Protein Evolution: Nonrandom Patterns in Related Species

  • Francisco J. Ayala
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 19)


Empirical science employs a hypothetico-deductive method consisting of two interdependent exercises or episodes, one imaginative, the other critical. To have an idea, advance a hypothesis, or suggest what might be true is an imaginative or creative exercise. But the idea or hypothesis must be subject to critical examination and test. The “criterion of demarcation” which separates the empirical sciences from other realms of discourse, such as logic or metaphysics, is that empirical hypotheses or theories are subject to the possibility of empirical falsification (Popper, 1959). Empirical tests of a hypothesis consist of finding out whether predictions about the world of experience derived as logical consequences from the hypothesis agree or not with the states of affairs observed in the natural world.


Allelic Frequency Natural Selection Polymorphic Locus Sibling Species Genetic Identity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayala, F.J. 1972. Darwinian versus non-Darwinian evolution in natural populations of Drosophila. Proc. 6th Berkeley Symp. Math, Stat. Prob. V: 211–236.Google Scholar
  2. Ayala, F.J. 1974. Biological evolution: natural selection or random walk? Amer. Sci. 62(6): 692–701.PubMedGoogle Scholar
  3. Ayala, F.J. 1975. Scientific hypotheses, natural selection and the neutrality theory of protein evolution. In The Role of Natural Selection in Human Evolution, Francisco M. Salzano (ed.), pp. 19–42. American Elsevier Publ. Co., Inc. New York.Google Scholar
  4. Ayala, F.J. 1977. Philosophical Issues. In Evolution, T. Dobzhansky, F.J. Ayala, G.L. Stebbins, J.W. Valentine (eds.), ch. 16. Freeman, San Francisco.Google Scholar
  5. Ayala, F.J., and Gilpin, M.E. 1974. Gene frequency comparisons between taxa: support for the natural selection of protein polymorphisms. Proc. Nat. Acad. Soi. USA 71: 4847–4849.CrossRefGoogle Scholar
  6. Ayala, F.J., Powell, J.R., Tracey, M.L., Mourão, C.A., and Pérez-Salas, S. 1972a. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni group. Proc. Nat. Acad. Sci. USA 71: 999–1003.CrossRefGoogle Scholar
  7. Ayala, F.J., Powell, J.R., and Tracey, M.L. 1972b. Enzyme variability in the Drosophila willistoni group. V. Genic variation in natural populations of Drosophila equinoxialis. Genet. Res. 20: 19–42.CrossRefGoogle Scholar
  8. Ayala, F.J., Tracey, M.L., Barr, L.G., McDonald, J.F., and Pérez-Salas, S. 1974a. Genetic variation in natural populations of five Drosophila species and the hypothesis of the; selective neutrality of protein polymorphisms. Genetics 77: 343–384.Google Scholar
  9. Ayala, F.J., Tracey, M.L., Hedgecock, D., and Richmond, R.C. 1974b. Genetic differentiation during the speciation process in Drosophila. Evolution 28: 576–592.Google Scholar
  10. Ayala, F.J., Valentine, J.W., DeLaca, T.E., and Zumwalt, G.S. 1975. Genetic variability of the antarctic brachiopod Liothyrella notorcadensis and its bearing on mass extinction hypotheses. Soc. Econ. Paleont. Mineral. (1975): 1–9.Google Scholar
  11. Dobzhanksy, Th., Levene, H., Spassky, B., Spassky, N. 1959. Release of genetic variability through recombination. III. Drosophila prosaltans. Genetics 44: 75–92.Google Scholar
  12. Gilpin, M.E., and Ayala, F.J. 1975. Adaptive foci in protein evolution. Nature 253: 725–726.PubMedCrossRefGoogle Scholar
  13. Harris, H. 1966. Enzyme polymorphisms in man. Proc. Roy. Soc. Ser. B 164: 298–310.CrossRefGoogle Scholar
  14. Harris, H., and Hopkinson, D.A. 1972. Average heterozygosity in man. J. Human Genet. 36: 9–20.Google Scholar
  15. Kimura, M. 1968. Evolutionary rate at the molecular level. Nature 217: 624–626.PubMedCrossRefGoogle Scholar
  16. Kimura, M., and Ohta, T. 1971. Protein polymorphism as a phase of molecular evolution. Nature 229: 467–469.PubMedCrossRefGoogle Scholar
  17. King, J.L., and Jukes, T.H. 1969. Non-Darwinian evolution. Science 164: 788–798.PubMedCrossRefGoogle Scholar
  18. Lewontin, R.C. 1974. The Genetic Basis of Evolutionary Change. Columbia Univ. Press, New York.Google Scholar
  19. Lewontin, R.C., and Hubby, J.L. 1966. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54: 595–609.Google Scholar
  20. Medawar, P. 1967. The Art of the Soluble. Methuen, London.Google Scholar
  21. Nei, M. 1972. Genetic distance between populations. Amer. Nat. 106: 283–292.CrossRefGoogle Scholar
  22. Ohta, T. 1973. Slightly deleterious mutant substitutions in evolution. Nature 246: 96–97.PubMedCrossRefGoogle Scholar
  23. Ohta, T. 1974. Mutational pressure as the main cause of molecular evolution and polymorphism. Nature 252: 351–354.CrossRefGoogle Scholar
  24. Popper, K. 1959. The Logic of Scientific Discovery .Hutchinson, London.Google Scholar
  25. Seiander, R.K. 1976. Genic variation in natural populations. In Molecular Evolution, F.J. Ayala (ed.), pp. 21–45. Sinauer Associates, Mass.Google Scholar
  26. Seiander, R.K., and Kaufman, D.W. 1973. Genic variability and strategies of adaptation in animals. Proc. Nat. Acad. Sci. USA 70: 1875–1877.CrossRefGoogle Scholar
  27. Spassky, B., Richmond, R.C., Pérez-Salas, S., Pavlovsky, O., Mourão, C.A., Hunter, A.S., Hoenigsberg, H., Dobzhansky, T., and Ayala, F.J. 1971. Geography of the sibling species related to Drosophila willistoni, and of the semispecies of the Drosophila paulistorum complex. Evolution 25: 129–143.CrossRefGoogle Scholar
  28. Valentine, J.W., and Ayala, F.J. 1975. Genetic variation in Frieleia halli, a deep-sea brachiopod. Deep-Sea Research 22: 37–44.Google Scholar
  29. Valentine, J.W., and Ayala, F.J. 1976. Genetic variability in krill. Proc. Nat. Acad. Sci. USA 73: 658–660.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Francisco J. Ayala

There are no affiliations available

Personalised recommendations