Skip to main content

Messungen an bewegten Objekten

  • Chapter
Technische Anwendungen des Lasers
  • 117 Accesses

Zusammenfassung

Optische Verfahren zur Bestimmung der Geschwindigkeit von festen Körpern, Flüssigkeiten oder Gasen haben gegenüber anderen Methoden zwei entscheidende Vorteile: Das Meßobjekt wird nicht gestört und das räumliche Auflösungsvermögen ist hoch. Ein gewisser Nachteil liegt darin, daß Flüssigkeiten und Gase streuende Teilchen enthalten müssen. Die notwendigen Teilchendichten und Teilchengrößen sind aber so gering, daß häufig die natürlich vorhandenen Verunreinigungen genügen, um ausreichende Signale zu erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Yeh, Y.; Cummins, H.Z.: Localized fluid flow measurements with a HeNe laser spectrometer. Appl. Phys. Letters 4 (1964) 176–178.

    Article  ADS  Google Scholar 

  2. Foreman, J.W.; George, E.W.; Letton, J.L.; Lewis, R.D.; Thorton, J.R.; Watson, H.J.: Fluid flow measurement with a laser Doppler velocimeter. IEEE J. Quant. Electron. QE-2 (1966) 260–266.

    Article  ADS  Google Scholar 

  3. Edwards, R. Y.; Angus, J. C.; French, M. J.: Spectral analysis of the signal from the laser Doppler flowmeter: Time independent systems. J. Appl. Phys 42 (1971) 837–850.

    Article  ADS  Google Scholar 

  4. Huffaker, R. M.: Laser Doppler detection systems for gas velocity measurement. Appl. Opt. 9 (1970) 1026–1039.

    Article  ADS  Google Scholar 

  5. v. Stein, H. D.; Pfeifer, H. J.: Investigation of the velocity relaxation of micronsized particles in shock waves using laser radiation. Appl. Opt. 11 (1972) 305–307.

    Article  ADS  Google Scholar 

  6. v. Stein, H. D.; Pfeifer, H. J.: A Doppler difference method for velocity- measurements. Metrologia 5 (1969) 59–61.

    Article  ADS  Google Scholar 

  7. Mayo, Jr., W. T.: Simplified laser Doppler velocimeter optics. J. Phys. E: Sci. Instr. 3 (1970) 235–237.

    Article  ADS  Google Scholar 

  8. Brayton, D. B.; Goethert, W. H.: A new dual-scatter laser Doppler-shift velocity measuring technique. ISA Trans. 10 (1971) 40–50.

    Google Scholar 

  9. Durst, F.; Whitelaw, J. H.: Optische Anemometer für lokale störungsfreie Geschwindigkeitsmessungen. Laser u. angew. Strahlenteehn. (1971) Nr. 3, 15–21.

    Google Scholar 

  10. Durst, F.; Whitelaw, J. H.: Integrated optical units for laser anemometry. J. Phys. E: Sci. Instr. 4 (1971) 804–808.

    Article  ADS  Google Scholar 

  11. Blake, K. A.; Jesperson, K. I.; Lynch, D.: A traversing laser velocimeter. Optics a. Laser Technol., Nov. 1971, 208–210.

    Google Scholar 

  12. Bremble, G. R.; Lalor, M. J.; Cleaver, J. W.: An experimental technique for the measurement of the speed of the rolling elements in a roller bearing; using a laser anemometer. Optics a. Laser Technol. Nov. 1971, 211–214.

    Google Scholar 

  13. Mazumder, M. K.; Wankum, D. L.: SNR and spectral broadening in turbulence; structure measurement using a cw laser. Appl. Opt. 9 (1970) 633–637.

    Article  ADS  Google Scholar 

  14. Blake, K. A.: Simple two-dimensional laser velocimeter optics. J. Phys. E:: Sei. Instr. 5 (1972) 623–624.

    Article  ADS  Google Scholar 

  15. Lennert, A. E.; Brayton, B.D.; Goethert, W. H.; Smith, F. H.: Laser applications for flow field diagnostics. Laser J., März/April (1970) 19–27.

    Google Scholar 

  16. Stevenson, W. H.: Optical frequency shifting by means of a rotating diffraction grating. Appl. Opt. 9 (1970) 649–652.

    Article  ADS  Google Scholar 

  17. Mazumder, M. K.: Laser Doppler velocity measurement without directional amibiguity by using frequency shifted incident beams. Appl. Phys. Letters 16 (1970) 462–464.

    Article  ADS  Google Scholar 

  18. Farmer, W. M.; Brayton, D. B.: Analysis of atmospheric laser Doppler velocimeters. Appl. Opt. 10 (1971) 2319–2324.

    Article  ADS  Google Scholar 

  19. Wilmshurst, T. H.; Greated, C. A.; Manning, R.: A laser fluid-flow velocimeter of wide dynamic range. J. Phys. E: Sci. Instr. 4 (1971) 81–85.

    Article  ADS  Google Scholar 

  20. Lennert, A. E.; Brayton, D. B.; Crosswy, F. L.; Goethert, W. H.; Kalb, H. T.: Laser Metrology. AGARD Lecture Series 49 (1971).

    Google Scholar 

  21. Pfeifer, H. J.; v. Stein, H. D.: An automatic data processing system for laser anemometers. IEEE Trans. Aerospace a. Electron. Syst. AES-8 (1972) 345–349.

    Google Scholar 

  22. Pike, E. R.: The application of photon correlation spectroscopy to laser Doppler measurements. J. Phys. D: Appl. Phys. 5 (1972) L23–L25.

    Article  ADS  Google Scholar 

  23. Pietri, G.; Nussli, J.: Entwurf und Eigenschaften moderner Photovervielfacher. Philips Techn. Rdsch. 29 (1968) 228–249.

    Google Scholar 

  24. Hercher, M.: The spherical mirror Fabry-Perot interferometer. Appl. Opt. T (1968) 951–966.

    Google Scholar 

  25. Jackson, D. A.; Paul, D. M.: Measurement of supersonic velocity and turbulence by laser anemometry. J. Phys. E: Sci. Instr. 4 (1971) 173–177.

    Article  ADS  Google Scholar 

  26. Pfeifer, H. J.; v. Stein, H. D.: A measuring technique to determine the turbulence degree in gas flows with a cw-laser. Opt. Commun. 3 (1971) 387–390.

    Article  ADS  Google Scholar 

  27. Morton, J. B.; Clark, W. H.: Measurements of two-point velocity correlations in a pipe flow using laser anemometers. J. Phys. E: Sci. Instr. 4 (1971) 809–814.

    Article  ADS  Google Scholar 

  28. Kulczyk, W. K.; Davis, Q. V.: Laser Doppler instrument for measurement of vibration of moving turbine blades. Proc. IEE 120 (1973) 1017–1023.

    Article  Google Scholar 

  29. v. Stein, H. D.; Rateau, P.; Schultze, G.; Koch, B.: New laser interferometry methods of measuring the velocity of high-speed model missiles. Radio and Electron. Engr. 40 (1970) 45–48.

    Google Scholar 

  30. Penney, C. M.: Differential Doppler velocity measurements. Appl. Phys. Letters 16 (1970) 167–169.

    Article  ADS  Google Scholar 

  31. Hansen, S.: Broadening of the measured frequency spectrum in a differential laser anemometer due to interference plane gradients. J. Phys. D: Appl. Phys. 6 (1973) 164–171.

    Article  ADS  Google Scholar 

  32. Eggins, P. L.; Jackson, D. A.: Laser Doppler velocity measurements in a supersonic flow without artificial seeding. Phys. Letters 42A (1972) 122–124.

    Article  ADS  Google Scholar 

  33. Bibliography of laser Doppler anemometry literature. Information Dep. DISA ELEKTRONIK A/S, DK-2730 Herlev, Danemark.

    Google Scholar 

  34. Drain, L. E.; Mors, B. C.: The frequency shifting of laser light by electrooptic techniques. Opto Electr. 4 (1972) 429–439.

    Article  Google Scholar 

  35. Nilsson, N. R.; Högberg, L. (Hrsg.): High-Speed Photography. Proc. of the 8th Internat. Congress, Stockholm. New York: Wiley 1968.

    Google Scholar 

  36. Hyzer, W. G.; Chace, W. G. (Hrsg.): Proc. of the 9th Internat. Congress on High-Speed Photography, Denver 1970. New York: SMPTE 1970.

    Google Scholar 

  37. 10ième Congrès International de Cinématographie Ultra-Rapide, Résumés. Nizza, Sept. 1972.

    Google Scholar 

  38. Sklizkov, G. V.: Laser applications for high-speed investigations of fast processes. AEC-tr-7166. Englische Übersetzung des Reports Nr. FIPNL-29, Akademiya Nauk SSSR, Moscow Institut Fiziki 1970.

    Google Scholar 

  39. Büehl, K.: Der Laser - eine Lichtquelle für die Kurzzeitphotographie. Laser u. Elektro-Optik 4 (1972) Nr. 2, 17–26.

    Google Scholar 

  40. Pohl, R. W.: Optik und Atomphysik. 12. Aufl. Berlin, Heidelberg, New York: Springer 1967.

    Google Scholar 

  41. Keilmann, F.: An infrared schlieren interferometer for measuring electron density profiles. Plasma Phys. 14 (1972) 111–122.

    Article  ADS  Google Scholar 

  42. Keilmann, F.; Renk, K. F.: Visual observation of submillimeter wave laser beams. Appl. Phys. Letters 18 (1971) 452–454.

    Article  ADS  Google Scholar 

  43. Hugenschmidt, M.; Vollrath, K.: Etude des phénomènes transitoires par un laser TEA-C02 associé à un detecteur à cristal liquide. Comptes Rendues Acad. Sei. Paris 274 (1972) 1221–1224.

    Google Scholar 

  44. Büehl, K.: Production of plasmas with a CO2 TEA laser from solid hydrogen targets. Inst. f. Plasmaphysik, Garching IPP IV /16 (1971).

    Google Scholar 

  45. Maydan, D.: A fast modulator for extraction of internal laser power. J. Appl. Phys. 41 (1970) 1552–1559.

    Article  ADS  Google Scholar 

  46. Datenblatt Modell 365 “Acousto-Optie Output Coupler”der Firma Spectra Physics, Mountain View, USA.

    Google Scholar 

  47. Rowlands, R. E.; Wentz, J. L.: A low-voltage Pockels cell having high-repetition rates and short exposure durations. In [3.36] 51–57.

    Google Scholar 

  48. Vollrath, K.; Hugenschmidt, M.: Photographische Untersuchung von Höchstgeschwindigkeitsprozessen im mehrfach reflektierten Laserlicht. Siehe [3.35] 284–288.

    Google Scholar 

  49. Gregor, E.; Davies, J. H.: Überlegungen zum Entwurf einer Holographieanlage im Nanosekundenbereich. Laser u. angew. Strahlenteehn. 2 (1970) H. 3, 73.

    Google Scholar 

  50. Brewster, J. L.; Charbonnier, F. M.; Barbour, J. P.; Grundhauser, F. J.: A new technique for ultra-bright nanosecond flash light generation. In [3.36] 303–309.

    Google Scholar 

  51. Lankford, J. L.: Application of laser and flash X-ray techniques in hyper- velocity ablation/erosion investigations in a hyperballistie range. In [3.36] 97–103.

    Google Scholar 

  52. Gates, J. W. C.; Hall, R. G. N.; Ross, I. N.: Repetitive Q-switched laser light source for interferometry and holography. In [3.35] 299–303.

    Google Scholar 

  53. Alcock, A. J.; Ramsden, S. A.: Two wavelength interferometry of a laser- induced spark in air. Appl. Phys. Letters 8 (1966) 187–188.

    Article  ADS  Google Scholar 

  54. Hugenschmidt, M.; Vollrath, K.: Interferometry of rapidly varying phase objects using the fundamental and the harmonic wavelengths of a ruby laser. In [3.36] 86–92.

    Google Scholar 

  55. Kogelschatz, U.; Schneider, W. R.: Quantitative schlieren techniques applied to high current arc investigations. Appl. Opt. 11 (1972) 1822–1832.

    Article  ADS  Google Scholar 

  56. Hertz, W.: Eine Mehrspurtrommelkamera mit Lichtleitbändern. Optik 29 (1969) 491–497.

    Google Scholar 

  57. Basov, N. G.; Krokhin, O. N.; Sklizkov, G. V.: Laser beam usage for highspeed photography. In [3.35] 272–274.

    Google Scholar 

  58. Stenzel, A.: Zwei Funkenzeitlupen für extreme Anforderungen. In [3.35] 153–156.

    Google Scholar 

  59. Automatische “high-speed”Photographie. Firmenschrift Impulsphysik GmbH.

    Google Scholar 

  60. Herriott, D. R.; Schulte, H. J.: Folded optical delay lines. Appl. Opt. 4 (1965) 883–889.

    Article  ADS  Google Scholar 

  61. Huston, A. E.: The Imacon image converter camera system. Proc. of the Electro-Optics’71 Internat. Conf. Brighton 1971, und Laser u. Elektro-Optik 5 (1972) Nr. 3, S. 70.

    Google Scholar 

  62. Hall, R. G. N.; Gates, J. W. C.; Ross, I. N.: Recording rapid sequences of holograms. J. Phys. E: Sci. Instr. 3 (1970) 789–791.

    Article  ADS  Google Scholar 

  63. Lowe, M. A.: A rotating mirror hologram camera. In [3.36] 25–29.

    Google Scholar 

  64. Novaro, M.; Isambert, J.-M.: Eine ultraschnelle holographische Kamera. Laser u. angew. Strahlentechn. 3 (1971) Nr. 4, S. 35–38.

    Google Scholar 

  65. Laviron, E.; Delmare, C.: Realization of an image converter with a 300 ps exposure time. In [3.36] 198–201.

    Google Scholar 

  66. Najim, M.; Matheau, J. C.; Lefeuvre, S.: Effet Kerr ultra-hertzien du sulfure de carbone. Opt. Commun. 5 (1972) 416–418.

    Article  ADS  Google Scholar 

  67. Duguay, M. A.; Hansen, J. W.: Ultrahigh-speed photography of picosecond light pulses. IEEE J. Quant. Electron. QE-7 (1971) 37–39.

    Google Scholar 

  68. Chabannes, F.: Mesure de la resolution temporelle des cameras a fente à l’aide de diodes laser puisées. In [3.35] 104–107.

    Google Scholar 

  69. Alcock, A. J.; Richardson, M. C.; Schelev, M. Ya.: The application of laser-triggered spark gaps to electrooptical image-converter cameras. In [3.36] 192–196.

    Google Scholar 

  70. Christie, R. H.: Photographic radar. J. Sei. Instr. 43 (1966) 524–527.

    Article  ADS  Google Scholar 

  71. Bossel, H. H.; Hiller, W. J.; Meier, G. E. A.: Self-aligning comparison beam methods for one-, two- and three-dimensional optical velocity measurements* J. Phys. E. Sci. Instr. 5 (1972) 893–896.

    Article  ADS  Google Scholar 

  72. Dändliker, R.; Iten, P. D.: Direction sensitive laser Doppler velocimeter with polarized beams. Appl. Opt. 13 (1974) 286–289.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag. Berlin/Heidelberg

About this chapter

Cite this chapter

Klement, E., Köpf, U. (1975). Messungen an bewegten Objekten. In: Technische Anwendungen des Lasers. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93030-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93030-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-93031-7

  • Online ISBN: 978-3-642-93030-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics