Formal Languages as Models for Biological Growth

  • P. Tautu
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 11)


A formal system is a mathematical structure S= (V, F, A, R), where
  1. (i).

    V is a set of symbols, called alphabet, V={a1 |i=0, 1, 2,...}. The set of all finite words (strings) composed with the elements of V is denoted by V*. Assuming the existence of an empty word Λ, the set V+ of nonempty words over V is then defined as V* -{Λ}.

  2. (ii).

    FV* is a set of formulae, a language over V.

  3. (iii).

    AF is a set of initial situations, called axioms.

  4. (iv).

    R is a set of rules of deduction (the primitives). A rule ρ∈R is defined as a subset of the Cartesian product Fn × F, where Fn is itself a Cartesian product F×...×F having n≥1 factors whose elements are the ordered n-tuples of formulae. Let F=(x1,..., xn) be an ordered n-tuple of formulae. If there exists a peR and a formula y such that Foy is obtained, then it is said that y is an immediate consequence of the premises (x1,..., xn). The formulae in F are the arguments of rule ρ. The set R of deduction rules defines the relation of immediate deducibility ( see Gross and Lentin, 1970).



Formal Language Generative Device Finite Alphabet Deduction Rule Formal Language Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho, A.V., Ullmarn, J.D. (1968).The theory of languages. Math.Systems Theory 2, 97–125CrossRefMathSciNetGoogle Scholar
  2. 2.
    Asveld, P.R.J. (1975).On some controlled ETOL-systems and languages (abstract). Conf.on Formal Languages, Automata and Development (Noordwijkerhout, The Netherlands)Google Scholar
  3. 3.
    Biermann, A., Feldman, J. (1971).A survey of grammatical inference. In: Frontiers of Pattern Recognitions (S. Watanabe, ed.). New York: Academic PressGoogle Scholar
  4. 4.
    Buttelmann, H.W. (1975).On the syntactic structures of unrestricted grammars.I. Information and Control 29, 29–80CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Carlyle, J.W., Greibach, S., Paz, A. (1974). A two-dimensional generating system modelling growth by binary cell division.IEEE Conf.Record, 15th Annual Symp.on Switching and Automata Theory, pp.1–12Google Scholar
  6. 6.
    Culik, K. (1965).Axiomatic system for phrase structure grammars. Information and Control 8, 493–502CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Culik, K. (1974).Structured OL-systems. Lecture Notes in Computer Sci. 15, pp.216–229MathSciNetGoogle Scholar
  8. 8.
    Culik, K., Lindenmayer, A. (1974).Parallel rewriting on graphs and multidimensional development.Acta Informat. (to appear)Google Scholar
  9. 9.
    Doucet, P.G. (1975).On the applicability of L-systems in developmental biology(abstract). Conf.on Formal Languages, Automata and Development (Noordwijkerhout, The Netherlands)Google Scholar
  10. 10.
    Feldman, J. (1972).Some decidability results on grammatical inference and complexity. Information and Control 20, 244–262CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ginsburg, S., Rozenberg, G. (1975).TOL schemes and control sets. Information and Control 27, 109–125CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Greibach, S., Hopcroft, J. (1969).Scattered context grammars. J.Comput.System Sci.3.323–347MathSciNetGoogle Scholar
  13. 13.
    Griffiths, T.V. (1968).Some remarks on derivations in general rewriting systems. Information and Control 12, 27–54CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gross, M., Lentin, A. (1970).Introduction to Formal Grammars. Berlin-Heidelberg-New York: Springer-VerlagMATHGoogle Scholar
  15. 5.
    Herman, G.T., Rozenberg, G. (1975).Developmental Systems and Languages. Amsterdam:North-HollandMATHGoogle Scholar
  16. 6.
    Herman, G.T., Walker, A.D. (1972).The syntactic inference problem applied to biological systems.In: Machine Intelligence 7, pp.341–356. Edinburgh:Edinburgh University PressGoogle Scholar
  17. 17.
    Hogeweg, P., Hasper, B. (1974).A model study of biomorphological description. Pattern Recognition 6, 165–179CrossRefGoogle Scholar
  18. 18.
    Honda, H. (1971).Description of the form of trees by parameters of the tree-like body:effects of the branching angles and the branch length on the shape of the tree-like body. J.Theoret.Biol.31, 331CrossRefGoogle Scholar
  19. 19.
    Lindenmayer, A. (1968).Mathematical models for cellular interactions in development.I, II.J.Theoret.Biol.18, 280–315.CrossRefGoogle Scholar
  20. 20.
    Mayer, O. (1972).Some restrictive devices for context-free grammars. Information and Control 20, 69–92CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Mayoh, B.H. (1974).Multidimensional Lindenmayer organisms. Lecture Notes in Computer Sci.15, pp.302–326MathSciNetGoogle Scholar
  22. 22.
    Montanari, U.G. (1970).Separable graphs, planar graphs and web grammars. Information and Control l6, 243–267CrossRefMathSciNetGoogle Scholar
  23. 23.
    Nagl, M. (1975).Graph-Lindenmayer-systems and languages. Arbeitsberichte Inst.Mat.Maschinen 8, l6–63Google Scholar
  24. 24.
    Nielsen, M. (1975).EOL systems with control devices. Acta Informat. 4, 373–386CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Ohta, P.A. (1975). Mosaic grammars.Pattern Recognition 7, 61–65CrossRefMathSciNetGoogle Scholar
  26. 26.
    Paz, A. (1975).Multidimensional parallel-rewriting generating systems (abstract). Conf.on Formal Languages, Automata and Development (Noordwijkerhout, The Netherlands)Google Scholar
  27. 27.
    Penttonen, M. (1974).One-sided and two-sided context in formal grammars. Information and Control 25, 371–392CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Pfaltz, J.L., Rosenfeld, A. (1969).Web grammars.Proc.Intern.Joint Conf. on Artificial Intelligence, pp.609–619Google Scholar
  29. 29.
    Richardson, D. (1972).Tessellations with local transformations. J.Comput.System Sci.6, 373–388CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Rozenberg, G. (1974).Theory of L-systems from the point of view of formal language theory. Lecture Notes in Computer Sci.15, pp.1–23Google Scholar
  31. 31.
    Rozenberg, G. (1975). On OL-systems with restricted use of produetions. J.Comput.System Sci. (to appear)Google Scholar
  32. 32.
    Rozenberg, G., Lindenmayer, A. (1973). Developmental systems with locally catenative formulas. Acta Informat.2, 214–248CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Salomaa, A. (1975).Formal Languages. New York:Academic PressGoogle Scholar
  34. 34.
    Savitch, W.J. (1975).Some characterizations of Lindenmayer systems in terms of Chomsky-type grammars and stack machines. Information and Control 27, 37–60CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Schürger, K., Tautu, P. (1976).A Markovian configuration model for carcinogenesis.This volume Google Scholar
  36. 36.
    Smith III, A.R. (1971).Two-dimensional formal languages and pattern recognition by cellular automata.IEEE Conf.Record, 12th Annual Symp.on Switching and Automata Theory, pp.144–152Google Scholar
  37. 37.
    Walter, H. (1975).Topologies on formal languages. Math.Systems Theory 9, 142–158CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Walters, D.A. (1970).Deterministic context-sensitive languages.I, II. Information and Control 17, 14–61CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • P. Tautu
    • 1
  1. 1.Institute for Documentation, Information and StatisticsGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations