Skip to main content

Selection and Genetic Differentiation in Parthenogenetic Populations

  • Conference paper
Measuring Selection in Natural Populations

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 19))

Abstract

The evolutionary potential of a species is a function of the amount of its genetic variation. According to Fisher’s fundamental theorem of natural selection the rate of increase in fitness of a species at any time is equal to its genetic variance in fitness at that time. The notion that parthenogenesis leads to decreased variability has been stated already by Petrunkévitch (1905). Later authors have claimed that parthenogenesis is “a blind alley of evolution” (cf. e.g. Darlington 1932? White 1945; Fisher 1958). Parthenogenetic populations should become genetically uniform. If they are also polyploid, new (mostly recessive) mutations have increased difficulties in expressing themselves. Furthermore, parthenogenetic populations incorporate new, beneficial mutations at a slower rate than comparable bisexual populations (Muller 1932? Crow and Kimura 1965).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahti, T., Hämet-Ahti, L., and Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5: 169–211.

    Google Scholar 

  • Asher, J.H. 1970. Parthenogenesis and genetic variability. II. One-locus models for various diploid populations. Genetics 66: 369–391.

    PubMed  Google Scholar 

  • Asher, J.H., and Nace, G.W. 1971. The genetic structure and evolutionary fate of parthenogenetic Amphibian populations as determined by Markovian analysis. Am. Zool. 11: 381–398.

    Google Scholar 

  • Crow, J.F., and Kimura, M. 1965. Evolution in sexual and asexual populations. Amer. Natur. 99: 439–450.

    Article  Google Scholar 

  • Darlington, C.D. 1932. Recent advances in cytology. 1st Edition. Churchill, London.

    Google Scholar 

  • Darlington, C.D. 1937. Recent advances in cytology. 2nd Edition. Blakiston’s Sons and Co. Inc., Philadelphia.

    Google Scholar 

  • Fisher, R.A. 1958. The genetical theory of natural selection. 2nd Edition. Dover Publications, New York.

    Google Scholar 

  • Harris, H. 1975. The principles of human biochemical genetics. North-Holland/American Elsevier, Amsterdam.

    Google Scholar 

  • Lokki, J. 1976a. Genetic polymorphism and evolution in parthenogenetic animals. VII. The amount of heterozygosity in diploid populations. Hereditas 83: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Lokki, J. 1976b. Genetic polymorphism and evolution in parthenogenetic animals. VIII. Heterozygosity in relation to polyploidy. Hereditas 83: 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Lokki, J., Saura, A., Lankinen, P., and Suomalainen, E. 1976a. Genetic polymorphism and evolution in parthenogenetic animals. V. Triploid Adoxus obscurus (Coleoptera: Chrysomelidae). Genet. Res. 28: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Lokki, J., Saura, A., Lankinen, P., and Suomalainen, E. 1976b. Genetic polymorphism and evolution in parthenogenetic animals. VI. Diploid and triploid Polydrosus mollis (Coleoptera: Curculionidae). Hereditas 82: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Lokki, J., Suomalainen, E., Saura, A., and Lankinen, P. 1975. Genetic polymorphism and evolution in parthenogenetic animals. II. Diploid and polyploid Sblenobia triquetrella (Lepidoptera: Psychidae). Genetics 79: 513–525.

    PubMed  CAS  Google Scholar 

  • Muller, H.J. 1932. Some genetic aspects of sex. Amer. Natur. 66: 118–138.

    Article  Google Scholar 

  • Petrunkévitch, A. 1905. Natural and artificial parthenogenesis. Amer. Natur. 39: 65–76.

    Article  Google Scholar 

  • Powell, J.R. 1975. Protein variation in natural populations of animals. Evol. Biol. 8: 79–119.

    CAS  Google Scholar 

  • Saura, A., Lokki, J., Lankinen, P., and Suomalainen, E. 1976a. Genetic polymorphism and evolution in parthenogenetic animals. III. Tetraploid Otiorrhynchus scaber (Coleoptera: Curculionidae). Hereditas 82: 79–100.

    Article  PubMed  CAS  Google Scholar 

  • Saura, A., Lokki, J., Lankinen, P., and Suomalainen, E. 1976b. Genetic polymorphism and evolution in parthenogenetic animals. IV. Triploid Otiorrhynchus Salicis (Coleoptera: Curculionidae). Ent. Scand. 7: 1–6.

    Article  Google Scholar 

  • Seiler, J. 1961. Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. (Lepidoptera: Psychidae). III. Z. Vererbungsl. 92: 261–316.

    Article  Google Scholar 

  • Sjörs, H. 1963. Amphi-Atlantic zonation. Nemoral to Arctic, pp. 109–125. In North Atlantic Biota and their History. Edited by A. Löve and D. Love. Perga-mon Press, Oxford.

    Google Scholar 

  • Suomalainen, E. 1940. Beiträge zur Zytologie der Parthenogenetischen Insekten. I. Coleoptera. Ann. Acad. Sci. Fenn. Ser. A LIV 7: 1–145.

    Google Scholar 

  • Suomalainen, E. 1950. Parthenogenesis in animals. Advan. Genet. 3: 193–253.

    Article  CAS  Google Scholar 

  • Suomalainen, E. 1961. On morphological differences and evolution of different polyploid parthenogenetic weevil populations. Hereditas 47: 309–341.

    Article  Google Scholar 

  • Suomalainen, E. 1969. Evolution in parthenogenetic Curculionidae. Evol. Biol. 3: 261–296.

    Google Scholar 

  • Suomalainen, E., and Saura, A. 1973. Genetic polymorphism and evolution in par-thenogenetic animals. I. Polyploid Curculionidae. Genetics 74: 489–508.

    PubMed  CAS  Google Scholar 

  • Suomalainen, E., Saura, A., and Lokki, J. 1976. Evolution in parthenogenetic insects. Evol. Biol. 9: 209–257.

    Google Scholar 

  • Templeton, A.R., and Rothman, E.D. 1973. The population genetics of parthenogenetic strains of Drosophila mercatorum. I. One locus model and statistics. Theoret. Appl. Genet. 43: 204–212.

    Article  Google Scholar 

  • White, M.J.D. 1945. Animal cytology and evolution. 1st Edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • White, M.J.D. 1970. Heterozygosity and genetic polymorphism in parthenogenetic animals. pp. 237–262. In Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky. Edited by M.K. Hecht and W.C. Steere. Appleton-Century-Crofts, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saura, A., Lokki, J., Suomalainen, E. (1977). Selection and Genetic Differentiation in Parthenogenetic Populations. In: Christiansen, F.B., Fenchel, T.M. (eds) Measuring Selection in Natural Populations. Lecture Notes in Biomathematics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93071-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93071-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08435-8

  • Online ISBN: 978-3-642-93071-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics