Properties of Double Cosets with Applications to Theoretical Chemistry

  • J. S. Frame
Part of the Lecture Notes in Chemistry book series (LNC, volume 12)

Abstract

A useful model of a molecule is a collection of N atoms or groups of atoms called ligands, each oscillating with small amplitude about an equilibrium position or site, where the N sites form a rigid geometrical figure called a skeleton, that may itself be subject to uniform translation and rotation in space (3,6). An important classification problem is the determination of the number of non-equivalent configurations having the same skeleton and the same numbers of ligands of each kind.

Keywords

Methane Dinate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frame, J.S., The double cosets of a finite group, Bull. A.M.S. v. 47, (1941), pp. 458–467.CrossRefGoogle Scholar
  2. 2.
    Frame, J.S., Group decomposition by double coset matrices, Bull. A.M.S. v. 54 (1948) 740–755.CrossRefGoogle Scholar
  3. 3.
    Frame, J.S., Symmetry groups and molecular structure, Pi Mu. Epsilon J. (1959) pp. 463-471.Google Scholar
  4. 4.
    Frame, J.S., The constructive reduction of finite group representations, A.M.S. Proc. of Symposia in Pure Math., 1960 Institute of Finite Groups, Vol. 6 (1962) 89–99.Google Scholar
  5. 5.
    Hässelbarth, W., Ruch, E., Classifications of Rearrangement Mechanisms by means of Double Cosets and Counting Formulas for the Numbers of Classes. Theoret. Chim. Acta (Berl.) 29, 259–268 (1973).CrossRefGoogle Scholar
  6. 6.
    Ruch, E., Hässelbarth W., and Richter, B., Doppelnebenklassen als Klassenbegriff und Nomenklaturprinzip für Isomere und ihre Abzählung, Theoret. Chim. Acta (Berl.) 19, 288–300 (1970).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • J. S. Frame
    • 1
  1. 1.Michigan State UniversityUSA

Personalised recommendations