paez, A., Osorio, A. et al.: Scintigraphy of the cerebrospinal fluid. In: Medical Radionuclide Imaging, Vol.11, IAEA, Vienna: 381–399, 1977

    Google Scholar 

  189. Hundeshagen, H., Geisler, S., Dittmann, P., Lichtlen, P., Engel, H.-J.: Quantitative scintigraphic display of myocardial blood flow. Eur. J. Nucl. Med. 1: 107–115, 1976

    Google Scholar 

  190. Emrich, D. (ed.): Nuklearmedizin Funktionsdiagnostik und Therapie, 2nd. ed., Georg Thieme Verlag, Stuttgart, 1979

    Google Scholar 

  191. Meyniel, G., Beckers, G., Blanquet, P. et al. (eds.): Traité de Medicine Nucléaire, Explorations fonctionelles Flammarion Médicine Sciences, Paris,1975

    Google Scholar 

  192. Blood Flow. Sem. Nucl. Med. VI, Part I, II, No. 2-3: 141–303, 1976

    Google Scholar 

  193. Radionuclide studies of the lung. Sem. Nucl. Med. X, No. 3: 198–310, 1980

    Google Scholar 

  194. Thrombosis detection. Sem. Nucl. Med. VII, No. 3: 205–281, 1977

    Google Scholar 

  195. Green, M.V., Ostrow, H.G., Douglas, M.A., Myers, R.W. et al.: High temporal resolution ECG-gated scintigraphic angiocardiography. J.Nucl.Med. 16: 95–98, 1975

    Google Scholar 

  196. Bacharach, S.L., Green, M.V., Borer, J.S. et al.: A computer system for clinical nuclear cardiology. In: Proc. Comp. Appl. in Med. Care, Washington, D.C., IEEE Computer Soc., Cat. No. 78CH1413-4, Long Beach, CA: 50–55, 1978

    Google Scholar 

  197. Maddox, D.E., Wynne, J., Uren, R., Parker, J.A., et al.: Regional ejection fraction:a quantitative radionuclide index of regional left ventricular performance. Circulation 59: 1001–1009, 1979

    Google Scholar 

  198. Maddox, D.E., Holman, B.L., Wynne, J., Idoine, J., et al.: Ejection fraction image: a noninvasive index of regional left ventricular wall motion. Am. J. Cardiol. 41: 1230–1238, 1978

    Google Scholar 

  199. Holman, B.L., Wynne, J., Idoine, J., Zielonka, J., Neill, J.: The paradox image: a noninvasive index of regional left-ventricular dyskinesis. J. Nucl. Med. 20: 1237–1242, 1979

    Google Scholar 

  200. Bacharach, S.L., Green, M.V., Borer, J.S., Hyde, J.E., et al.: Left-ventricular peak ejection rate, filling rate, and ejection fraction frame rate requirements at rest and exercise: concise communication. J. Nucl. Med. 20: 189–193, 1979

    Google Scholar 

  201. Green, M.V., Brody, W.R., Douglas, M.A., Borer, J.S., et al.: Ejection fraction by count rate from gated images. J. Nucl. Med. 19: 880–883, 1978

    Google Scholar 

  202. Geffers, H., Adam, W.E., Bitter, F., Sigel, H., Kampmann, H.: Data processing and functional imaging in radionuclide ventriculography. In: Information Processing in Medical Imaging, Proc. Vth Int. Conf., Nashville, ORNL/BCTIC-2: 322–331, 1978

    Google Scholar 

  203. Bitter, F., Adam, W.E., Geffers, H., Weller, R.: Die Fourier-Analyse bei der Auswertung von Herzuntersuchungen. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer Verlag, Berlin- Heidelberg-New York: 152–165, 1981

    Google Scholar 

  204. Ashburn, W.L., Schelbert, H.R., Verba, J.W.: Left ventricular ejection fraction - a review of several radionuclde angiographic approaches using the scintillation camera. Progr. Cardiovasc. Dis. 20: 267–284, 1978

    Article  Google Scholar 

  205. Nelson, T.R., Perkins, G.C., Slutsky, R.A., Verba, J.W.: Automated online analysis of all four cardiac chambers for rapid setup, data acquisition and reduction. J. Nucl. Med. 22: P63, 1981

    Google Scholar 

  206. Borer, J.S., Kent, K.-M., Bacharach, S.L., Green, M.V., et al.: Sensitivity, specificity and predictive accuracy of radionuclide cineangiography during exercise in patients with coronary artery disease. Circulation 60: 572–580, 1979

    Google Scholar 

  207. Adam, W.E., Sigel, H., Geffers, H., Kampmann, K., Bitter, F., Stauch, M.: Analyse der regionalen Wandbewegung des linken Ventrikels bei koronarer Herzerkrankung durch ein nichtinvasives Verfahren (Radionuklid-Kinematographie). Z. Kardiol. 66: 545–555, 1977

    Google Scholar 

  208. Rerych, S.K., Scholz, P.M., Newman, G.E., et al.: Cardiac function at rest and during exercise in normals and in patients with coronary heart disease: evaluation by radionuclide angiocardiography. Ann. Surg. 187: 449–464, 1978

    Article  Google Scholar 

  209. Entzian, W., Palma, A., Holberg, T.: Bedeutung der szintigraphischen Untersuchung der Liquordynamik für neurochirurgische Patienten. Nuklearmediziner 2: 107–116, 1978

    Google Scholar 

  210. Ulimann, V., Kuba, J.: Dynamic scintigraphy: calculation and imaging of regional distribution of quantitative parameters. Eur. J. Nucl. Med. 3: 153–160, 1978

    Google Scholar 

  211. Computer Applications. Sem Nucl. Med. VIII, No. 2: 105–161, 1978

    Google Scholar 

  212. Rai, G.S., Haggith, J.W., Fenwick, J.D., James, O.: Clinical evaluation of computer processing of liver gamma camera scans. Br. J. Radiol. 52: 116, 1979

    Article  Google Scholar 

  213. Burow, R.D., Pond, M., Schafer, A.W., Becker, L.: “Circumferential profiles”: a new method for computer analysis of thallium-201 myocardial perfusion images. J. Nucl. Med. 20: 771–777, 1979

    Google Scholar 

  214. IAEA co-ordinated research programme on the intercomparison of computer-assisted scintigraphic techniques. Second and third progress reports. In: Medical Radionuclide Imaging, Vol.1, IAEA, Vienna: 571–615, 1977

    Google Scholar 

  215. Hör, G., Kanemoto, N.: 201-Tl-Myocardial scintigraphy: current status in coronary artery disease, results of sensitivity/specificity in 3092 patients and clinical recommendations. Nucl. Med. XX: 136–147, 1981

    Google Scholar 

  216. Decision Making in Nuclear Medicine. Sem.Nucl.Med. VIII, No. 4: 271–364, 1978

    Google Scholar 

  217. N. Engl. J. Med. 293, No. 5: 211–257, 1975

    Google Scholar 

  218. Hamilton, G.W., Trobaugh, G.B., Ritchie, J.L., Gould, K.L., et al.: Myocardial imaging with Tl-201:an analysis of clinical usefulness based on Bayes’ theorem Sem. Nucl. Med. VIII: 358–364, 1978

    Google Scholar 

  219. Drum, D.E., Christacopoulos, J.S.: Hepatic scintigraphy in clinical decision making. J. Nucl. Med. 13: 908–915, 1972

    Google Scholar 

  220. Drum, D.E.: Optimizing the clinical value of hepatic scintiphotography. Sem. Nucl. Med. VIII: 346–357, 1978

    Google Scholar 

  221. McNeill, B.J.: Rationale for the use of bone scans in selected metastatic and primary bone tumors. Sem. Nucl. Med. VIII: 336–345, 1978

    Google Scholar 

  222. Sisson, J.C., Bartold, S.P., Bartold, S.L.: The dilemma of the solitary thyroid nodule: resolution through decision analysis. Sem. Nucl. Med. VIII: 59–71, 1978

    Google Scholar 

  223. McNeill, B.J.: A diagnostic strategy using ventilation-perfusion studies in patients for suspect of pulmonary embolism. J. Nucl. Med. 17: 613–616, 1976

    Google Scholar 

  224. McNeill, B.J., Keeler, E., Adelstein, S.J.: Determining the value of diagnostic and screening tests. J. Nucl. Med. 17: 439–448, 1976

    Google Scholar 

  225. Bell, R.S.: Efficacy What’s that ? Sem. Nucl. Med. VIII: 316–323, 1978

    Google Scholar 

  226. Lusted, L.B.: An analysis of medical decision making. In: Medical Radionuclide imaging, Vol. II, IAEA, Vienna: 185–196, 1977

    Google Scholar 

  227. Houston, A.S.: Mathematical tumours and their use in assessing data processing techniques in radioisotope sintigraphy. Phys. Med. Biol. 19: 631–642, 1974

    Article  Google Scholar 

  228. Lusted, L.B.: Introduction to medical decision making. Springfield, Charles C. Thomas, 1968

    Google Scholar 

  229. Houston, A.S., Sharp, P.F., Tofts, P.S., Diffey, B.L.: A multicentre comparison of computer assisted image processing and display methods in scintigraphy. Phys. Med. Biol. 24: 547–558, 1979

    Article  Google Scholar 

  230. Houston, A.S., MacLeod, M.A.: An intercomparison of computer assisted image processing and display methods in liver scintigraphy. Phys. Med. Biol. 24: 559–570, 1979

    Article  Google Scholar 

  231. Runczik, L., Cernoch, V., Vavreijn, B.: Hybrid simulation: a new method for comparison of scintigraphic devices. In: Medical Radioisotope Scintigraphy, Vol.1, IAEA, Vienna: 691, 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pretschner, D.P. (1981). Planar Imaging and Picture Analysis in Nuclear Medicine. In: Höhne, K.H. (eds) Digital Image Processing in Medicine. Lecture Notes in Medical Informatics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93188-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93188-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10877-1

  • Online ISBN: 978-3-642-93188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics