Selection and Genetic Differentiation in Parthenogenetic Populations

  • Anssi Saura
  • Juhani Lokki
  • Esko Suomalainen
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 19)


The evolutionary potential of a species is a function of the amount of its genetic variation. According to Fisher’s fundamental theorem of natural selection the rate of increase in fitness of a species at any time is equal to its genetic variance in fitness at that time. The notion that parthenogenesis leads to decreased variability has been stated already by Petrunkévitch (1905). Later authors have claimed that parthenogenesis is “a blind alley of evolution” (cf. e.g. Darlington 1932? White 1945; Fisher 1958). Parthenogenetic populations should become genetically uniform. If they are also polyploid, new (mostly recessive) mutations have increased difficulties in expressing themselves. Furthermore, parthenogenetic populations incorporate new, beneficial mutations at a slower rate than comparable bisexual populations (Muller 1932? Crow and Kimura 1965).


Back Mutation Roman Number Allele Configuration Parthenogenetic Population Enzyme Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahti, T., Hämet-Ahti, L., and Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5: 169–211.Google Scholar
  2. Asher, J.H. 1970. Parthenogenesis and genetic variability. II. One-locus models for various diploid populations. Genetics 66: 369–391.PubMedGoogle Scholar
  3. Asher, J.H., and Nace, G.W. 1971. The genetic structure and evolutionary fate of parthenogenetic Amphibian populations as determined by Markovian analysis. Am. Zool. 11: 381–398.Google Scholar
  4. Crow, J.F., and Kimura, M. 1965. Evolution in sexual and asexual populations. Amer. Natur. 99: 439–450.CrossRefGoogle Scholar
  5. Darlington, C.D. 1932. Recent advances in cytology. 1st Edition. Churchill, London.Google Scholar
  6. Darlington, C.D. 1937. Recent advances in cytology. 2nd Edition. Blakiston’s Sons and Co. Inc., Philadelphia.Google Scholar
  7. Fisher, R.A. 1958. The genetical theory of natural selection. 2nd Edition. Dover Publications, New York.Google Scholar
  8. Harris, H. 1975. The principles of human biochemical genetics. North-Holland/American Elsevier, Amsterdam.Google Scholar
  9. Lokki, J. 1976a. Genetic polymorphism and evolution in parthenogenetic animals. VII. The amount of heterozygosity in diploid populations. Hereditas 83: 57–64.PubMedCrossRefGoogle Scholar
  10. Lokki, J. 1976b. Genetic polymorphism and evolution in parthenogenetic animals. VIII. Heterozygosity in relation to polyploidy. Hereditas 83: 65–72.PubMedCrossRefGoogle Scholar
  11. Lokki, J., Saura, A., Lankinen, P., and Suomalainen, E. 1976a. Genetic polymorphism and evolution in parthenogenetic animals. V. Triploid Adoxus obscurus (Coleoptera: Chrysomelidae). Genet. Res. 28: 27–36.PubMedCrossRefGoogle Scholar
  12. Lokki, J., Saura, A., Lankinen, P., and Suomalainen, E. 1976b. Genetic polymorphism and evolution in parthenogenetic animals. VI. Diploid and triploid Polydrosus mollis (Coleoptera: Curculionidae). Hereditas 82: 209–216.PubMedCrossRefGoogle Scholar
  13. Lokki, J., Suomalainen, E., Saura, A., and Lankinen, P. 1975. Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Sblenobia triquetrella (Lepidoptera: Psychidae). Genetics 79: 513–525.PubMedGoogle Scholar
  14. Muller, H.J. 1932. Some genetic aspects of sex. Amer. Natur. 66: 118–138.CrossRefGoogle Scholar
  15. Petrunkévitch, A. 1905. Natural and artificial parthenogenesis. Amer. Natur. 39: 65–76.CrossRefGoogle Scholar
  16. Powell, J.R. 1975. Protein variation in natural populations of animals. Evol. Biol. 8: 79–119.Google Scholar
  17. Saura, A., Lokki, J., Lankinen, P., and Suomalainen, E. 1976a. Genetic polymorphism and evolution in parthenogenetic animals. III. Tetraploid Otiorrhynchus scaber (Coleoptera: Curculionidae). Hereditas 82: 79–100.PubMedCrossRefGoogle Scholar
  18. Saura, A., Lokki, J., Lankinen, P., and Suomalainen, E. 1976b. Genetic polymorphism and evolution in parthenogenetic animals. IV. Triploid Otiorrhynchus Salicis (Coleoptera: Curculionidae). Ent. Scand. 7: 1–6.CrossRefGoogle Scholar
  19. Seiler, J. 1961. Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera: Psychidae). III. Z. Vererbungsl. 92: 261–316.CrossRefGoogle Scholar
  20. Sjörs, H. 1963. Amphi-Atlantic zonation. Nemoral to Arctic, pp. 109–125. In North Atlantic Biota and their History. Edited by A. Löve and D. Love. Perga-mon Press, Oxford.Google Scholar
  21. Suomalainen, E. 1940. Beiträge zur Zytologie der Parthenogenetischen Insekten. I. Coleoptera. Ann. Acad. Sci. Fenn. Ser. A LIV 7: 1–145.Google Scholar
  22. Suomalainen, E. 1950. Parthenogenesis in animals. Advan. Genet. 3: 193–253.CrossRefGoogle Scholar
  23. Suomalainen, E. 1961. On morphological differences and evolution of different polyploid parthenogenetic weevil populations. Hereditas 47: 309–341.CrossRefGoogle Scholar
  24. Suomalainen, E. 1969. Evolution in parthenogenetic Curculionidae. Evol. Biol. 3: 261–296.Google Scholar
  25. Suomalainen, E., and Saura, A. 1973. Genetic polymorphism and evolution in par-thenogenetic animals. I. Polyploid Curculionidae. Genetics 74: 489–508.PubMedGoogle Scholar
  26. Suomalainen, E., Saura, A., and Lokki, J. 1976. Evolution in parthenogenetic insects. Evol. Biol. 9: 209–257.Google Scholar
  27. Templeton, A.R., and Rothman, E.D. 1973. The population genetics of parthenogenetic strains of Drosophila mercatorum. I. One locus model and statistics. Theoret. Appl. Genet. 43: 204–212.CrossRefGoogle Scholar
  28. White, M.J.D. 1945. Animal cytology and evolution. 1st Edition. Cambridge University Press, Cambridge.Google Scholar
  29. White, M.J.D. 1970. Heterozygosity and genetic polymorphism in parthenogenetic animals. pp. 237–262. In Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky. Edited by M.K. Hecht and W.C. Steere. Appleton-Century-Crofts, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Anssi Saura
  • Juhani Lokki
  • Esko Suomalainen

There are no affiliations available

Personalised recommendations