Flow Microfluorometry

  • Martin Eisen
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 30)


The development of flow microfluorometry (FMF)1 by Kametsky et al. [23] and Van Dilla et al. [38] allows Kinetic cell-cycle analyses to be used clinically. Cell cycle parameters can be determined in one or two days instead of weeks as formerly required by autoradiography.


Cycle Time Delay Line Sojourn Time Channel Axis Successive Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baisch, H., Göhde, W. and Linden, W. Analysis of PCP-data to determine the fraction of cells in the various phases of cell cycle, Rad. Environm. Biophys. 12, 31–39, 1975.CrossRefGoogle Scholar
  2. 2.
    Barlogie, B., Drewinko, B., Johnston, D.A. et al. Pulse cytophotometric analysis of synchronized cells in vitro, Cancer Res., 36, 1176, 1976.Google Scholar
  3. 3.
    Beck, H.P. A new analytical method for determining duration of phases, rate of DNA-synthesis and degree of synchronization from flow-cytometric data or synchronized cell populations, Cell and Tissue Kin., 1978.Google Scholar
  4. 4.
    Bronk, B.V., Dienes, G.J. and Paskin, A. The stochastic theory of cell proliferation, Biophys. J., 8, 1353–1397, 1968.CrossRefGoogle Scholar
  5. 5.
    Dean, P.N. and Anderson, E.C. The rate of DNA synthesis during S phase by mammalian cells in vitro. In Pulse Cytophotometry (ed. Haanen, C.A.M., Hillen, H.F.P. and Wessels, J.M.C.) Eurp. Press Medikon, Ghent, Belgium, 1975.Google Scholar
  6. 6.
    Dean, P.N. and Jett, J.J. Mathematical analysis of DNA distributions derived from flow microfluorometry, J. Cell Biol., 60, 523–27, 1974.CrossRefGoogle Scholar
  7. 7.
    Dean, P.N. and Jett, J.J. Flow microfluorometric data analysi. In Annual Report of the Biological and Medical Research Group CH-4) of the LASL Health Division, Los Alamos Scientific Laboratory Report LA-5227-PR, 1972.Google Scholar
  8. 8.
    Dolbeare, F.A. and Phares, W. Hydrolases in cells and nuclei measured by flow cytometry using fluorogenic substrates, J. Histochem. Cytochem. (submitted).Google Scholar
  9. 9.
    Eisen, M. Determination of percentage of cells in Go using an FMF, Division of Biophysics, Temple University, Internal Report, 6/76.Google Scholar
  10. 10.
    Eisen, M. and Eisen, C. Probability and Its Applications, Quantum Publishers, Inc., New York, N.Y., 1975.Google Scholar
  11. 11.
    Eisen, M. and Schiller, J. Microfluorometry analysis, J. Theor. Biol., 66, 799–809, 1977.CrossRefGoogle Scholar
  12. 12.
    Eisen, M., Macri, N. and Mehta, J. Microfluorometry Analysis II. A Bayesian approach, to appear, J. Theor. Biol., 1979.Google Scholar
  13. 13.
    Fried, J., Method for the quantitative evaluation of data from flow microfluorometry, Comp. Biomed. Res. 9, 263–276, 1976.CrossRefGoogle Scholar
  14. 14.
    Fried, J., Yataganas, X., Kitahara, T., Perez, A., Ferguson, R., Sullivan, S. and Clarkson, B., Quantitative analysis of flow microfluoremetric data from synchronous and drug-treated cell populations, Comp. Biom. Res. 9, 277–290, 1976.CrossRefGoogle Scholar
  15. 15.
    Gray, J.W., Cell-cycle analysis of perturbed cell populations: computer simulation of sequential DNA distributions, Cell Tissue Kinet., 9, 499–516, 1976.Google Scholar
  16. 16.
    Gray, J.W., Carver, J.H., George, Y.S. and Mendelsohn, M.L., Rapid cell cycle analysis by measurement of the radioactivity per cell in a narrow window in S phase (RCSi), Cell Tissue Kinet, 10, 97–109, 1977.Google Scholar
  17. 17.
    Gray, J.W., Dean, P.N. and Mendelsohn, M.L., Quantitative cell cycle analysis: flow cytometry and sorting. Lawrence Livermore Laboratory, preprint UCRL-79482, 1977.Google Scholar
  18. 18.
    Hawkes, S.P. and Bartholomew, J.C., Quantitative determination of transformed cells in a mixed population by simultaneous fluorescence analysis of cell surface and DNA in individual cells, Proc. Natl. Acad. Sci. (USA),Google Scholar
  19. 19.
    Hirsch, H.R. and Engelberg, J.J., Determination of the cell doubling-time distribution from culture growth-rate data, J. Theoret. Biol. 9, 297–302, 1965.CrossRefGoogle Scholar
  20. 20.
    Jagers, P. and Norrby, K. Estimation of the mean and variance of cycle times in cinemicrographically recorded cell populations during balanced exponential growth, Cell Tissue Kinet., 7, 201–211, 1974.Google Scholar
  21. 21.
    Jensen, R.H., King, E.B. and Mayall, B.H. Cytological detection of cervical carcinoma with new cytochemical markers and flow microanalysis, Third International Symposium on Detection and Prevention of Cancer, UCRL-77469.Google Scholar
  22. 22.
    Julius, M.H., Masuda, T. and Herzenberg, L.A. Demonstration that antigenbinding cells are precursors of antibody-producing cells after purification with a fluorescence activated cell sorter, Proc. Natl. Acad. Sci. (USA), 69, 1934, 1972.CrossRefGoogle Scholar
  23. 23.
    Kamentsky, L.A., Melamed, H.R. and Derman, H. Spectrophotometer: new instrument for ultrarapid cell analysis, Science, 150, 630, 1965.CrossRefGoogle Scholar
  24. 24.
    Kim, M., Bahrami, K. and Woo, K.B. A discrete time model for cell age, size and DNA distributions of proliferating cells and its application to movement of labelled cohort, IEEE Trans. Biomed. Eng., BME-21, 387, 1974.Google Scholar
  25. 25.
    Kim, M. and Woo, K.B. Kinetic analysis of cell size and DNA content distributions during tumor cell proliferation: Ehrlich ascites tumor study. Cell Tissue Kinet., 8, 197, 1975.Google Scholar
  26. 26.
    Mendelsohn, M.L. (ed.). Flow Cytogenetics and Sorting, John Wiley and Sons, New York (to be published).Google Scholar
  27. 27.
    Mode, C.J. Multitype age-dependent branching processes and cell cycle analysis, Math. Biosciences, 10, 177–190, 1971.CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Norrby, K. Population kinetics of normal, transforming and neoplastic cell lines Acta Path. Microbiol. Scand., 78, Supp., No. 214, 1970.Google Scholar
  29. 29.
    Norrby, K., Johannison, G. and Mellgren, J. Proliferation in an established cell line. An analysis of birth, death, and growth rates Exptl. Cell Res., 48, 582–594, 1967.CrossRefGoogle Scholar
  30. 30.
    Salzmann, G.C., Crowell, J.M., Hansen, K.M. et al. Gynecologic specimen analysis by multiangle light scattering in a flow system, J. Histochem. Cytochem. 24, 308, 1976.CrossRefGoogle Scholar
  31. 31.
    Shackney, S.E. A cytokinetic model for heterogeneous mammalian cell populations. II. Tritiated thymidine studies: The percent labeled mitosis (PLM) curve, J. Theoret. Biol. 44, 49, 1974.CrossRefGoogle Scholar
  32. 32.
    Shapiro, H.M., Schildkraut, E.R., Curbelo, R., et al. Combined blood cell counting and classification with fluorochrome stains and flow instrumentation, J. Histochem. Cytochem. 24, 396, 1976.CrossRefGoogle Scholar
  33. 33.
    Scherr, L. and Zietz, S. FPi analysis of time sequences of DNA distribution yields length of G1, S and G2 phases of cell cycle, Rad. Res., 67, 585, 1976.Google Scholar
  34. 34.
    Showacre, J.L. In Methods of Cell Physiology, Chapter 7, Academic Press, New York, 147–157, 1968.Google Scholar
  35. 35.
    Sisken, J.E. Analysis of variations in intermitotic time, Cinemicrography in Cell Biology, Academic Press. New York, 1963.Google Scholar
  36. 36.
    Sisken, J.E. and Morasca, L. Intrapopulation kinetics of the mitotic cycle, J. Cell Biol., 25, 179, 1965.CrossRefGoogle Scholar
  37. 37.
    Van Dilla, M.A., Fulwyler, M.J. and Boone, I.V. Volume distribution and separation of normal human leukocytes, Proc. Soc. Exp. Med., 125, 367, 1967.Google Scholar
  38. 38.
    Van Dilla, M.A., Trujillo, T.T., Mullaney, P.F., et al. Cell microfluorometry: a method for rapid fluorescence measurement, Science, 163, 1213, 1969.CrossRefGoogle Scholar
  39. 39.
    Van Dilla, M.A., Steinmetz, L.L., David, D.T., Calvert, R.N. and Gray, J.W. High speed cell analysis and sorting with flow systems: biological applications and new approaches, IEEE Trans. Nucl. Sci., NS-21, 714, 1974.Google Scholar
  40. 40.
    Wani, J.K. Probability and statistical inference. Appleton-Century-Crofts, New York, 1971.MATHGoogle Scholar
  41. 41.
    Zietz, S., Mathematical Modeling of Cellular Kinetics and Optimal Control Theory in the Service of Cancer Chemotherapy, PhD. Thesis, Dept. of Math., Univ. of California, Berkeley, California, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Martin Eisen
    • 1
  1. 1.Department of MathematicsTemple UniversityPhiladelphiaUSA

Personalised recommendations