Skip to main content

Natural Selection and the α-GPDH Locus in Drosophilidae

  • Conference paper
Book cover Measuring Selection in Natural Populations

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 19))

Abstract

The approximate amount of variability at the gene level has now been known for about ten years. This knowledge is mainly based on the technique of gel electrophoresis of proteins and of enzymes in particular. It has been difficult, however, to demonstrate an unequivocal correlation between the physiological function of an enzyme and its elec-trophoretically detectable variants. Once a physiological difference has been established, it may be assumed to have an influence on the adaptive norm of an individual. There are, however, numerous difficulties with this approach. E.g. the substitution of a single amino acid for another may be thought to have an infinitesimally small effect on the total function of the enzyme molecule and the fitness of its bearer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala, F.J. 1973. Two new subspecies of the Drosophila willistoni group (Diptera: Drosophilidae). The Pan-Pacific Entomol. 49: 273–279.

    Google Scholar 

  • Ayala, F.J. 1975. Genetic differentiation during speciation process. Evol. Biol. 8: 1–78.

    Google Scholar 

  • Ayala, F.J., and Powell, J.R. 1972. Enzyme variability in the Drosophila willis-toni group. VI. Levels of polymorphism and the physiological function of enzymes. Biochem. Genet. 7: 331–345.

    Article  PubMed  CAS  Google Scholar 

  • Ayala, F.J., Powell, J.R., Tracey, M.L., Mourao, C.A., and Péres-Salas, S. 1972a. Enzyme variability in the Drosophila willistoni group. III. Genic variation in natural populations of Drosophila willistoni. Genetics 70: 113–139.

    CAS  Google Scholar 

  • Ayala, F.J., Powell, J.R., and Tracey, M.L. 1972b. Enzyme variability in the Drosophila willistoni group. V. Genic variation in natural populations of Drosophila equinoxialis. Genet. Res., Camb. 20: 19–42.

    CAS  Google Scholar 

  • Ayala, F.J., and Tracey, M.L. 1974. Genetic differentiation within and between species of the Drosophila willistoni group. Proc. Nat. Acad. Sci. 71: 999–1003.

    Article  PubMed  CAS  Google Scholar 

  • Bewley, G.C., Rawls, J.M., and Lucchesi, J.C. 1974. α-Glycerophosphate dehydrogenase in Drosophila melanogaster: Kinetic differences and developmental differentiation of the larval and adult isozymes. J. Insect Physiol. 20: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, F.E., Carson, H.L., and Sato, J.E. 1972. Polytene chromosome relationships in Hawaiian species of Drosophila. VI. Supplementary data on metaphases and gene sequences. Studies in Genetics VII. Univ. Texas Publ. 7213: 163–177.

    Google Scholar 

  • Gillespie, J.H., and Kojima, K. 1968. The degrees of polymorphism in enzymes involved in energy production compared to that in nonspecific enzymes in two Drosophila ananassae populations. Proc. Nat. Acad. Sci. 61: 582–585.

    Article  PubMed  CAS  Google Scholar 

  • Grell, E.H. 1967. Electrophoretic variants of α-glycerophosphate dehydrogenase in Drosophila melanogaster. Science 158: 1319–1320.

    Article  PubMed  CAS  Google Scholar 

  • Hansford, R.G., and Sacktor, B. 1971. Oxidative metabolism of insecta, p. 213–247. In: M. Florkin and B.T. Scheer (eds.), Chemical Zoology 6. Academic Press, New York.

    Google Scholar 

  • Hubby, J.L., and Throckmorton, L.H. 1968. Protein differences in Drosophila. IV. A study of sibling species. Amer. Natur. 102: 193–205.

    Article  CAS  Google Scholar 

  • Johnson, G.B. 1974. Enzyme polymorphism and metabolism. Science 184: 28–37.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, F.M., and Schaffer, H.E. 1973. Isozyme variability in species of the genus Drosophila. VII. Genotype-environmental relationships in populations of Drosophila melanogaster from the eastern United States. Biochem. Genet. 10: 149–163.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M., and Ohta, T. 1974. On some principles governing molecular evolution. Proc. Nat. Acad. Sci. 71: 2848–2852.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, K., Gillespie, J., and Tobari, Y. 1970. A profile of Drosophila species’ enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes. Biochem. Genet. 4: 627–637.

    Article  PubMed  CAS  Google Scholar 

  • Lakovaara, S., and Saura, A. 1971. Genetic variation in natural populations of Drosophila obscura. Genetics 69: 377–384.

    CAS  Google Scholar 

  • Lakovaara, S., Saura, A., Lankinen, P., and Lokki, J. 1972. Evolution of enzymes and genetic distance in Drosophila obscura and affinis subgroups. 17 Congr. Int. Zool. (5), p. 1–18.

    Google Scholar 

  • Lakovaara, S., Saura, A., Lankinen, P., Pohjola, L., and Lokki, J. 1976a. The use of isoenzymes in tracing evolution and in classifying Drosophilidae. Zoologica Scripta 5: 173–179.

    Article  Google Scholar 

  • Lakovaara, S., Saura, A., and Lankinen, P. 1976b. Evolution at the α-Gpdh locus in Drosophilidae. Evolution (in press).

    Google Scholar 

  • Lewontin, R.C., and Hubby, J.L. 1966. A molecular approach to the study of genic heterozygosity in natural populations. II. Amounts of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54: 595–609.

    PubMed  CAS  Google Scholar 

  • McDonald, J., and Avise, J. 1976. Adaptive significance of enzyme activity levels; Interspecific variation in α-GPDH and ADH in Drosophila. Biochem. Genet. (in press).

    Google Scholar 

  • Miller, S., Pearcy, R.W., and Berger, E. 1975. Polymorphism at the α-Glycerophos-phate dehydrogenase locus in Drosophila melanogaster. I. Properties of adult al-lozymes. Biochem. Genet. 13: 175–188.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, S.J., and Maclntyre, R.J. 1969. An analysis of gene-enzyme variability in natural populations of Drosophila melanogaster and D. simulons. Amer. Natur. 103: 97–113.

    Article  Google Scholar 

  • O’Brien, S.J., and Maclntyre, R.J. 1972a. The α-glycerophosphate dehydrogenase in Drosophila melanogaster. II. Genetic aspects. Genetics 71: 127–138.

    Google Scholar 

  • O’Brien, S.J., and Maclntyre, R.J. 1972b. The a-glycerophosphate dehydrogenase in Drosophila melanogaster. I. Biochemical and developmental aspects. Bioohem. Genet. 7: 141–161.

    Article  Google Scholar 

  • Prakash, S. 1973. Patterns of gene variation in central and marginal populations of Drosophila robusta. Genetics 75: 347–369.

    CAS  Google Scholar 

  • Powell, J.R. 1975. Protein variation in natural populations of animals. Evol. Biol. 8: 79–119.

    CAS  Google Scholar 

  • Richmond, R.C. 1972. Enzyme variability in the Drosophila willistoni group. III. Amounts of variability in the superspecies, Drosophila paulistorum. Genetics 70: 87–112.

    CAS  Google Scholar 

  • Rockwood, E.S., Kanapi, C.G., Wheeler, M.R., and Stone, W.S. 1971. Allozyme changes during the evolution of Hawaiian Drosophila. Studies in Genetics VI. Univ. Texas Publ. 7103: 193–212.

    Google Scholar 

  • Saura, A. 1974. Genic variation in Scandinavian populations of Drosophila bifas-ciata. Hereditas 76: 161–172.

    CAS  Google Scholar 

  • Saura, A., Lakovaara, S., Lokki, J., and Lankinen, P. 1973. Genic variation in central and marginal populations of Drosophila subobscura. Hereditas 75: 33–46.

    CAS  Google Scholar 

  • Shaw, C.R., and Prasad, R. 1970. Starch gel electrophoresis of enzymes — a compilation of recipes. Bioohem. Genet. 4: 297–320.

    Article  CAS  Google Scholar 

  • Sing, C.F., Brewer, G.J., and Thirtle, B. 1973. Inherited biochemical variation in Drosophila melanogaster: Noise or signal? I. Single-locus analyses. Genetics 75: 381–404.

    PubMed  CAS  Google Scholar 

  • Wright, D.A., and Shaw, C.R. 1969. Genetics and ontogeny of a-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster. Bioohem. Genet. 3: 343–353.

    CAS  Google Scholar 

  • Yang, S.Y., Wheeler, L.L., and Bock, I.R. 1972. Isozyme variations and phylogenetic relationships in the Drosophila bipeotinata Species complex. Studies in Genetics VII. Univ. Texas Publ. 7213: 213–227

    Google Scholar 

  • Zouros, E. 1973. Genic differentiation associated with the early stages of specia-tion in the mulleri subgroup of Drosophila. Evolution 27: 601–621.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lakovaara, S., Saura, A., Lankinen, P. (1977). Natural Selection and the α-GPDH Locus in Drosophilidae . In: Christiansen, F.B., Fenchel, T.M. (eds) Measuring Selection in Natural Populations. Lecture Notes in Biomathematics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93071-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93071-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08435-8

  • Online ISBN: 978-3-642-93071-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics