Advertisement

Some Basic Properties of Stochastic Population Models

  • M. Barra
  • G. Del Grosso
  • A. Gerardi
  • G. Koch
  • F. Marchetti
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 32)

Abstract

The importance of models for interacting populations not only in immunology but also in various fields such as ecology, biology, chemical reactions, etc., is well known.

Keywords

Stochastic Differential Equation Random Fluctuation Diffusion Matrix Invariant Probability Measure Positive Quadrant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.M. MAY: Stability and Complexity in Model Ecosystems Princeton University Press, (1973).Google Scholar
  2. [2]
    S.W. HINKLEY, C.P.TSOKOS: A Stochastic Model for Chemical Equi librium Math. Biol. 21, 85–102, (1974).MathSciNetMATHGoogle Scholar
  3. [3]
    L. BILLARD: On Lotka-Volterra Predator-Prey Models J. Appl. Prob. 14/375–381, (1977).MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    D. LUDWIG: Persistence of Dynamical Systems under Random Perturbations SIAM Review 15, (1975).Google Scholar
  5. [5]
    L.M. RICCIARDI: Diffusion Process and Related Topics in Biology Lecture Notes in Biomathematics n.14, Springer-Verlag (1977).CrossRefGoogle Scholar
  6. [6]
    B. LEVIKSON: Regulated Growth in Random Environments J. Math.Biol. 3, 19–26, (1976).MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    W.H. FLEMING: Distributed Parameter Stochastic Systems in Population Biology In: “Control theory, Numerical Methods and Computer Systems Modelling” Springer-Verlag (1975).Google Scholar
  8. [8]
    T.C. GARD, D. KANNAN: On a Stochastic Differential Equation Modelling of Prey-Predator Evolution J. Appl. Prob. 13, 429–445, (1976).MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A. FRIEDMAN: Stochastic Differential Equation and Applications Ac. Press 1976.Google Scholar
  10. [10]
    C. BRUNI, A. GERMANI, G. KOCH: An Introduction to Bounded Rate Systems VII IFIP Conference on Optimization, Nice, Sept. 1975.Google Scholar
  11. [11]
    R.Z. HAS’MINSKIJ: Stability of Systems of Differential Equations under Stochastic Perturbations of their parameters (in Russian) Moscow (1969).Google Scholar
  12. [12]
    D.SHEAR: Stability and Uniqueness of the Equilibrium Point in Chemical Reaction Systems J. Chem. Phys., 48 (1968).Google Scholar
  13. [13]
    N.S.GOEL, S.C.MAITRA, E.N.MONTROLL: On the Volterra and other Nonlinear Models of Interacting Populations Rev. Mod. Phys. 43 (1971).Google Scholar
  14. [14]
    C. BRUNI, A. GANDOLFI, A. GERMANI: A Bounded Rate Model for Mass Action Multiple Binding Processes: Stability Analysis Rapp. Istituto di Automatica, Università di Roma, Marzo 1978.Google Scholar
  15. [15]
    I.I. GIHMAN, A.V. SKOROHOD: Stochastic Differential Equations Springer-Verlag, 1972.MATHGoogle Scholar
  16. [16]
    M. BARRA, C. BRUNI, G. KOCH: Deterministic and Stochastic Bounded-Rate Models in Immunology Working Conference on System theory in Immunology, Rome 1978 Lecture Notes in Biomathematics, Springer-Verlag, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • M. Barra
    • 1
  • G. Del Grosso
    • 1
  • A. Gerardi
    • 1
  • G. Koch
    • 1
  • F. Marchetti
    • 1
  1. 1.Istituto Matematico “G.Castelnuovo”Università di RomaItaly

Personalised recommendations