Advertisement

Description of a Chemical System as a Set of m Fixed Nuclei and n Electrons

  • Enrico Clementi
Part of the Lecture Notes in Chemistry book series (LNC, volume 2)

Abstract

In order to be able to describe a molecule M surrounded by many molecules of water, one must be able to describe at least one molecule of water interacting with M and one molecule of water interacting with a second molecule of water (notice that the simpler case is the one where M itself is a molecule of water). Implicit in the above statement is the assumption that the pairwise additivity approximation holds to a first approximation; implicit in the title of the chapter is that we operate within the Born-Oppenhaimer approximation.

Keywords

Correlation Energy Internal Charge Transfer Fermi Hole Coulomb Hole Infinite Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    L. C. Pauling, Nature of Chemical Bond, Cornell University Press, Ithaca, New York (1960).Google Scholar
  2. 2).
    E. Clementi, J. Chem. Phys. 46, 3851 (1967).CrossRefGoogle Scholar
  3. 3).
    R. S. Mulliken, fo example, “Electronic Structure of Molecules”, J.C.P. 3, 375 (1935).CrossRefGoogle Scholar
  4. 4).
    C. A. Coulson, Valency, Oxford University Press (1959).Google Scholar
  5. 5).
    E. V. Condon and G. H. Shortley, The Theory of Atomic Spectra, University Press, Cambridge (1957). See, in addition, J. C. Slater, Theory of Atomic Structure (Mc Graw-Hill Book Co., Inc., New York) Vol. I e Vol. II.Google Scholar
  6. 6).
    C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951). See, in addition, D. R. Hartree, The Calculation of Atomic Structures (John Wiley & Sons, Inc., New York (1957).CrossRefGoogle Scholar
  7. 7).
    A. C. Wahl, J. Chem. Phys. 41, 2600 (1964).CrossRefGoogle Scholar
  8. 8).
    V. Fock, Invest. Akad. Nauk. USSR, Ser. Fiz. 18, 161 (1954).Google Scholar
  9. 9).
    A. C. Hurley, J. E. Lennard-Jones and J. A. Pople, Proc. Roy. Soc. (London) A220, 446 (1953).Google Scholar
  10. 10).
    E. Wigner, Phys. Rev. 46, 1002 (1934)CrossRefGoogle Scholar
  11. 10a).
    E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).CrossRefGoogle Scholar
  12. 11).
    P. O. Löwdin, Advances in Chemical Physics, Vol. 2., Ed. I. Prigogine, Intersciences Publishers, New York (1959).Google Scholar
  13. 12).
    E. Clementi, J. Chem. Phys. 38, 2248 (1963).CrossRefGoogle Scholar
  14. 13).
    P. Gombas, Pseudopotentiale, Springer-Verlag. New York (1967).CrossRefGoogle Scholar
  15. 14).
    E. Clementi and C. Salez., Correlation Energy in Atomic Systems VI. (unpublished results).Google Scholar
  16. 15).
    E. Clementi, J. Chem. Phys. 39, 175 (1963)CrossRefGoogle Scholar
  17. 15a).
    E. Clementi, J. Chem. Phys. 42, 2783 (1965)CrossRefGoogle Scholar
  18. 15b).
    E. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1966)CrossRefGoogle Scholar
  19. 15c).
    E. Clementi and A. Veillard, J. Chem. Phys. 49, 1300 (1967).CrossRefGoogle Scholar
  20. 16).
    E. A. Hylleraas, Zeits. f. Physik, 48, 469 (1928).CrossRefGoogle Scholar
  21. 16a).
    See, in addition, H. Bethe, Zeits. f. Physik 47, 815 (1929).Google Scholar
  22. 17).
    S. F. Boys, Proc. Roy. Soc. (London), A200, 542 (1950).Google Scholar
  23. 18).
    S. F. Boys, Proc. Roy. Soc. (London), A201, 125 (1950).Google Scholar
  24. 19).
    D. R. Hartree, W. Hartree and B. Swirles, Phil. Trans. Roy. Soc. (London) A238, 223 (1939).Google Scholar
  25. 20).
    A. P. Yutsis, Zh. Eksperim. i. Teoret. Fiz. 23, 129 (1952)Google Scholar
  26. 20a).
    A. P. Yutsis, Zh. Eksperim. i. Teoret. Fiz. 24, 425 (1954)Google Scholar
  27. 20b).
    A. P. Yutsis, Soviet Phys.-JETP 2, 481 (1956)Google Scholar
  28. 20c).
    See, in addition, T. L. Gilbert, J. Chem. Phys. 43, S248 (1956)CrossRefGoogle Scholar
  29. 20d).
    A. P. Yutsis, Ya. I. Vizbaraire, T. D. ‘Strotskire and A. A. Bandzaitis, Optics and Spectroscopy 12, 83 (1962)Google Scholar
  30. 20e).
    A. Veillard and E. Clementi, Theoret. Chim. Acta, 7, 133 (1967)CrossRefGoogle Scholar
  31. 20f).
    G. Das and A. C. Wahl J. Chem. Phys. 44, 87 (1966)CrossRefGoogle Scholar
  32. 20g).
    E. Clementi and A. Veillard, J. Chem. Phys. 44, 3050 (1965).CrossRefGoogle Scholar
  33. 21).
    O. Sinanoglu, J. Chem. Phys. 36, 706 (1962).CrossRefGoogle Scholar
  34. 22).
    B. O. Ross, Chem. Phys. letters 15, 153 (1972).CrossRefGoogle Scholar
  35. 23).
    B. O. Ross and P. E. M. Siegbahm “The CIMI Method” to be published (private communications).Google Scholar
  36. 24).
    G. C. Lie and E. Clementi, J. Chem. Phys. 60, 1275 (1974).CrossRefGoogle Scholar
  37. 25).
    G. C. Lie and E. Clementi, J. Chem. Phys. 60, 1288 (1974).CrossRefGoogle Scholar
  38. 26).
    E. Clementi, J. Chem. Phys. 35, 33 (1962).CrossRefGoogle Scholar
  39. 27).
    First Row Neutral Atoms and Positive Ions — E. Clementi, J. Chem. Phys. 38, 2248 (1963).CrossRefGoogle Scholar
  40. 27a).
    Second Row Neutral Atoms and Positive Ions-E. Clementi, J. Chem. Phys. 39, 175 (1963)CrossRefGoogle Scholar
  41. 27b).
    third Row Neutral Atoms and Positive Ions — E. Clementi, J. Chem. Phys. 42, 2783 (1965)CrossRefGoogle Scholar
  42. 27c).
    fourth Row Neutral Atoms — C. Roetti and E. Clementi, J. Chem. Phys. 60, 3342 (1974)CrossRefGoogle Scholar
  43. 27d).
    C. Roetti and E. Clementi, J. Chem. Phys. 60, 9725 (1974)Google Scholar
  44. 27e).
    E. Clementi, “Tables of Atomic Functions”, IBM J. Res. Develop. Suppl. 9, 2 (1965).CrossRefGoogle Scholar
  45. 28).
    E. Clementi and C. Roetti, Atomic Data and Nuclear Data Tables, Volume 14, No. 3 and No. 4, Academic Press, N. Y. (1974).Google Scholar
  46. 29).
    F. Van Duijneveldt, IBM Research Report R.J. 945 (1971).Google Scholar
  47. 30).
    R. S. Mulliken, J. Chem. Phys. 23, 1833, 1841, 2338, 2343 (1955).CrossRefGoogle Scholar
  48. 31).
    E. Clementi, J. Chem. Phys. 36, 36 (1962).Google Scholar
  49. 32).
    F. Cavallone, R. Scordamaglia and E. Clementi, An analytical potential obtained from ab-initio computations to represent the interactions of Glycine, Alanine, Valine, Leucine and Isoleucine with water, J. Am. Chem. Soc. (submitted). R. Barsotti, F. Cavallone, R. Scordamaglia and E. Clementi, An analytical potential from abinitio computations to describe the interaction energy of Arginine, Asparagine, Lysine, Glutamine, Glutamic acid and Aspartic acid with water, Theoretica Chimica Acta (submitted). C. Tosi, F. Cavallone, R. Scordamaglia and E. Clementi, An analytical interaction potential from ab-initio Computations to represent Proline, Hydroxyproline and Hystidine, Z. Physik. Chemie, N. F. (submitted). A. Martellani, F. Cavallone, R. Scordamaglia and E. Clementi, Ab-initio computations to represent the interaction of tryptophan, Tyrosine, Threonine and Serine with water, Biochim. Biophys. Acta (submitted). R. Pavani, F. Cavallone, R. Scordamaglia and E. Clementi, An analytical potential obtained from abinitio computations to represent the sulphur containing amino acids: Cystine, Cysteine and Methionine interacting with water, J. Chem. Soc., Faraday Transactions II (submitted).Google Scholar
  50. 33).
    D. Ferro and E. Clementi (to be published).Google Scholar
  51. 34).
    J. Moult, A. Yonath, W. Traub, A. Smilansky, A. Podjarny, D. Rabinovich and A. Saya, J. Mol. Biol. (in press).Google Scholar
  52. 35).
    The data on the lysozime dipole moment and Fig. 3 are part of an unpublished work by G. Ranghino, R. Gcordamaglia, G. Giunchi and E. Clementi.Google Scholar
  53. 36).
    W. Heitler and G. Rumer, Z. Physik. 68, 12 (1931).CrossRefGoogle Scholar
  54. 36a).
    See, in addition, J. H. Van Vleck, J. Chem. Phys. 1, 219 (1933).CrossRefGoogle Scholar
  55. 37).
    R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).CrossRefGoogle Scholar
  56. 38).
    H. H. Voge, J. Chem. Phys. 4, 581 (1936).CrossRefGoogle Scholar
  57. 39).
    H. Popkie and E. Clementi, J. Chem. Phys. 57, 1077 (1972).CrossRefGoogle Scholar
  58. 40).
    E. Clementi, J. Chem. Phys. 47, 4485 (1967).CrossRefGoogle Scholar
  59. 41).
    E. Clementi and A. Routh, Int. J. Quantum Chem., Vol. VI, 525 (1972).CrossRefGoogle Scholar
  60. 42).
    U. Gelius; P. H. Heden, J. Hedman, B. J. Lindberg, R. Manne, R. Nordberg, C. Nordling and K. Siegbahn, Molecular Spectroscopy by Means of E.S.C.A., V.U.I.P. 714, July 1970. Uppsala University, Department of Physics.Google Scholar
  61. 43).
    H. Liscka, T. Plesser and P. Schuster, Chem. Phys. Letters, 6, 263 (1970).CrossRefGoogle Scholar
  62. 44).
    K. G. Breitschwerdt and H. Kistenmaker, Chem. Phys. Letters, 14, 288 (1972).CrossRefGoogle Scholar
  63. 45).
    H. Kistenmacher, H. Popkie and E. Clementi, J. Chem. Phys. 58, 5627 (1973).CrossRefGoogle Scholar
  64. 46).
    H. Popkie, H. Kistenmacher and E. Clementi, J. Chem. Phys. 59, 3 (1973).CrossRefGoogle Scholar
  65. 47).
    H. Popkie, H. Kistenmacher and E. Clementi, J. Chem. Phys. 59, (1973).Google Scholar
  66. 48).
    E. Clementi, R. Scordamaglia and G.C. Lie, to be published.Google Scholar
  67. 49).
    E. Clementi and R. Scordamaglia, to be published.Google Scholar
  68. 50).
    J. Gastaiger, P.D. Gillespie, D. Marquarding and I. Ugi, Topics in Current Chemistry, No. 48, Springer-Verlag (Berlin, 1973).Google Scholar
  69. 51).
    E. Clementi, R. Scordamaglia and A. Zerbi, work in progress.Google Scholar
  70. 52).
    M. Giunchi, E. Clementi, work in progress.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • Enrico Clementi
    • 1
  1. 1.Istituto Guido DoneganiSocietà MontedisonNovaraItaly

Personalised recommendations