Advertisement

Adaptive Control Via Input Matching Despite Plant Structure Uncertainty

  • C. Richard JohnsonJr.

Abstract

Adaptive control methods based on input matching bypass the identifiability and/or exact model-matching constraints of the bulk of existing adaptive control methods. The focus on input matchability allows the use of general controller structures capable of adequately controlling a plant, the structure of which may arbitrarily vary within an allowable class.

Keywords

Adaptive Control Model Reference Adaptive Control Input Match Adaptive Control Method Discrete Optimal Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. E. Kalman, “Design of a self-optimizing control system” Trans. ASME 80, no. 2, 468–478 (February 1958); also inGoogle Scholar
  2. R. E. Kalman, “Design of a self-optimizing control system” Optimal and Self-Optimizing Control R. Oldenburger, ed. (Cambridge, Mass.: MIT Press, 1966) pp. 440–449.Google Scholar
  3. 2.
    E. Tse and J. J. Anton, “On the identifiability of parameters” IEEE Trans. on AC AC-17, no. 5, 637–646 (October, 1972) andMathSciNetCrossRefGoogle Scholar
  4. E. Tse and H. Weinert, “Correction and extension of ‘On the identifiability of parameters’” IEEE Trans. on AC AC-18, no. 6, 687–688 (December, 1973).MathSciNetCrossRefGoogle Scholar
  5. 3.
    T. Söderström, L. Ljung and I. Gustavsson, “Identifiability conditions for linear multivariable systems operating under feedback” IEEE Trans. on AC AC-21, no. 6, 837–840 (December, 1976).CrossRefGoogle Scholar
  6. 4.
    H. Erzberger, “Analysis and design of model following control systems by state space techniques” Proc. 1968 JACC Ann Arbor, Michigan 572–581 (June, 1968).Google Scholar
  7. 5.
    P. Kudva and V. Gourishankar, “On the stability problem of multiyariable model-following system” Int. J. Control 24, no. 6, 801–805 (December, 1976).MathSciNetMATHCrossRefGoogle Scholar
  8. 6.
    I. D. Landau and B. Courtiol, “Design of multivariable adaptive model following control systems” Automatica 10, no. 5, 483–494 (September, 1974).MATHCrossRefGoogle Scholar
  9. 7.
    R. V. Monopoli, “Model reference adaptive control with an augmented error signal” IEEE Trans. on AC AC-19, no. 5, 474–484 (October, 1974).CrossRefGoogle Scholar
  10. 8.
    L. Mabius and H. Kaufman, “An adaptive flight controller for the F-8 without explicit parameter identification” Proc. 1976 CDC Clearwater, FL. 9-14 (December, 1976).Google Scholar
  11. 9.
    C. R. Johnson, Jr., “Adaptive implementation of one-step-ahead optimal control via input matching” Ph.D. Thesis (Stanford University, Stanford, CA, April, 1977).Google Scholar
  12. 10.
    K. J. Åström and P. Eykhoff, “System identification—a survey” Automatica 7, no. 2, 123–162 (March, 1971).MATHCrossRefGoogle Scholar
  13. 11.
    C. R. Johnson, Jr. and E. Tse, “Adaptive implementation of one-step-ahead optimal control via input matching” Proc. 1977 CDC New Orleans, LA. (December, 1977); also submitted to IEEE Trans. on AC..Google Scholar
  14. 12.
    C. R. Johnson, Jr., “On single-stage optimal control,” submitted to 1978 Southeastcon Atlanta, GA. (April, 1978).Google Scholar
  15. 13.
    C. R. Johnson, Jr., “Adaptive parameter matrix and output vector estimation via an equation error formulation” submitted to IEEE Trans. on SMC.Google Scholar
  16. 14.
    J. M. Mendel, Discrete Techniques of Parameter Estimation: The Equation Error Formulation (New York, Marcel Dekker, 1973).MATHGoogle Scholar

Copyright information

© The World Organisation of General Systems and Cybernetics 1978

Authors and Affiliations

  • C. Richard JohnsonJr.
    • 1
  1. 1.Department of Electrical EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations