Skip to main content

Continuous and Semicontinuous Analogues of Iterative Methods of Cimmino and Kaczmarz with Applications to the Inverse Radon Transform

  • Conference paper
Mathematical Aspects of Computerized Tomography

Part of the book series: Lecture Notes in Medical Informatics ((LNMED,volume 8))

Abstract

Kaczmarz’s method and variants thereof have been used effectively in the numerical resolution of linear algebraic equations arising from tomography and other areas of reconstruction from projections. The method is applied for example, to the system of equations arising from sampling and full discretization of the Radon transform. In contrast, Cimmino’s method which has universal convergence properties similar (in theory) to Kaczmarz’s method, does not seem to have as extensively studied or advocated in practice. In this paper, we develop continuous and/or semicontinuous analogues of the iterative methods of Cimmino and Kaczmarz for linear operator equations on infinite dimensional function spaces. The formulation of these algorithms hinges upon expressing the operator equation in terms of a family of hyperplanes in an appropriate function space. We identify and analyze two wide classes of linear operators for which this is possible. The semicontinuous analogue which involves a finite number of these hyperplanes is studied in particular in the framework of moment discretization (rather than full discretization) which is germane to problems of integral and operator equations with discrete data or sampling. Convergence properties of variants of Cimmino’s method are established; continuous and semicontinuous analogues are developed in a manner that permits convergence analysis in a similar manner. Several examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Artzy, T. Elfving, and G. T. Herman, Quadratic Optimization for image reconstruction, II, Computer Graphics and Image Processing 11 (1979), 242–261.

    Article  Google Scholar 

  2. A. Ben-Israel and T. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.

    MATH  Google Scholar 

  3. L. Cesari, Sulla risoluzione del sistemi di equazioni lineari per approssimazioni successive, Rend. R. Accad. Naz. Lincei CI. Sci. Fis. Math. Nat., Ser. 6A, 25, Rome, 1937.

    Google Scholar 

  4. G. Cimmino, Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari, “La Ricerca Scientifica”, Roma, Serie II, (1938), 326–333.

    Google Scholar 

  5. G. Cimmino, Su uno speciale tipo di metodi probabilistici in analisi numerica, Symposia Mathematica, Vol, X, Institute Nazionale di Alta Matematica, 247–254, Academic Press, London and New York, 1972.

    Google Scholar 

  6. P. P. B. Eggermont, G. T. Herman, and A. Lent, Iterative algorithms for large partitioned linear systems, with applications to image reconstruction, to appear.

    Google Scholar 

  7. N. Gastinel, Linear Numerical Analysis, Herman and Academic Press, Paris and New York, 1970.

    Google Scholar 

  8. R. Gordon and G. T. Herman, Three-dimensional reconstructions from projections, a review of algorithms, Int. Review of Cytology 38 (1974), 111–151.

    Article  Google Scholar 

  9. C. W. Groetsch, Generalized Inverses of Linear Operators: Representation and Approximation, Dekker, New York, 1977.

    MATH  Google Scholar 

  10. G. T. Herman, ed., Image Reconstruction from Projections: Implementation and Applications, Springer Verlag, Berlin, 1979.

    Google Scholar 

  11. G. T. Herman and A. Naparstek, Past image reconstruction based on a Radon inversion formula appropriate for rapidly collected data, SIAM J. Applied Math. 33 (1977), 511–533.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Jossa, Risoluzione progressiva di un sistema di equazioni lineari. Analogia con un problema meccanio, Rend. Accad. Sci. Fis. Mat. Napoli (4) 10 (1940), 346–352.

    MATH  MathSciNet  Google Scholar 

  13. S. Kaczmarz, Angenäherte Auflosing von Systemen linearer Gleichungen, Bull. Acad. Polon. Sciences et Lettres, A, (1937), 355–357.

    Google Scholar 

  14. W. J. Kammerer and M. Z. Nashed, Steepest descent for singular linear operators with nonclosed range, Applicable Analysis 1 (1971), 143–159.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. J, Kammerer and M. Z. Nashed, Convergence of the conjugate gradient method for singular linear operator equations, SIAM J, Numer. Anal. 9 (1971), 165–181.

    Article  MathSciNet  Google Scholar 

  16. W. J. Kammerer and M. Z. Nashed, Iterative methods for best approximate solutions of linear integral equations of the first and second kinds, J. Math. Anal. Appl. 40 (1972), 547–573.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. J. Kammerer and M. Z. Nashed, A generalization of a matrix iterative method of G. Cimmino to best approximate solution of linear integral equations of the first kind, Rend. Accad. dei Lincei 48 (1970), 184–194.

    Google Scholar 

  18. H. B. Keller, The solution of singular and semidefinite linear systems by iteration, SIAM J. Numer. Anal. 2 (1965), 281–290.

    Google Scholar 

  19. S. F. McCormick and G. H. Rodrigue, A uniform approach to gradient methods for linear operator equations, J. Math. Anal. Appl. 49 (1975), 275–285.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Z. Nashed, On moment discretization and least-squares solutions of linear integral equations of the first kind, J. Math. Anal. Appl. 53 (1976), 359–366.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Z. Nashed, ed., Generalized Inverses and Applications, Academic Press, New York, 1976,

    MATH  Google Scholar 

  22. M. Z. Nashed, Steepest descent for singular linear operator equations, SIAM J. Numer. Anal, 7 (1970), 479–492.

    Article  MathSciNet  Google Scholar 

  23. M. Z. Nashed, Generalized inverses, normal solvability, and iterations for singular operator equations, in Nonlinear Functional Analysis and Applications (L. B. Hall, ed.), pp. 311–359, Academic Press, New York, 1971.

    Google Scholar 

  24. M. Z. Nashed, Perturbations and approximations for generalized inverses and linear operator equations, in [21], pp. 325–396.

    Google Scholar 

  25. M. Z. Nashed and L. B. Rail, Annotated bibliography on generalized inverses and applications, in [21], pp. 771–1041.

    Google Scholar 

  26. M. Z. Nashed and G. F. Votruba, A unified operator theory of generalized inverses, in [21], pp. 1–109.

    Google Scholar 

  27. M. Z. Nashed and G. F. Votruba, Convergence of a class of iterative methods of Cimmino-type to weighted least squares solutions, Notices Amer. Math. Soc., 21 (1974), A-245é.

    Google Scholar 

  28. M. Z. Nashed and G, Wahba, Rates of convergence of approximate least squares solutions of linear integral and operator equations, Math. Comp. 28 (1974), 69–80.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Z. Nashed and G. Wahba, Generalized inverses in reproducing kernel spaces: An approach to regularization of linear operator equations, SIAM J. Math. Anal. 5 (1974), 974–987.

    Article  MathSciNet  Google Scholar 

  30. M. Z. Nashed and G. Wahba, Regularization and approximation of linear operator equations in reproducing kernel spaces, Bull. Amer. Math. Soc. 80 (1974), 1213–1218.

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Natterer, A. Sobolev space analysis of picture reconstruction, SIAM J. Appl. Math., to appear,

    Google Scholar 

  32. W. V. Petryshyn, On generalized inverses and uniform convergence of (I-3K)n with applications to iterative methods, J. Math. Anal. Appl, 18 (1967), 417–439.

    Article  MATH  MathSciNet  Google Scholar 

  33. D. Showalter and A. Ben-Israel, Representation and computation of the generalized inverse of a bounded linear operator between two Hilbert spaces, Rend. Accad. dei Lincei 48 (1970), 184–194.

    MATH  MathSciNet  Google Scholar 

  34. K. T. Smith, D. C. Solomon and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), 1227–1270.

    Article  MATH  MathSciNet  Google Scholar 

  35. K. Tanabe, Projection method for solving a singular system of linear equations and its applications, Numer. Math. 17 (1971), 203–214.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nashed, M.Z. (1981). Continuous and Semicontinuous Analogues of Iterative Methods of Cimmino and Kaczmarz with Applications to the Inverse Radon Transform. In: Herman, G.T., Natterer, F. (eds) Mathematical Aspects of Computerized Tomography. Lecture Notes in Medical Informatics, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93157-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93157-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10277-9

  • Online ISBN: 978-3-642-93157-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics