Messungen an bewegten Objekten

  • E. Klement
  • U. Köpf

Zusammenfassung

Optische Verfahren zur Bestimmung der Geschwindigkeit von festen Körpern, Flüssigkeiten oder Gasen haben gegenüber anderen Methoden zwei entscheidende Vorteile: Das Meßobjekt wird nicht gestört und das räumliche Auflösungsvermögen ist hoch. Ein gewisser Nachteil liegt darin, daß Flüssigkeiten und Gase streuende Teilchen enthalten müssen. Die notwendigen Teilchendichten und Teilchengrößen sind aber so gering, daß häufig die natürlich vorhandenen Verunreinigungen genügen, um ausreichende Signale zu erhalten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 3.1
    Yeh, Y.; Cummins, H.Z.: Localized fluid flow measurements with a HeNe laser spectrometer. Appl. Phys. Letters 4 (1964) 176–178.CrossRefADSGoogle Scholar
  2. 3.2
    Foreman, J.W.; George, E.W.; Letton, J.L.; Lewis, R.D.; Thorton, J.R.; Watson, H.J.: Fluid flow measurement with a laser Doppler velocimeter. IEEE J. Quant. Electron. QE-2 (1966) 260–266.CrossRefADSGoogle Scholar
  3. 3.3
    Edwards, R. Y.; Angus, J. C.; French, M. J.: Spectral analysis of the signal from the laser Doppler flowmeter: Time independent systems. J. Appl. Phys 42 (1971) 837–850.CrossRefADSGoogle Scholar
  4. 3.4
    Huffaker, R. M.: Laser Doppler detection systems for gas velocity measurement. Appl. Opt. 9 (1970) 1026–1039.CrossRefADSGoogle Scholar
  5. 3.5
    v. Stein, H. D.; Pfeifer, H. J.: Investigation of the velocity relaxation of micronsized particles in shock waves using laser radiation. Appl. Opt. 11 (1972) 305–307.CrossRefADSGoogle Scholar
  6. 3.6
    v. Stein, H. D.; Pfeifer, H. J.: A Doppler difference method for velocity- measurements. Metrologia 5 (1969) 59–61.CrossRefADSGoogle Scholar
  7. 3.7
    Mayo, Jr., W. T.: Simplified laser Doppler velocimeter optics. J. Phys. E: Sci. Instr. 3 (1970) 235–237.CrossRefADSGoogle Scholar
  8. 3.8
    Brayton, D. B.; Goethert, W. H.: A new dual-scatter laser Doppler-shift velocity measuring technique. ISA Trans. 10 (1971) 40–50.Google Scholar
  9. 3.9
    Durst, F.; Whitelaw, J. H.: Optische Anemometer für lokale störungsfreie Geschwindigkeitsmessungen. Laser u. angew. Strahlenteehn. (1971) Nr. 3, 15–21.Google Scholar
  10. 3.10
    Durst, F.; Whitelaw, J. H.: Integrated optical units for laser anemometry. J. Phys. E: Sci. Instr. 4 (1971) 804–808.CrossRefADSGoogle Scholar
  11. 3.11
    Blake, K. A.; Jesperson, K. I.; Lynch, D.: A traversing laser velocimeter. Optics a. Laser Technol., Nov. 1971, 208–210.Google Scholar
  12. 3.12
    Bremble, G. R.; Lalor, M. J.; Cleaver, J. W.: An experimental technique for the measurement of the speed of the rolling elements in a roller bearing; using a laser anemometer. Optics a. Laser Technol. Nov. 1971, 211–214.Google Scholar
  13. 3.13
    Mazumder, M. K.; Wankum, D. L.: SNR and spectral broadening in turbulence; structure measurement using a cw laser. Appl. Opt. 9 (1970) 633–637.CrossRefADSGoogle Scholar
  14. 3.14
    Blake, K. A.: Simple two-dimensional laser velocimeter optics. J. Phys. E:: Sei. Instr. 5 (1972) 623–624.CrossRefADSGoogle Scholar
  15. 3.15
    Lennert, A. E.; Brayton, B.D.; Goethert, W. H.; Smith, F. H.: Laser applications for flow field diagnostics. Laser J., März/April (1970) 19–27.Google Scholar
  16. 3.16
    Stevenson, W. H.: Optical frequency shifting by means of a rotating diffraction grating. Appl. Opt. 9 (1970) 649–652.CrossRefADSGoogle Scholar
  17. 3.17
    Mazumder, M. K.: Laser Doppler velocity measurement without directional amibiguity by using frequency shifted incident beams. Appl. Phys. Letters 16 (1970) 462–464.CrossRefADSGoogle Scholar
  18. 3.18
    Farmer, W. M.; Brayton, D. B.: Analysis of atmospheric laser Doppler velocimeters. Appl. Opt. 10 (1971) 2319–2324.CrossRefADSGoogle Scholar
  19. 3.19
    Wilmshurst, T. H.; Greated, C. A.; Manning, R.: A laser fluid-flow velocimeter of wide dynamic range. J. Phys. E: Sci. Instr. 4 (1971) 81–85.CrossRefADSGoogle Scholar
  20. 3.20
    Lennert, A. E.; Brayton, D. B.; Crosswy, F. L.; Goethert, W. H.; Kalb, H. T.: Laser Metrology. AGARD Lecture Series 49 (1971).Google Scholar
  21. 3.21
    Pfeifer, H. J.; v. Stein, H. D.: An automatic data processing system for laser anemometers. IEEE Trans. Aerospace a. Electron. Syst. AES-8 (1972) 345–349.Google Scholar
  22. 3.22
    Pike, E. R.: The application of photon correlation spectroscopy to laser Doppler measurements. J. Phys. D: Appl. Phys. 5 (1972) L23–L25.CrossRefADSGoogle Scholar
  23. 3.23
    Pietri, G.; Nussli, J.: Entwurf und Eigenschaften moderner Photovervielfacher. Philips Techn. Rdsch. 29 (1968) 228–249.Google Scholar
  24. 3.24
    Hercher, M.: The spherical mirror Fabry-Perot interferometer. Appl. Opt. T (1968) 951–966.Google Scholar
  25. 3.25
    Jackson, D. A.; Paul, D. M.: Measurement of supersonic velocity and turbulence by laser anemometry. J. Phys. E: Sci. Instr. 4 (1971) 173–177.CrossRefADSGoogle Scholar
  26. 3.26
    Pfeifer, H. J.; v. Stein, H. D.: A measuring technique to determine the turbulence degree in gas flows with a cw-laser. Opt. Commun. 3 (1971) 387–390.CrossRefADSGoogle Scholar
  27. 3.27
    Morton, J. B.; Clark, W. H.: Measurements of two-point velocity correlations in a pipe flow using laser anemometers. J. Phys. E: Sci. Instr. 4 (1971) 809–814.CrossRefADSGoogle Scholar
  28. 3.28
    Kulczyk, W. K.; Davis, Q. V.: Laser Doppler instrument for measurement of vibration of moving turbine blades. Proc. IEE 120 (1973) 1017–1023.CrossRefGoogle Scholar
  29. 3.29
    v. Stein, H. D.; Rateau, P.; Schultze, G.; Koch, B.: New laser interferometry methods of measuring the velocity of high-speed model missiles. Radio and Electron. Engr. 40 (1970) 45–48.Google Scholar
  30. 3.30
    Penney, C. M.: Differential Doppler velocity measurements. Appl. Phys. Letters 16 (1970) 167–169.CrossRefADSGoogle Scholar
  31. 3.31
    Hansen, S.: Broadening of the measured frequency spectrum in a differential laser anemometer due to interference plane gradients. J. Phys. D: Appl. Phys. 6 (1973) 164–171.CrossRefADSGoogle Scholar
  32. 3.32
    Eggins, P. L.; Jackson, D. A.: Laser Doppler velocity measurements in a supersonic flow without artificial seeding. Phys. Letters 42A (1972) 122–124.CrossRefADSGoogle Scholar
  33. 3.33
    Bibliography of laser Doppler anemometry literature. Information Dep. DISA ELEKTRONIK A/S, DK-2730 Herlev, Danemark.Google Scholar
  34. 3.34
    Drain, L. E.; Mors, B. C.: The frequency shifting of laser light by electrooptic techniques. Opto Electr. 4 (1972) 429–439.CrossRefGoogle Scholar
  35. 3.35
    Nilsson, N. R.; Högberg, L. (Hrsg.): High-Speed Photography. Proc. of the 8th Internat. Congress, Stockholm. New York: Wiley 1968.Google Scholar
  36. 3.36
    Hyzer, W. G.; Chace, W. G. (Hrsg.): Proc. of the 9th Internat. Congress on High-Speed Photography, Denver 1970. New York: SMPTE 1970.Google Scholar
  37. 3.37
    10ième Congrès International de Cinématographie Ultra-Rapide, Résumés. Nizza, Sept. 1972.Google Scholar
  38. 3.38
    Sklizkov, G. V.: Laser applications for high-speed investigations of fast processes. AEC-tr-7166. Englische Übersetzung des Reports Nr. FIPNL-29, Akademiya Nauk SSSR, Moscow Institut Fiziki 1970.Google Scholar
  39. 3.39
    Büehl, K.: Der Laser - eine Lichtquelle für die Kurzzeitphotographie. Laser u. Elektro-Optik 4 (1972) Nr. 2, 17–26.Google Scholar
  40. 3.40
    Pohl, R. W.: Optik und Atomphysik. 12. Aufl. Berlin, Heidelberg, New York: Springer 1967.Google Scholar
  41. 3.41
    Keilmann, F.: An infrared schlieren interferometer for measuring electron density profiles. Plasma Phys. 14 (1972) 111–122.CrossRefADSGoogle Scholar
  42. 3.42
    Keilmann, F.; Renk, K. F.: Visual observation of submillimeter wave laser beams. Appl. Phys. Letters 18 (1971) 452–454.CrossRefADSGoogle Scholar
  43. 3.43
    Hugenschmidt, M.; Vollrath, K.: Etude des phénomènes transitoires par un laser TEA-C02 associé à un detecteur à cristal liquide. Comptes Rendues Acad. Sei. Paris 274 (1972) 1221–1224.Google Scholar
  44. 3.44
    Büehl, K.: Production of plasmas with a CO2 TEA laser from solid hydrogen targets. Inst. f. Plasmaphysik, Garching IPP IV /16 (1971).Google Scholar
  45. 3.45
    Maydan, D.: A fast modulator for extraction of internal laser power. J. Appl. Phys. 41 (1970) 1552–1559.CrossRefADSGoogle Scholar
  46. 3.46
    Datenblatt Modell 365 “Acousto-Optie Output Coupler”der Firma Spectra Physics, Mountain View, USA.Google Scholar
  47. 3.47
    Rowlands, R. E.; Wentz, J. L.: A low-voltage Pockels cell having high-repetition rates and short exposure durations. In [3.36] 51–57.Google Scholar
  48. 3.48
    Vollrath, K.; Hugenschmidt, M.: Photographische Untersuchung von Höchstgeschwindigkeitsprozessen im mehrfach reflektierten Laserlicht. Siehe [3.35] 284–288.Google Scholar
  49. 3.49
    Gregor, E.; Davies, J. H.: Überlegungen zum Entwurf einer Holographieanlage im Nanosekundenbereich. Laser u. angew. Strahlenteehn. 2 (1970) H. 3, 73.Google Scholar
  50. 3.50
    Brewster, J. L.; Charbonnier, F. M.; Barbour, J. P.; Grundhauser, F. J.: A new technique for ultra-bright nanosecond flash light generation. In [3.36] 303–309.Google Scholar
  51. 3.51
    Lankford, J. L.: Application of laser and flash X-ray techniques in hyper- velocity ablation/erosion investigations in a hyperballistie range. In [3.36] 97–103.Google Scholar
  52. 3.52
    Gates, J. W. C.; Hall, R. G. N.; Ross, I. N.: Repetitive Q-switched laser light source for interferometry and holography. In [3.35] 299–303.Google Scholar
  53. 3.53
    Alcock, A. J.; Ramsden, S. A.: Two wavelength interferometry of a laser- induced spark in air. Appl. Phys. Letters 8 (1966) 187–188.CrossRefADSGoogle Scholar
  54. 3.54
    Hugenschmidt, M.; Vollrath, K.: Interferometry of rapidly varying phase objects using the fundamental and the harmonic wavelengths of a ruby laser. In [3.36] 86–92.Google Scholar
  55. 3.55
    Kogelschatz, U.; Schneider, W. R.: Quantitative schlieren techniques applied to high current arc investigations. Appl. Opt. 11 (1972) 1822–1832.CrossRefADSGoogle Scholar
  56. 3.56
    Hertz, W.: Eine Mehrspurtrommelkamera mit Lichtleitbändern. Optik 29 (1969) 491–497.Google Scholar
  57. 3.57
    Basov, N. G.; Krokhin, O. N.; Sklizkov, G. V.: Laser beam usage for highspeed photography. In [3.35] 272–274.Google Scholar
  58. 3.58
    Stenzel, A.: Zwei Funkenzeitlupen für extreme Anforderungen. In [3.35] 153–156.Google Scholar
  59. 3.59
    Automatische “high-speed”Photographie. Firmenschrift Impulsphysik GmbH.Google Scholar
  60. 3.60
    Herriott, D. R.; Schulte, H. J.: Folded optical delay lines. Appl. Opt. 4 (1965) 883–889.CrossRefADSGoogle Scholar
  61. 3.61
    Huston, A. E.: The Imacon image converter camera system. Proc. of the Electro-Optics’71 Internat. Conf. Brighton 1971, und Laser u. Elektro-Optik 5 (1972) Nr. 3, S. 70.Google Scholar
  62. 3.62
    Hall, R. G. N.; Gates, J. W. C.; Ross, I. N.: Recording rapid sequences of holograms. J. Phys. E: Sci. Instr. 3 (1970) 789–791.CrossRefADSGoogle Scholar
  63. 3.63
    Lowe, M. A.: A rotating mirror hologram camera. In [3.36] 25–29.Google Scholar
  64. 3.64
    Novaro, M.; Isambert, J.-M.: Eine ultraschnelle holographische Kamera. Laser u. angew. Strahlentechn. 3 (1971) Nr. 4, S. 35–38.Google Scholar
  65. 3.65
    Laviron, E.; Delmare, C.: Realization of an image converter with a 300 ps exposure time. In [3.36] 198–201.Google Scholar
  66. 3.66
    Najim, M.; Matheau, J. C.; Lefeuvre, S.: Effet Kerr ultra-hertzien du sulfure de carbone. Opt. Commun. 5 (1972) 416–418.CrossRefADSGoogle Scholar
  67. 3.67
    Duguay, M. A.; Hansen, J. W.: Ultrahigh-speed photography of picosecond light pulses. IEEE J. Quant. Electron. QE-7 (1971) 37–39.Google Scholar
  68. 3.68
    Chabannes, F.: Mesure de la resolution temporelle des cameras a fente à l’aide de diodes laser puisées. In [3.35] 104–107.Google Scholar
  69. 3.69
    Alcock, A. J.; Richardson, M. C.; Schelev, M. Ya.: The application of laser-triggered spark gaps to electrooptical image-converter cameras. In [3.36] 192–196.Google Scholar
  70. 3.70
    Christie, R. H.: Photographic radar. J. Sei. Instr. 43 (1966) 524–527.CrossRefADSGoogle Scholar
  71. 3.71
    Bossel, H. H.; Hiller, W. J.; Meier, G. E. A.: Self-aligning comparison beam methods for one-, two- and three-dimensional optical velocity measurements* J. Phys. E. Sci. Instr. 5 (1972) 893–896.CrossRefADSGoogle Scholar
  72. 3.72
    Dändliker, R.; Iten, P. D.: Direction sensitive laser Doppler velocimeter with polarized beams. Appl. Opt. 13 (1974) 286–289.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag. Berlin/Heidelberg 1975

Authors and Affiliations

  • E. Klement
  • U. Köpf

There are no affiliations available

Personalised recommendations