Planar Imaging and Picture Analysis in Nuclear Medicine

  • D. P. Pretschner
Part of the Lecture Notes in Medical Informatics book series (LNMED, volume 15)


The first radionuclide image was an autoradiograph of crystals of the double sulfate of uranium and potassium. It lead H. BECQUEREL to the discovery of natural radioactivity on Sunday, 1 March 1896 (1). He published it in his Nobel Lecture in 1903 (2).


Nuclear Cardiology Picture Processing Leave Anterior Oblique Receiver Operating Characteristic Analysis Scintillation Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Becquerel, H.: Sur les radiations invisibles emises par les corps phosphorescents. C.R. Acad. Sei. (Paris) 122: 501–503, 1896Google Scholar
  2. (2).
    Nobel Lectures, Including Presentation Speeches and Laureates’ Biographies. Physics, 1901–1921. Elsevier, New York: 47–73, 1967Google Scholar
  3. (3).
    Anger, H.O.: Tomography and other depth-discrimination techniques. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson) Vol. 2, Academic Press, New York-London: 62–100, 1974Google Scholar
  4. (4).
    Jaszczak,R.J., Coleman, R.E., Chun Bin Lim: SPECT: single photon emission computed tomography. IEEE Trans. Nucl. Sei., NS-27: 1137–1153, 1980Google Scholar
  5. (5).
    Brownell, G.L., Correia, J.A., Zamenhof, R.G.: Positron Instrumentation. In: Recent Advances in Nuclear Medicine (eds.: J.H. Lawrence, T.F. Budinger), Vol. 5, Grune & Stratton, New York-San Francisco-London: 1–49, 1978Google Scholar
  6. (6).
    Hevesy, G.: The absorption and translocation of lead by plants. A contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem. J. 17: 439–445, 1923Google Scholar
  7. (7).
    Blumgart, H.L., Yens, O.C.: Studies on the velocity of blood flow. J. Clin. Invest. 4: 1–13, 1926CrossRefGoogle Scholar
  8. (8).
    Chievitz, O., Hevesy, G.: Radioactive indicators in the study of phosphorus metabolism in rats. Nature 136: 754–755, 1935CrossRefGoogle Scholar
  9. (9).
    Joliot, F., Curie, I.: Artificial production of a new kind of radio-element. Nature 133: 201, 1934CrossRefGoogle Scholar
  10. (10).
    Livingood, J.J., Seaborg, C.T.: Radioactive iodine isotopes. Phys. Rev. 53: 1015, 1938CrossRefGoogle Scholar
  11. (11).
    Sorenson, J.A., Phelps, M.E.: Image quality in nuclear medicine. In: Physics in Nuclear Medicine, Grune & Stratton, New York-London-Toronto-Sydney-San Francisco:328–344, 1980Google Scholar
  12. (12).
    Cassen, B., Curtis, L., Reed, C., Libby, R.: Instrumentation for 1-131 use in medical studies. Nucleonics 9: 46–50, 1951Google Scholar
  13. (13).
    Newell, R.R., Saunders, W., Miller, E.: Multichannel collimators for gamma-ray scanning with scintillation counters. Nucleonics 10: 36–40, 1952Google Scholar
  14. (14).
    Hofstadter, R.: Alkali halide scintillation counters.Physic.Rev. 74: 100, 1948Google Scholar
  15. (15).
    Anger, H.O.: Scintillation camera. Rev. Sei. Instr. 29: 27–33, 1958CrossRefGoogle Scholar
  16. (16).
    Hundeshagen, H.: Der Einsatz eines Magnetband-Magnetkern-Speichersystems zur szintigraphischen Darstellung von Organen. Picker-Bulletin 4, 1966Google Scholar
  17. (17).
    Winkler, G., Schepers, H.: Digitalregistrierung, -speicherung und Computerauswertung von Meßergebnissen einer Szintillationskamera. Atompraxis, Direct Info. 3/1966Google Scholar
  18. (18).
    Winkler, G.: Entwicklung und gegenwärtiger Stand der Datenverarbeitung in der klinischen Nuklearmedizin. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer-Verlag, Berlin-Heidelberg- New York: 1–14, 1981Google Scholar
  19. (19).
    Budinger, T.F.: Quantitative nuclear medicine imaging: application of computers to the gamma-camera and whole-body scanner. In: Recent Advances in Nuclear Medicine (ed.: J.H. Lawrence), Vol. 4, Grune & Stratton, New York - San Francisco - London: 41–130, 1974Google Scholar
  20. (20).
    Larson, K.B., Cox, J.R. (eds.) Computer processing of dynamic images from an Anger scintillation camera. Soc. of Nucl. Med., New York, 1974Google Scholar
  21. (21).
    O’Neill, W., Sorenson, J.A.: On-line computer systems for scintigraphic data processing. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol. 2, Academic Press, New York-London: 203–227, 1974Google Scholar
  22. (22).
    Pratt, W.K.: Digital image processing. John Wiley & Sons, New York-Chichester-Brisbane-Toronto, 1978Google Scholar
  23. (23).
    Pfeiler, M.: Lineare Systeme zur Übertragung zeitabhängiger Ortsfunktionen und Bilder. NTZ: 97–108, 1968Google Scholar
  24. (24).
    Rollo, F.D., Harris, C.C.: Factors affecting image formation. In: Nuclear Medicine Physics, Instrumentation and Agents (ed.: F.D. Rollo), C.V. Mosby Co., St Louis: 387–435, 1977Google Scholar
  25. (25).
    Hine, G.J., Sorenson, J.A. (eds.) Instrumentation in Nuclear Medicine. Vol. 2, Academic Press, New York-London, 1974Google Scholar
  26. (26).
    Rollo, F.D. (ed.) Nuclear Medicine Physics, Instrumentation, and Agents. C. V. Mosby Co., St.Louis, 1977Google Scholar
  27. (27).
    Sorenson, J.A., Phelps, M.E.: Physics in Nuclear Medicine.Grune & Stratton, New York-London-Toronto-Sydney-San Francisco, 1980Google Scholar
  28. (28).
    Patton, J.A., Rollo, F.D., Brill, A.B.:Recent developments in nuclear medicine instrumentation. IEEE Trans. Nucl. Sei. NS-27: 1066–1072, 1980Google Scholar
  29. (29).
    Pretschner, D.P.: Nuclear medicine in Europe, Considerations of present status and future trends. Eur. J. Nucl. Med. 5: 175–184, 1980CrossRefGoogle Scholar
  30. (30).
    Grenier, R.P., Bender, M.A., Jones, R.H.: A computerized multi-crystal scintillation gamma camera. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol. 2, Academic Press, New York-London: 102–134, 19?4Google Scholar
  31. (31).
    Graham, L.S., Perez-Mendez, V.: Special imaging devices. In: Nuclear Medicine Physics, Instrumentation, and Agents (ed.: Rollo, F.D.), C.V. Mosby Company, St. Louis: 271–321, 1977Google Scholar
  32. (32).
    Budinger, T.F., Derenzo, S.E., Gullberg, G.T., Greenberg, W.L., Heusman, R.H.: Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J. Comput. Assist. Tomog. 1: 131–145, 1977CrossRefGoogle Scholar
  33. (33).
    Jordan, K.: Die Verfahren der Emissions-Computertomographie und ihre Grenzen. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D. P. Pretschner), Springer-Verlag, Berlin-Heidelberg-New York: 222–244, 1981Google Scholar
  34. (34).
    Todd-Pokropek, A.E., Pizer, S.M.: Displays in scintigraphy. In: Medical Radio-nuclide Imaging, Vol.1, IAEA, Vienna: 505–536, 1977Google Scholar
  35. (35).
    Pizer, S.M., Chan, F.H.: Evaluation of the number of discernible levels produced by a display. In: Information processing in medical imaging(eds.: R. Di Paola, E. Kahn) INSERM, Paris, Vol. 88: 561–580, 1980Google Scholar
  36. (36).
    Wolf, A.P.: Medical cyclotrons. Medical Radionuclide Imaging I, IAEA, Vienna: 343–355, 1977Google Scholar
  37. (37).
    Colombetti, L.G. (ed.): Principles of Radiopharmacology, Vol.I–IV, CRC Press, Inc., Florida, 1979Google Scholar
  38. (38).
    Cohen, K., Besnard, M.: Radionuclides. Pharmacokinetias. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H.Hundeshagen), Bd.XV, Teil 1A, Springer Verlag, Berlin, Heidelberg, New York: 3–76, 1980Google Scholar
  39. (39).
    Junker, D., Fitschen, J.: Dosimetrie inkorporierter Strahler. In: Handbuch der Med. Radiologie, Bd.XV, Teil 1A, (ed.: H. Hundeshagen), Springer-Verlag, Berlin-Heidelberg: 425–482, 1980Google Scholar
  40. (40).
    Welch, M.J., Wagner, S.J.: Preparation of poätron-emitting radiopharmaceuticals. In: Recent Advances in Nuclear Medicine (ed.: J.H. Lawrence, T.F. Budinger), Vol.5, Grune & Stratton, New York-San Francisco-London: 1–49, 1978Google Scholar
  41. (41).
    Jahns, E.G.H., Helmeke, H.-J,: Prediction of collimator performance by Monte- Carlo techniques. In: Medical Radionuclide Imaging, II, IAEA, Vienna: 207–218, 1977Google Scholar
  42. (42).
    Rajai Rizi, H., Kline, R.C., Thrall, J.H., et al.: Thallium-201 myocardial scintigraphy: a critical comparison of seven-pinhole tomography and conventional planar imaging. J. Nucl. Med. 22: 493–499, 1981Google Scholar
  43. (43).
    Pizer, S.M., Brownell, G.L., Chesler, D.A.: Scintigraphic data processing. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol.2, Academic Press, New York, London: 229–262, 1974Google Scholar
  44. (44).
    Brookeman, V.A.: Component resolution indices for scintillation camera systems. J. Nucl. Med. 16: 228–230, 1975Google Scholar
  45. (45).
    Rollo, F.D.: An index to compare the performance of scintigraphic imaging systems. J. Nucl. Med. 15: 757–762, 1974Google Scholar
  46. (46).
    Rollo, F.D., Schulz, A.G.: A contrast efficiency function for quantitatively measuring the spatial resolution characteristics of scanning systems. J. Nucl. Med. 11: 53–60, 1970Google Scholar
  47. (47).
    Whitehead, F.R.: Quantitative analysis of minimum detectable lesion-to-background uptake ratios for nuclear medicine imaging systems. In: Medical Radionuclide Imaging, Vol.1, IAEA, Vienna: 409–432, 1977Google Scholar
  48. (48).
    Sharma, R.R., Fowler, J.F.: Threshold detection tests in radioisotope scanning. Phys. Med. Biol. 15: 289–300, 1970CrossRefGoogle Scholar
  49. (49).
    Performance measurements of scintillation cameras, Standards Publication/No. NU 1 - 1980. NEMA, 2101 L Street, N.W., Washington, D.C. 20037Google Scholar
  50. (50).
    Pizer, S.M., Todd-Pokropek, A.E.: Improvement of scintigrams by computer processing. Sem. Nucl. Med. VII: 125–146, 1978Google Scholar
  51. (51).
    Enos, G.W.: The result of improved detector performance on system imaging ability. Picker J. Nucl. Med. Instr. 2: 40–43, 1981Google Scholar
  52. (52).
    Todd-Pokropek, A.E.: Image processing in nuclear medicine. IEEE Trans. Nucl. Sei., NS-27, 1080–1094, 1980Google Scholar
  53. (53).
    Pizer, S.M., Todd-Pokropek, A.E.: Noise character in processed scintigrams. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 1–16, 1976Google Scholar
  54. (54).
    Characteristics and test conditions of radionuclide imaging devices, 62 C Rev. March 1979 (Paris), Techn. Committee No. 62, Sub-Committee 62C. High-energy radiation equipment and equipment for Nucl.Med., Int. Electrotechnical Comm., 1, Rue de Verembe, GenevaGoogle Scholar
  55. (55).
    Sano, R.M.: Performance standards-characteristics and test conditions for scintillation cameras. Int. Symp. Med. Radionuclide Imaging, Heidelberg, IAEA -SM - 247, 1980Google Scholar
  56. (56).
    Knoop, B., Pretschner, P., Dopslaff, H., Jordan, K.: Zur Anpassung des Bildrasters an die Übertragungsfunktion der Gamma-Kamera bei der kardialen Funktionsszintigraphie. In: Nukelarmedizin, Die klinische Relevanz der Nuklear- medizin(eds.: H.A.E. Schmidt, G. Riccabona), F.K. Schattauer Verlag, Stuttgart-New York: 56–59, 1980Google Scholar
  57. (57).
    Rosenfeld, A.: Picture Processing by computer. Academic Press, New York, London, 1969Google Scholar
  58. (57a).
    Rosenfeld, A., Kak, A.C.: Digital picture processing. Academic Press, New York, San Francisco, London, 1976Google Scholar
  59. (58).
    Niemann, H.: Methoden der Mustererkennung. Akademische Verlagsgesellschaft, Frankfurt, 1974MATHGoogle Scholar
  60. (59).
    Andrews, H.C.: Computer techniques in image processing. Academic Press, New York, 1970Google Scholar
  61. (60).
    Duda, R.O., Hart, P.E.: Pattern classification and scene analysis. J. Wiley & Sons, New York, 1973Google Scholar
  62. (61).
    Kazmierczak, H.: Automatische Zeichenerkennung. In: Taschenbuch der Informatik (eds.: K. Steinbuch, W. Weber), Bd. 3, Springer Verlag, Berlin-Heidelberg- New York: 219–269, 1974Google Scholar
  63. (62).
    Rosenfeld, A. (ed.): Digital picture analysis, Springer Verlag, Berlin- Heidelberg- New York, 1976MATHGoogle Scholar
  64. (63).
    Papoulis, A.: Probability, random variables and stochastic processes, Mc Graw Hill, New York, 1965MATHGoogle Scholar
  65. (64).
    Lodwick, G.S.: Progress report of diagnostic content and redundancy in radiant images for Sept. 1973–May 1975. The College of Engineering, Univ. Missouri-Columbia, 1975Google Scholar
  66. (65).
    Ehrich, R.W., Foith, J.P.: Structural processing of visual information. Virginia Polytechnic Institute and State University Blacksburg, CS 77004-R, 1977Google Scholar
  67. (66).
    Pretschner, D.P., Freihorst, J., Gleitz, C.-D., Hundeshagen, H.: 201-T1 -myocardial scintigraphy: a 3-dimensional model for the improved quantification of zones with decreased uptake. In: Information Processing in Medical Imaging (eds.: R. di Paola, E. Kahn), INSERM, Paris, Vol. 88: 409–426, 1979Google Scholar
  68. (67).
    Pretschner, D.P., Freihorst, J., Gleitz, C.-D., Hundeshagen, H.: A computer generated 3-D model of the left ventricle for quantification of myocardial morphology and function using radiopharmaceuticals. In: Computers in Cardiology, IEEE, Genf: 415–418, 1979Google Scholar
  69. (68).
    Narasimhan, R.: Labelling schemata and syntactic description of pictures. Information and Control 7: 151–179, 1964CrossRefGoogle Scholar
  70. (69).
    Narasimhan, R.: Syntax-directed interpretation of classes of pictures. CACM 9: 166–173, 1966Google Scholar
  71. (70).
    Shaw, A.C.: A formal picture description scheme as a basis for picture processing systems. Information and Control 14: 9–52, 1969MATHCrossRefGoogle Scholar
  72. (71).
    Shaw, A.C.: Parsing of graph-representable pictures. JACM 17: 453–481, 1970Google Scholar
  73. (72).
    Ledley, R.S.: High-speed automatic analysis of biomedical pictures. Science 146: 216–223, 1964CrossRefGoogle Scholar
  74. (73).
    Miller, W.F., Shaw, A.C.: Linguistic methods in picture processing: a survey. AFIPS Proc. FJCC: 279–290, 1968Google Scholar
  75. (74).
    Gilbert, B.K., Harris, L.D.: Advances in processor architecture, display, and device technology for biomedical image processing. IEEE Trans. Nucl. Sei., NS-27: 1197–1206, 1980Google Scholar
  76. (75).
    Harris, L.D., Robb, R.A., Yuen, T.S., Ritman, E.L.: The display and visualization of 3-D reconstructed anatomic morphology: experience with the thorax, heart, and coronary vasculature of dogs. J. Comp. Ass. Tom. 3: 439–446, 1979CrossRefGoogle Scholar
  77. (76).
    Budinger, T.F.: Clinical and research quantitative nuclear medicine system. In: Medical Radioisotope Scintigraphy 1972, Vol. I, IAEA, Vienna: 501–555, 1973Google Scholar
  78. (77).
    Budinger, T.F.: Harpootlian, J.: Developments in digital computer implementation in nuclear medicine imaging.Comput.Biomed. Res. 8: 26–52, 1975Google Scholar
  79. (78).
    Bacharach, S.L., Green, M.V., Ostrow, H.G., Borer, J.S. et al.: Developments in nuclear medicine computer systems: application to cardiology. IEEE Trans. Nucl. Sei., NS-27: 1095–1102, 1980Google Scholar
  80. (79).
    Nuclear Cardiology: selected computer aspects Symp. Proc., Atlanta, Georgia, 1978, Soc. of Nucl. Med.. Inc.. New York. 1978Google Scholar
  81. (80).
    Knopp, R., Winkler, C.: Ein universell anwendbares, neues DV-System für die klinische Nuklearmedizin. Med..Technik 5: 102, 1976Google Scholar
  82. (81).
    Pfeiffer, G., Höhne, K.H.: Improvements of programming efficiency in medical image processing by a dialog language. Proc. of MIE 78, Lecture Notes in Med. Inf., Springer Verlag, New York: 221–231, 1978Google Scholar
  83. (82).
    Pfeiffer, G., Höhne, K.H.: A dialog language for interactive processing of scintigraphic data. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 221–231, 1976Google Scholar
  84. (83).
    Pfeiffer, G.: Entwurf und Implementierung eines Dialogsystems zur Erzeugung interaktiver Bildverarbeitungssysteme in der Medizin. Dissertation, Fachbereich Informatik der Univ. Hamburg, 1981Google Scholar
  85. (84).
    Pretschner, D.P., Pfeiffer, G.: Erzeugung einer Kommandosprache für nuklearmedizinische Signal- und Bildverarbeitung aus einem allgemeinen Dialogsystem. In: Systeme und Signalverarbeitung in der Nuklearmedizin (-eds.: S.J. Pöppl. D. P. Pretschner), Springer Verlag, Berlin-Heidelberg-New York: 187–204, 1981Google Scholar
  86. (85).
    Erickson, J., Wilson, S.: Interactive image manipulative system and image manipulative extensions to higher level languages for use by non-computer oriented personnel. In: Proc. 2nd Symp. Sharing Comp. Prog, and Technol. in Nucl. Med., Oak Ridge: 15–25, 1972Google Scholar
  87. (86).
    Hoare, C.A.R.: Hints on programing language design. Stanford, MEMO AIM 224 STAN-Cs-73-403: 1–29, 1973Google Scholar
  88. (87).
    Pretschner, D.P.: FORTRAN - Pflicht für Nuklearmediziner? In: Nuklearmedizin, Stand und Zukunft (eds.: H.A.E. Schmidt, M. Woldring), F.K. Schattauer Verlag, Stuttgart, New York, 827–831, 1978Google Scholar
  89. (88).
    Kupka, I., Wilsing, N.: Dialogsprachen. Teubner Studienbücher Informatik, Vol. 32, 1975Google Scholar
  90. (89).
    Gram, C., Hertweck, F.: Command languages: design considerations and basic concepts. In: Command languages (ed.: G. Unger), North-Holland, Amsterdam: 43–69, 1975Google Scholar
  91. (90).
    Sveinsdottir, E., Schomacker, T., Lassen, N.A.: Interactive handling of regional cerebral blood flow data using a macrolanguage. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 209–220, 1976Google Scholar
  92. (91).
    Todd-Pokropek, A.E., Plummer, D., Pizer, S.M.: Modularity and command languages in medical computing. In: Proc. Vth Int. Conf., Nashville, 1977, ORNL/BCTIC-2: 426–455, 1978Google Scholar
  93. (92).
    Line, B.R., Johnston, G.S., Bailey, J.J.: The design and evaluation of a command processing system for scintigraphic image analysis. In: Inf. Proc. in Med. Imaging, Proc. Vth Int. Conf., Nashville, 1977, ORNL/BCTIC-2:456–467, 1978Google Scholar
  94. (93).
    Maskewitz, B.F., Henne, R.L., Mc Ciain, W.J.: The Biomedical Computing Technology Information Center. In: Medical Radionuclide Imaging, Vol.1, IAEA, Vienna: 435–441, 1977Google Scholar
  95. (94).
    Klement, V.: Bilddarstellung und -Verarbeitung in der Szintigraphie. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen), Bd.XV, Teil 1A, Springer Verlag, Berlin-Heidelberg-New York: 385–422, 1980Google Scholar
  96. (95).
    Lorenz, W.J.: Radionuklidproduktion mit Forschungsreaktoren für medizinisch- bilogische Anwendungen. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen),Bd. XV, Teil 1A, Springer Verlag, Berlin-Heidelberg-New York: 89–109, 1980Google Scholar
  97. (96).
    Müller-Schauenburg, W.: Bewegungsmuster des Harnleiters: Datenkompression und Statistik. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer Verlag, Berlin-Heidelberg-New York: 142–151, 1981Google Scholar
  98. (97).
    Schmidlin, P.: Bewertung von Funktionskurven mit Hilfe der Hauptkomponentenanalyse. In: Systeme und SignalVerarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer Verlag, Berlin-Heidelberg-New York: 132–141, 1981Google Scholar
  99. (98).
    Schmidlin, P., Clorius, J., Lorenz, W.J.: Pattern recognition in renography. In: Information Processing in Medical Imaging (eds.: R. Di Paola, E. Kahn), INSERM, Paris, Vol. 88: 335–344, 1980Google Scholar
  100. (99).
    Pretschner, P.: Prinzipien parametrischer Darstellung der Herzfunktion in der Nuklearmedizin. Nuklearmediziner 2: 91–106, 1980Google Scholar
  101. (100).
    Oppenheim, B.E., Appledorn, C.R.: Functional renal imaging using factor analysis. In: Information Processing in Medical Imaging (eds.: R. Di Paola, E. Kahn) INSERM, Paris, Vol. 88: 321–334, 1980Google Scholar
  102. (101).
    Barber, D.C.: The use of principle components in the quantitative analysis of gamma camera dynamic studies. Phys. Med. Biol. 25: 283–292, 1980CrossRefGoogle Scholar
  103. (102).
    Bazin, J.P., Di Paola, R., Gibaud, B., Rougier, P., Tubiana, M.: Factor analysis of dynamic scintigraphic data as a modelling method. An application to the detection of metastases. In: Information Processing in Medical Imaging (eds.: R. di Paola, E. Kahn), INSERM, Paris, Vol. 88: 345–366, 1980Google Scholar
  104. (103).
    Houston, A.S.: Classification of dynamic function studies in nuclear medicine. Does feature extraction help? In: Information Processing in Medical Imaging (eds.: R. di Paola, E. Kahn), INSERM, Paris, Vol. 88: 381–394, 1979Google Scholar
  105. (104).
    Ammann, W.W., Vaknine, R.: Structure analysis - A new method for evaluating scintigrams. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A. Todd-Pokropek), CEA, Orsay: 66–79, 1976Google Scholar
  106. (105).
    Blahd, W.H.: History of external counting procedures. Sem. Nucl. Med. 9: 159–163, 1979CrossRefGoogle Scholar
  107. (106).
    Pretschner, D.P.: Ein neues System zur Erfassung und Auswertung von Kernstrahlungsfeldern bei nuklearmedizinischen Untersuchungen (Engymetrie). In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner) Springer Verlag, Berlin-Heidelberg-New York: 74–95, 1981Google Scholar
  108. (107).
    Hundeshagen, H.: Radiokardiographie. Dr. Alfred Hüthig Verlag, Heidelberg, 1970Google Scholar
  109. (108).
    Donato, L., Rochester, D.F., Lewis, M.L. et al.: Quantitative radiocardiography. II. Technic and analysis of curves. Circulation 26: 183–188, 1972Google Scholar
  110. (109).
    Steele, P.P., van Dyke, D., Trow, R.S., Anger, H.O., Davies, H.: Simple and safe besides method for serial measurement of left ventricular ejection fraction, cardiac output, and pulmonary blood volume. Br. Heart J. 36: 122–131, 1974CrossRefGoogle Scholar
  111. (110).
    Strashun, A., Horowitz, S.F., Goldsmith, S.J., et al.: Noninvasive detection of left ventricular dysfunction with a portable electrocardiographic gated scintillation probe device. Am. J. Cardiol. 47: 610–617, 1981CrossRefGoogle Scholar
  112. (111).
    Britton, K.E.: Renal radionuclide techniques in their clinical context. In: Medical Radionuclide Imaging, Vol. II, IAEA, Vienna: 401–419, 1977Google Scholar
  113. (112).
    Sveinsdottir, E., Lassen, N.A.: A 254 detector system for measuring regional cerebral blood flow. Stroke 4: 365, 1973Google Scholar
  114. (113).
    Holman, B.L.: Concepts and clinical utility of the measurement of cerebral blood flow. Sem. Nucl. Med. VI: 233–251, 1976Google Scholar
  115. (114).
    Gielow, P.: Radionuklidgeneratoren. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen) Bd. XV, Teil 1A, Springer Verlag, Berlin- Heidelberg-New York: 77–88, 1980Google Scholar
  116. (115).
    Glass, H.I.: Cyclotron Production. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen) Bd. XV, Teil 1A, Springer Verlag, Berlin-Heidelberg- New York: 111–127, 1980Google Scholar
  117. (116).
    Jordan, K.: Grundlagen der Strahlenmeßtechnik. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen) Bd. XV, Teil 1A, Springer Verlag, Berlin- Heidelberg-New York: 131–206, 1980Google Scholar
  118. (117).
    Brill, A.B., Erickson, J.J.: Display systems in Nuclear Medicine. Sem. Nucl. Med. VIII: 155–161, 1978Google Scholar
  119. (118).
    Oberhausen, E., Berberich, R.: Die Bedeutung von Funktionsmeßplätzen und Ganzkörperzählern in der Nuklearmedizin. In: Handbuch der Med. Radiologie, Nuklearmedizin (ed.: H. Hundeshagen), Bd.XV, Teil 1A, Springer Verlag, Berlin-Heidelberg-New York: 215–247, 1980Google Scholar
  120. (119).
    Boardman, A.K.: Constrained optimisation and its application to scintigraphy. Phys. Med. Biol. 24: 363, 1979Google Scholar
  121. (120).
    Cole, E.R.: The removal of unknown image blurs by homomorphic filtering. Ph. D. dissertation, Dep. El. Eng., Univ. Utah, Salt Lake City, 1973Google Scholar
  122. (121).
    Hunt, B.R.: The application of constrained least squares estimation to image restoration by digital computer. IEEE Trans. Computers, C-23: 805–812, 1973Google Scholar
  123. (122).
    Bassingthwaighte, J.B.: Approaches to modeling radiocardiographic data: comments on F.Castellana’s modeling of the central circulation. In: Quantitative Nuclear Cardiography (eds.: R.N. Pierson Jr., J.P. Kriss, et al.), J. Wiley & Sons, New York: 226–230, 1975Google Scholar
  124. (123).
    Bassingthwaighte, J.B., Yipintsoi, T.: Organ blood flow, wash-in, wash-out, and clearance of nutrients and metabolites. Mayo Clin. Proc. 49: 248–255, 1974Google Scholar
  125. (124).
    Bassingtwaighte, J.B.: Physiology and theory of tracer washout techniques for the estimation of myocardial blood flow: flow estimation from tracer washout. Progr. Cardiovasc. Dis. 20: 165–189, 1977CrossRefGoogle Scholar
  126. (125).
    Bassingthwaighte, J.B., Chinard, F.P., Crone, C., Lassen, N.A., Perl, W.: Definitions and terminology for indicator dilution methods. In: Capillary permeability (eds.: C. Crone, N.A. Lassen), Copenhagen, Ejnar Munksgaard:665–669, 1970Google Scholar
  127. (126).
    Bassingthwaighte, J.B.: Blood flow and diffusion through mammalian organs. Science 167: 1347–1353, 1970CrossRefGoogle Scholar
  128. (127).
    Meier, P., Zierler, K.L.: On the theory of the indicator-dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6: 731, 1954Google Scholar
  129. (128).
    Zierler, K.L.: Equations for measuring blood flow by external monitoring of radioisotopes. Circ. Res. 16: 309–321, 1965Google Scholar
  130. (129).
    Zierler, K.L.: Why tracer dilution curves through a vascular system have the shape they do. In: Computer processing of dynamic images from an Anger scintillation camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., New York:70–94, 1974Google Scholar
  131. (130).
    Larson, K.B.: Physical principles of tracer kinetics. In: Computer processing of dynamic images from an Anger scintillation camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., New York: 70–94, 1974Google Scholar
  132. (131).
    Gonzales-Fernandez, J.M.: Theory of the measurement of the dispersion of an indicator in indicator-dilution studies. Circ. Res. 10: 409–428, 1962Google Scholar
  133. (132).
    Lassen, N.A., Perl, W.: Tracer kinetik methods in medical physiology. Raven Press, New York, 1979Google Scholar
  134. (133).
    Fried, J.: Use of computers for dynamic radionuclide studies. In: Instrumentation in Nuclear Medicine (eds.: G.J. Hine, J.A. Sorenson), Vol.2, Academic Press, New York, London: 263–310, 1974Google Scholar
  135. (134).
    Rockoff, M.L.: Interpretation of the clearance curve of a diffusible tracer by blood flow in terms of a parallel-compartment model. In: Computer processing of dynamic images from Anger scintillation camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., New York: 108–126, 1974Google Scholar
  136. (135).
    Kelly, P.J., Yipintsoi, T., Bassingthwaighte, J.B.: Blood flow in canine tibial diaphysis estimated by iodoantipyrine-125-I washout. J. Appl. Physiol. 31: 38–47, 1971Google Scholar
  137. (136).
    Bassingthwaighte, J.B., Strandeil, T., Donald, D.E.: Estimation of coronary blood flow by washout of diffusible indicators. Circ. Res. 23: 259–278, 1968Google Scholar
  138. (137).
    Guller, B., Yipintsoi, T., Orvis, A.L., Bassingthwaighte, J.B.: Myocardial sodium extraction at varied coronary flows in the dog. Circ. Res. 37: 359–378, 1975Google Scholar
  139. (138).
    Suenson, M., Richmond, D.R., Bassingthwaighte, J.B.: Diffusion of sucrose, sodium, and water in ventricular myocardium. Am. J. Physiol. 227: 1116–1123, 1974Google Scholar
  140. (139).
    Yipintsoi, T., Bassingthwaighte,J.B.: Circulatory transport of iodoantipyrine and water in the isolated dog heart. Circ. Res. 17: 461–477, 1970Google Scholar
  141. (140).
    Bassingthwaighte, J.B.: Circulatory transport and the convolution integral. Mayo Clin. Proc. 42: 137–154, 1967Google Scholar
  142. (141).
    Coulam, C.M., Warner, H.R., Wood, E.H., Bassingthwaighte, J.B.: A transfer function analysis of coronary and renal circulation calculated from upstream and downstream indicator-dilution curves. Circ. Res. 19: 879–890, 1966Google Scholar
  143. (142).
    Knopp, T.J., Bassingthwaighte, J.B.: Effect of flow on transpulmonary circulatory transport functions. J. Appl. Physiol. 27: 36–43, 1969Google Scholar
  144. (143).
    Chinard, F.P.: Estimation of extravascular lung water by indicator-dilution techniques. Circ. Res. 37: 137–145, 1975Google Scholar
  145. (144).
    Berman, M.: Compartmental Modeling. In: Advances in Medical Physics (eds.: J.S. Laughlin, E.W. Webster), 2nd Int. Conf. on Med. Physics, Inc. Boston: 279, 1971Google Scholar
  146. (145).
    Berman, M., Weiss, M.F.: SAAM Manual. Washington, DC, Dep. of Health, Education & Welfare, Publ. (NIM): 78–180, 1978Google Scholar
  147. (146).
    Cerretelli, P., Blau, M., Pendergast, D., Eisenhardt, C., et al.: Cadmium telluride Xe-133 clearance detector for muscle blood flow studies. IEEE Trans. Nucl. Sei., NS-25: 620–623, 1978Google Scholar
  148. (147).
    Larson, O.A.: Xe-133 methods for determining peripheral blood flow and blood pressure in patient with occlusive arterial disease. Angiology 23: 153, 1972Google Scholar
  149. (148) Maitz, D.L., Treves, S.: Quantitative radionuclide angiocardiography: determination of Q(p)/Q(s)
    in children. Circulation 51: 1136, 1975Google Scholar
  150. (149).
    Pretschner, D.P., Hundeshagen, H., Kallfelz, H.C., Freymann, R.: Zur radiokardiographisehen Bestimmung von Links-Rechts-Shunts. In: Nuklearmedizin und Biokinetik (eds.: K. Oeff, H.A.E. Schmidt), Bd.l, Medico-Informationsdienste, Berlin: 460–464, 1978Google Scholar
  151. (150).
    Keyes, J.W., Jr.: Manual of Nuclear Medicine Procedures. CRC Press, Inc., Florida, 1978Google Scholar
  152. (151).
    Pfannenstiel, P.: 30 Jahre Nuklearmedizin. Electromedica 3: 71–76, 1980Google Scholar
  153. (152).
    Metz, C.E., Starr, S.J., Lusted, L.B., Rossmann, K.: Progress in evaluation of human observer visual detection performance using the ROC curve approach. In: Information Processing in Scintigraphy (eds.: G. Raynaud, A.E. Todd-Pokropek), CEA, Orsay: 420–439, 1976Google Scholar
  154. (153).
    Metz, C.E.: Basic principles of ROC analysis. Sem.Nucl.Med. VIII: 283–298, 1978Google Scholar
  155. (154).
    Lusted, L.B.: General problems in medical decision making with comments on ROC analysis. Sem. Nucl. Med. VIII: 299–306, 1978Google Scholar
  156. (155).
    Parkey, R.W., Bonte, F.J., Buja, L.M., Willerson, J.T. (eds.): Clinical Nuclear Cardiology, Appleton-Century-Crofts/New York, 1979Google Scholar
  157. (156).
    Strauss, H.W., Pitt, B., Rouleau, J., Bailey, I.K., Wagner, H.N. (eds.): Atlas of Cardiovascular Nuclear Medicine, C. V. Mosby Comp., St. Louis, 1977Google Scholar
  158. (157).
    Strauss, H.W., Pitt, B. (eds.): Cardiovascular nuclear medicine, 2nd ed., C.V. Mosby Comp., St. Louis, 1979Google Scholar
  159. (158).
    Serafini, A.N., Gilson, A.J., Smoak, W.M. (eds.): Nuclear Cardiology. Principles and Methods, Plenum Medical Book Company, New York, London, 1976Google Scholar
  160. (159).
    Ritchie, J.L., Hamilton, G.W., Wackers, F.J.T. (eds.): Thallium-201 Myocardial Imaging, Raven Press, New York, 1978Google Scholar
  161. (160).
    Wackers, F.J.T. (ed.): Myocardial imaging in the coronary care unit, Martinus Nijhoff Pubi., The Hague, Boston, London, 1980Google Scholar
  162. (161).
    Pierson, R.N., Jr., Kriss, J.P., Jones, R.H., Maclntyre, W.J. (eds.): Quantitative Nuclear Cardiography, J. Wiley & Sons, New York, 1975Google Scholar
  163. (162).
    Kirchner, P.T. (ed.): Nuclear Medicine Review Syllabus, Soc.Nucl.Med., Inc., 1Google Scholar
  164. (163).
    Budinger, T.F., Rollo, F.D.: Physics and Instrumentation. Progr. Cardiovasc. Dis. 20: 19–53, 1977CrossRefGoogle Scholar
  165. (164).
    Pretschner, D.P., Hundeshagen, H.: Ein gekammertes Herzmuskelphantom für die Myokardszintigraphie. Nuc Compact 11: 269–272, 1980Google Scholar
  166. (165).
    Watson, D.D., Campell, N.P., Read, E.K., et al.: Spatial and temporal quantitation of plane thallium myocardial images. J. Nucl. Med. 22: 577–584, 1981Google Scholar
  167. (166).
    Snyder, D.L.: Statistical analysis of dynamic tracer data. In: Computer Processing of Dynamic Images from an Anger Scintillation Camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., Inc.: 127–147, 1974Google Scholar
  168. (167).
    Larson, K.B.: Models for dynamic tracer studies. In: Computer Processing of Dynamic Images from an Anger Scintillation Camera (eds.: K.B. Larson, J.R. Cox), Soc. Nucl. Med., Inc.: 152–172, 1974Google Scholar
  169. (168).
    Brownell, G.L., Callahan, A.B.: Transform methods for tracer data analysis. Ann. N.Y. Acad. Sci. 108: 172–181, -1964Google Scholar
  170. (169).
    Callahan, A.B., Pizer, S.M.: The applicability of Fourier transform analysis to biological compartmental models. In: Natural Automata and Useful Simulations (eds.: H.H. Pattee, E.A. Edelsack, et al.), Spartan Books, Washington: 149–177, 1964Google Scholar
  171. (170).
    Heiss, W.-D., Prosenz, P., Roszuczky: Technical considerations in the use of a gamma camera 1600-channel analyser system for the measurement of regional cerebral blood flow. J. Nucl. Med. 13: 534–543, 1972Google Scholar
  172. (171).
    Jacquez, J.A.: Compartmental Analysis in Biology and Medicine. Elsevier Pubi. Co., Amsterdam-London-New York, 1972Google Scholar
  173. (172).
    Shipley, R.A., Clark, R.E.: Tracer Methods for in vivo Kinetics. Academic Press, New York, London, 1972Google Scholar
  174. (173).
    Lewis, S.E., Stokely, E.M., Bonte, F.J.:PhysicsandInstrumentation. In: Clinical Nuclear Cardiology (eds.: R.W. Parkey, F.J. Bonte, L.M. Buja, J.T. Willerson ), Appleton-Century-Crofts/New York: p. 39, 1979Google Scholar
  175. (174).
    Arnold, J.E., Wilson, B.C.: Computer processing of perfusion, ventilation, and V/Q images to highlight pulmonary embolism. Eur. J. Nucl. Med. 6: 309–315, 1981CrossRefGoogle Scholar
  176. (175).
    Alpert, N.M., McKusick, K.A., Correia, J.A,, Shea, W., Brownell, G.L., Potsaid, M.S.: Initial assessment of a simple functional image of ventilation. J. Nucl. Med. 17: 88–92, 1976Google Scholar
  177. (176).
    Knopp, R., Breuel, H.-P., Schmidt, H., Winkler, C.: Funktionsscintigraphie des Herzens. I. Datentechnische Grundlagen und Methodik. Fortschr. Röntgenstr. 128: 44–47, 1978CrossRefGoogle Scholar
  178. (177).
    Agress, H., Jr., Green, M.V., Reswood, D.R., et al.: Functional imaging methodology: recent clinical and research applications. In: Information Processing in Scintigraphy (eds.: C. Raynaud, A. Todd-Pokropek), CEA, Orsay: 189–207, 1976Google Scholar
  179. (178).
    Wiener, S.N., Borkat, F.R., Floyd, R.M.: Functional imaging: a method of analysis and display using regional rate constants. J.Nucl.Med. 15: 65–68, 1974Google Scholar
  180. (179).
    Raynaud, C., Todd-Pokropek, A.E., Cornar, D., et al.: A method for investigating regional variations of the cerebral uptake rate of11-C-labelled psychotopic drugs in man. In: Dynamic Studies with Radioisotopes in Medicine 1974, Vol. I, IAEA, Vienna: 45–58, 1975Google Scholar
  181. (180).
    Natarajan, T.K., Wagner, H.N., Jr.: Functional images of the lung. In: Dynamic Studies with Radioisotopes in Medicine 1974, Vol.11, IAEA, Vienna:357–366, 1975Google Scholar
  182. (181).
    Pretschner, D.P., Kießling, D., Freihorst, J., Gleitz, C.-D., Hundeshagen, H.: Ergebnisse der quantitativen 201-Tl-Myokardszintigraphie vor und nach aortocoronarer Venenbypass-Operation. 18th Int. Ann. Meeting, Soc. Nucl. Med., Nürnberg (FRG), Sept. 9–12, 1980 (in press)Google Scholar
  183. (182).
    Pretschner, D.P., Wolf, R., Lichtlen, P., Hundeshagen, H.: Quantitative Auswertung von Myokardszintigrammen. Nuklearmediziner 2 (Suppl.): 48–58, 1979Google Scholar
  184. (183).
    Höhne, K.H., Pfeiffer, G.: The role of the physician-computer interaction in the acquisition and interpretation of scintigraphic data. Meth. Inform. Med. 13: 65–70, 1974Google Scholar
  185. (184).
    Rosenfeld, A. (ed.): Digital Picture Analysis, Springer Verlag, Berlin-Heidelberg-New York, 1976MATHGoogle Scholar
  186. (185).
    Huang, T.S. (ed.): Picture Processing and Digital Filtering, Springer Verlag, Berlin-Heidelberg-New York, 1975Google Scholar
  187. (186).
    Fu, K.S.: Digital Pattern Recognition, Springer Verlag, Berlin-Heidelberg- New York, 1976MATHGoogle Scholar
  188. (187).
    Touya, E., Perillo, W., Paez, A., Osorio, A. et al.: Scintigraphy of the cerebrospinal fluid. In: Medical Radionuclide Imaging, Vol.11, IAEA, Vienna: 381–399, 1977Google Scholar
  189. (188).
    Hundeshagen, H., Geisler, S., Dittmann, P., Lichtlen, P., Engel, H.-J.: Quantitative scintigraphic display of myocardial blood flow. Eur. J. Nucl. Med. 1: 107–115, 1976Google Scholar
  190. (189).
    Emrich, D. (ed.): Nuklearmedizin Funktionsdiagnostik und Therapie, 2nd. ed., Georg Thieme Verlag, Stuttgart, 1979Google Scholar
  191. (190).
    Meyniel, G., Beckers, G., Blanquet, P. et al. (eds.): Traité de Medicine Nucléaire, Explorations fonctionelles Flammarion Médicine Sciences, Paris,1975Google Scholar
  192. (191).
    Blood Flow. Sem. Nucl. Med. VI, Part I, II, No. 2-3: 141–303, 1976Google Scholar
  193. (192).
    Radionuclide studies of the lung. Sem. Nucl. Med. X, No. 3: 198–310, 1980Google Scholar
  194. (193).
    Thrombosis detection. Sem. Nucl. Med. VII, No. 3: 205–281, 1977Google Scholar
  195. (194).
    Green, M.V., Ostrow, H.G., Douglas, M.A., Myers, R.W. et al.: High temporal resolution ECG-gated scintigraphic angiocardiography. J.Nucl.Med. 16: 95–98, 1975Google Scholar
  196. (195).
    Bacharach, S.L., Green, M.V., Borer, J.S. et al.: A computer system for clinical nuclear cardiology. In: Proc. Comp. Appl. in Med. Care, Washington, D.C., IEEE Computer Soc., Cat. No. 78CH1413-4, Long Beach, CA: 50–55, 1978Google Scholar
  197. (196).
    Maddox, D.E., Wynne, J., Uren, R., Parker, J.A., et al.: Regional ejection fraction:a quantitative radionuclide index of regional left ventricular performance. Circulation 59: 1001–1009, 1979Google Scholar
  198. (197).
    Maddox, D.E., Holman, B.L., Wynne, J., Idoine, J., et al.: Ejection fraction image: a noninvasive index of regional left ventricular wall motion. Am. J. Cardiol. 41: 1230–1238, 1978Google Scholar
  199. (198).
    Holman, B.L., Wynne, J., Idoine, J., Zielonka, J., Neill, J.: The paradox image: a noninvasive index of regional left-ventricular dyskinesis. J. Nucl. Med. 20: 1237–1242, 1979Google Scholar
  200. (199).
    Bacharach, S.L., Green, M.V., Borer, J.S., Hyde, J.E., et al.: Left-ventricular peak ejection rate, filling rate, and ejection fraction frame rate requirements at rest and exercise: concise communication. J. Nucl. Med. 20: 189–193, 1979Google Scholar
  201. (200).
    Green, M.V., Brody, W.R., Douglas, M.A., Borer, J.S., et al.: Ejection fraction by count rate from gated images. J. Nucl. Med. 19: 880–883, 1978Google Scholar
  202. (201).
    Geffers, H., Adam, W.E., Bitter, F., Sigel, H., Kampmann, H.: Data processing and functional imaging in radionuclide ventriculography. In: Information Processing in Medical Imaging, Proc. Vth Int. Conf., Nashville, ORNL/BCTIC-2: 322–331, 1978Google Scholar
  203. (202).
    Bitter, F., Adam, W.E., Geffers, H., Weller, R.: Die Fourier-Analyse bei der Auswertung von Herzuntersuchungen. In: Systeme und Signalverarbeitung in der Nuklearmedizin (eds.: S.J. Pöppl, D.P. Pretschner), Springer Verlag, Berlin- Heidelberg-New York: 152–165, 1981Google Scholar
  204. (203).
    Ashburn, W.L., Schelbert, H.R., Verba, J.W.: Left ventricular ejection fraction - a review of several radionuclde angiographic approaches using the scintillation camera. Progr. Cardiovasc. Dis. 20: 267–284, 1978CrossRefGoogle Scholar
  205. (204).
    Nelson, T.R., Perkins, G.C., Slutsky, R.A., Verba, J.W.: Automated online analysis of all four cardiac chambers for rapid setup, data acquisition and reduction. J. Nucl. Med. 22: P63, 1981Google Scholar
  206. (205).
    Borer, J.S., Kent, K.-M., Bacharach, S.L., Green, M.V., et al.: Sensitivity, specificity and predictive accuracy of radionuclide cineangiography during exercise in patients with coronary artery disease. Circulation 60: 572–580, 1979Google Scholar
  207. (206).
    Adam, W.E., Sigel, H., Geffers, H., Kampmann, K., Bitter, F., Stauch, M.: Analyse der regionalen Wandbewegung des linken Ventrikels bei koronarer Herzerkrankung durch ein nichtinvasives Verfahren (Radionuklid-Kinematographie). Z. Kardiol. 66: 545–555, 1977Google Scholar
  208. (207).
    Rerych, S.K., Scholz, P.M., Newman, G.E., et al.: Cardiac function at rest and during exercise in normals and in patients with coronary heart disease: evaluation by radionuclide angiocardiography. Ann. Surg. 187: 449–464, 1978CrossRefGoogle Scholar
  209. (208).
    Entzian, W., Palma, A., Holberg, T.: Bedeutung der szintigraphischen Untersuchung der Liquordynamik für neurochirurgische Patienten. Nuklearmediziner 2: 107–116, 1978Google Scholar
  210. (209).
    Ulimann, V., Kuba, J.: Dynamic scintigraphy: calculation and imaging of regional distribution of quantitative parameters. Eur. J. Nucl. Med. 3: 153–160, 1978Google Scholar
  211. (210).
    Computer Applications. Sem Nucl. Med. VIII, No. 2: 105–161, 1978Google Scholar
  212. (211).
    Rai, G.S., Haggith, J.W., Fenwick, J.D., James, O.: Clinical evaluation of computer processing of liver gamma camera scans. Br. J. Radiol. 52: 116, 1979CrossRefGoogle Scholar
  213. (212).
    Burow, R.D., Pond, M., Schafer, A.W., Becker, L.: “Circumferential profiles”: a new method for computer analysis of thallium-201 myocardial perfusion images. J. Nucl. Med. 20: 771–777, 1979Google Scholar
  214. (213).
    IAEA co-ordinated research programme on the intercomparison of computer-assisted scintigraphic techniques. Second and third progress reports. In: Medical Radionuclide Imaging, Vol.1, IAEA, Vienna: 571–615, 1977Google Scholar
  215. (214).
    Hör, G., Kanemoto, N.: 201-Tl-Myocardial scintigraphy: current status in coronary artery disease, results of sensitivity/specificity in 3092 patients and clinical recommendations. Nucl. Med. XX: 136–147, 1981Google Scholar
  216. (215).
    Decision Making in Nuclear Medicine. Sem.Nucl.Med. VIII, No. 4: 271–364, 1978Google Scholar
  217. (216).
    N. Engl. J. Med. 293, No. 5: 211–257, 1975Google Scholar
  218. (217).
    Hamilton, G.W., Trobaugh, G.B., Ritchie, J.L., Gould, K.L., et al.: Myocardial imaging with Tl-201:an analysis of clinical usefulness based on Bayes’ theorem Sem. Nucl. Med. VIII: 358–364, 1978Google Scholar
  219. (218).
    Drum, D.E., Christacopoulos, J.S.: Hepatic scintigraphy in clinical decision making. J. Nucl. Med. 13: 908–915, 1972Google Scholar
  220. (219).
    Drum, D.E.: Optimizing the clinical value of hepatic scintiphotography. Sem. Nucl. Med. VIII: 346–357, 1978Google Scholar
  221. (220).
    McNeill, B.J.: Rationale for the use of bone scans in selected metastatic and primary bone tumors. Sem. Nucl. Med. VIII: 336–345, 1978Google Scholar
  222. (221).
    Sisson, J.C., Bartold, S.P., Bartold, S.L.: The dilemma of the solitary thyroid nodule: resolution through decision analysis. Sem. Nucl. Med. VIII: 59–71, 1978Google Scholar
  223. (222).
    McNeill, B.J.: A diagnostic strategy using ventilation-perfusion studies in patients for suspect of pulmonary embolism. J. Nucl. Med. 17: 613–616, 1976Google Scholar
  224. (223).
    McNeill, B.J., Keeler, E., Adelstein, S.J.: Determining the value of diagnostic and screening tests. J. Nucl. Med. 17: 439–448, 1976Google Scholar
  225. (224).
    Bell, R.S.: Efficacy What’s that ? Sem. Nucl. Med. VIII: 316–323, 1978Google Scholar
  226. (225).
    Lusted, L.B.: An analysis of medical decision making. In: Medical Radionuclide imaging, Vol. II, IAEA, Vienna: 185–196, 1977Google Scholar
  227. (226).
    Houston, A.S.: Mathematical tumours and their use in assessing data processing techniques in radioisotope sintigraphy. Phys. Med. Biol. 19: 631–642, 1974CrossRefGoogle Scholar
  228. (227).
    Lusted, L.B.: Introduction to medical decision making. Springfield, Charles C. Thomas, 1968Google Scholar
  229. (228).
    Houston, A.S., Sharp, P.F., Tofts, P.S., Diffey, B.L.: A multicentre comparison of computer assisted image processing and display methods in scintigraphy. Phys. Med. Biol. 24: 547–558, 1979CrossRefGoogle Scholar
  230. (229).
    Houston, A.S., MacLeod, M.A.: An intercomparison of computer assisted image processing and display methods in liver scintigraphy. Phys. Med. Biol. 24: 559–570, 1979CrossRefGoogle Scholar
  231. (230).
    Runczik, L., Cernoch, V., Vavreijn, B.: Hybrid simulation: a new method for comparison of scintigraphic devices. In: Medical Radioisotope Scintigraphy, Vol.1, IAEA, Vienna: 691, 1973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • D. P. Pretschner
    • 1
  1. 1.Abteilung Nuklearmedizin und spezielle BiophysikZentrum Radiologie Medizinische HochschuleHannover 61Germany

Personalised recommendations