Skip to main content

Symmetry and Thermodynamics from Structured Molecules to Liquid Drops

  • Chapter
The Permutation Group in Physics and Chemistry

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 12))

Abstract

By idealizing both limits, one can construct a correlation diagram for the quantum states of a system of N identical particles whose extremes are a molecule-like polyhedron with separable vibrations and rigid-body rotations, and a fluid cluster. The conceptual approach offers a way to analyze vibration-rotation spectra of nonrigid molecules, and an artifice to interpret the melting and nucleation of small clusters. The approach leads to the use of a conditional probability density in r1 and θ12 for description of two particles bound to a single center (where r2 is fixed), as one probe of the tendency of such a system to adopt a polyhedral structure. A single dimensionless parameter based on the ratio of two energy levels provides a characterization of the degree of non-rigidity of a cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.S. Berry, Revs. Mod. Phys. 32, 447 (1960).

    Article  CAS  Google Scholar 

  2. R.G. Woolley, J. Am. Chem. Soc. 100, 1073 (1978).

    Article  CAS  Google Scholar 

  3. H.C. Longuet-Higgins, Molec. Phys. 6, 445 (1963)

    Article  CAS  Google Scholar 

  4. J.K.G. Watson, Can. J. Phys. 43, 1996 (1965).

    Article  CAS  Google Scholar 

  5. J.T. Hougen, J. Chem. Phys. 37, 1433 (1962)

    Article  CAS  Google Scholar 

  6. J.T. Hougen, J. Chem. Phys. 39, 358 (1963)

    Article  CAS  Google Scholar 

  7. J.T. Hougen, J. Chem. Phys. 55, 1122 (1971).

    Article  CAS  Google Scholar 

  8. P.R. Bunker, in Vibrational Spectra and Structure, edited by J.R. Durig (Marcel Dekker, New York, 1976).

    Google Scholar 

  9. P.R. Bunker, Molecular Symmetry and Spectroscopy (Academic Press, New York, 1978).

    Google Scholar 

  10. B.J. Dalton, J. Chem. Phys. 54, 4745 (1971).

    Article  CAS  Google Scholar 

  11. E.L. Muetterties, Accts. Chem. Res. 3, 266 (1970).

    Article  CAS  Google Scholar 

  12. K. Mislow, Accts. Chem. Res. 3, 321 (1970).

    Article  CAS  Google Scholar 

  13. I. Ugi, Angew. Chem. Int’l. Ed. 10, 637 (1971).

    Google Scholar 

  14. P. Ehrenfest, Proc. Acad. Sci. Amsterdam 16, 591 (1914)

    Google Scholar 

  15. P. Ehrenfest, Naturwiss. 27, 543 (1928)

    Google Scholar 

  16. H.A. Kramers, Quantum Mechanics (North-Holland, Amsterdam, 1957), p. 215.

    Google Scholar 

  17. S. Gartenhaus and C. Schwartz, Phys. Rev. 108, 482 (1957).

    Article  CAS  Google Scholar 

  18. G.A. Baker, Phys. Rev. 103, 1119 (1956).

    Article  CAS  Google Scholar 

  19. P. Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966).

    Article  CAS  Google Scholar 

  20. G. Karl and E. Obryk, Nucl. Phys. B8, 609 (1968).

    Article  Google Scholar 

  21. M.E. Kellman, Doctoral Dissertation, University of Chicago, 1977.

    Google Scholar 

  22. M.E. Kellman and R.S. Berry, Chem. Phys. Lett. 42, 327 (1976).

    Article  CAS  Google Scholar 

  23. M.A. Preston, Physics of the Nucleus (Addison-Wesley, Reading, Mass., 1962).

    Google Scholar 

  24. See, for example, S.L. Altmann, Induced Representations in Molecules and Crystals (Academic Press, London, 1977).

    Google Scholar 

  25. M.J. Petrashen and E.D. Trifonov, Applications of Group Theory in Quantum Mechanics (M.I.T. Press, Cambridge, Mass., 1969), or

    Google Scholar 

  26. M. Hamermesh, Group Theory (Addison-Wesley, Reading, Mass., 1962).

    Google Scholar 

  27. A. Hermann, S. Leutwyler and E. Schumacher, Helv. Chim. Act. 61, 453 (1978).

    Article  Google Scholar 

  28. S.D. Peyerimhoff and R.J. Buenker, J. Chem. Phys. 47, 1953 (1967).

    Article  CAS  Google Scholar 

  29. M. Swanson and R.J. Celotta, Phys. Rev. Lett. 35, 783 (1975).

    Article  CAS  Google Scholar 

  30. M.E. Kellman, F. Amar and R.S. Berry, “Correlation Diagrams for Rigid and Nonrigid 3-body Systems,” (to be published).

    Google Scholar 

  31. F. Amar, M.E. Kellman and R.S. Berry, “Correlation Diagrams for Rigid and Nonrigid 4-body Systems,” J. Chem. Phys. 70, 1973 (1979).

    Article  CAS  Google Scholar 

  32. K. Yamada and M. Winnewisser, Z. Naturforsch. Teil A, 31, 134 (1976).

    Google Scholar 

  33. C. Wulfman and J. Kumei, Chem. Phys. Lett. 23, 367 (1973).

    Article  CAS  Google Scholar 

  34. C. Wulfman, Chem. Phys. Lett. 23, 370 (1973).

    Article  CAS  Google Scholar 

  35. O. Sinanoglu and D.R. Herrick. J. Chem. Phys. 62, 886 (1973).

    Article  Google Scholar 

  36. D.R. Herrick and O. Sinanoglu, Phys. Rev. A 11, 97 (1975).

    Article  CAS  Google Scholar 

  37. P. Rehmus, M.E. Kellman and R.S. Berry, Chem. Phys. 31, 239 (1978).

    Article  CAS  Google Scholar 

  38. P. Rehmus, C.C.J. Roothaan and R.S. Berry, Chem. Phys. Lett. 58, 321 (1978).

    Article  CAS  Google Scholar 

  39. E. Holøien, Proc. Phys. Soc. 71, 141, 357 (1958).

    Article  Google Scholar 

  40. C.A. Coulson and A.H. Neilson, Proc. Phys. Soc. 78, 831 (1961).

    Article  CAS  Google Scholar 

  41. P. Rehmus and R.S. Berry, Chem. Phys. 38, 257 (1979).

    Article  CAS  Google Scholar 

  42. F. Amar, M.E. Kellman and R.S. Berry (in preparation).

    Google Scholar 

  43. D.J. McGinty, J. Chem. Phys. 55, 580 (1971).

    Article  CAS  Google Scholar 

  44. D.J. McGinty, J. Chem. Phys. 58, 4733 (1973).

    Article  CAS  Google Scholar 

  45. J.K. Lee, J.A. Barker and F.F. Abraham, J. Chem. Phys. 58, 3166 (1973).

    Article  CAS  Google Scholar 

  46. C.L. Briant and J.J. Burton, J. Chem. Phys. 63, 2045 (1975).

    Article  CAS  Google Scholar 

  47. R.D. Etters and J. Kaelberer, J. Chem. Phys. 66, 3233, 5112 (1977).

    Article  Google Scholar 

  48. G.E. Ewing, Canad. J. Phys. 54, 437 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berry, R.S. (1979). Symmetry and Thermodynamics from Structured Molecules to Liquid Drops. In: Hinze, J. (eds) The Permutation Group in Physics and Chemistry. Lecture Notes in Chemistry, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93124-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93124-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09707-5

  • Online ISBN: 978-3-642-93124-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics