Skip to main content

Summary

A I. For the radon and thoron decay products, the main sources of natural radioactivity in the atmosphere, natural aerosols act as carriers. The main features of these aerosols are discussed, especially the size distribution and concentration under various geographical conditions, including some data on chemical composition and distribution with altitude. Several processes, predomi-nantly those connected with the formation and evaporation of cloud droplets, will modify the size distributions by growth of individual particles.

A II. The decay products of radon and thoron, RaA and ThA are atoms, which readily become molecular clusters (primary particles) similar to small ions and then in turn become attached to the aerosols (secondary particles). The theory of Smoluchowsky can be applied to this process of attachment and various parameters, such as the half live time of primary particles, the activity ratio of primary to secondary particles and the activity distribution with particle size can be calculated. The agreement with the data available in literature is fair and indicates that the presented model is a good approximation. For longer lived decay products, the removal of aerosols from the atmosphere has to be incorporated in the calculations. Data on the atmospheric residence time of aerosols obtained by the use of radon decay products are critically reviewed.

B. Similar to the decay products of the emanations, the isotopes induced by cosmic radiation can only exist as particles. New data on stratospheric aerosols allows similar calculations as for the radon decay products. It is concluded that most of the isotopes must be attached to particles between 0.02 and 0.2 microns and that the half live of the primary particles is of the order of hours as compared to fractions of a minute in the troposphere.

CI. The structure and chemical composition of close in fallout particles of atomic tests depends considerably on the type of test, i.e., if it is a ground, tower, water or air burst. If no surface material enters the fireball, the particles are formed by condensation and consist of iron oxide with the activity uniformly distributed within them. Surface or tower material may only partly be evaporated or melted, and the result is a variety of particles with the activity primarily deposited on the surface.

CII. The particles of medium range fallout can be characterized by the fact that they are small enough to be carried over large parts of the globe in the first few months after tests, but still large enough to fall out primarily by sedimentation. Activities up to 10−9 C are observed in these “hot” particles, which at times may represent a considerable fraction of the activity in air. Their activity is roughly proportional to their volume and they form only the tail of a size distribution which extends to much smaller particles and represents already part of the long range fallout.

CII. The long range fallout particles are so small that they behave like a gas with respect to meteorological processes. They have residence times in the stratosphere of about a year and are removed from the troposphere primarily by precipitation. The few measurements available from the stratosphere indicate average sizes of a few hundred microns to the tenth of a micron range. After penetration into the troposphere these particles are modified in their size, composition and structure by the same processes which influence the natural aerosols.

CIV. A problem of special interest in the area of reactor aerosols is the absorption of radioactive gases on aerosols. This phenomenon was studied in more detail for Iodine 131, which was released in considerable quantities at the Windscale accident. It appears that absorption of Iodine on aerosols becomes important, when its concentration by weight is about 10−3 the concentration of the aerosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schrifttum

  • Adams, C.E., N.H. Farlow and W.R. Schell: Compositions, structure and origins of radio- active fallout particles. U.S. Naval Radiological Defense Laboratory Technical Report, USNRDL-TR-209 (1958).

    Google Scholar 

  • Anderson, A.D.: A theory for close-in fallout. U.S. Naval Radiological Defense Laboratory Technical Report, USNRDL-TR-249, 1–55 (1958).

    Google Scholar 

  • Aron, A., U. B. Gross: Eine Beobachtung über die von Kernbombenversuchen herrührende Radioaktivität der Luft. Z. Naturforsch. 12a, 944–945 (1957).

    ADS  Google Scholar 

  • Blifford I.H., L.B. Lockhart and H.B. Rosenstock: On the natural radioactivity in the air. J. Geophys. Res. 57, 499–509 (1952).

    Article  ADS  Google Scholar 

  • Brewer, A.W.: Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Quart. J. Roy.Meteor. Soc. 75, 351–363 (1949).

    Article  ADS  Google Scholar 

  • Bullrich, K.: Streulichtmessungen in Dunst und Nebel. Meteor. Rdsch. 13, 21–29 (1960).

    Google Scholar 

  • Burton, W.M., and N. G. Stewart: Use of long-lived natural radioactivity as an atmospheric tracer. Nature, Lond. 186, 584–589 (1960).

    Article  ADS  Google Scholar 

  • Chamberlain, A.C.: Deposition of iodine-131 in northern England in October 1957. Quart. J. Roy. Meteor. Soc. 85, 350–361 (1959).

    Article  ADS  Google Scholar 

  • Chamberlain, A. C., and M.T. Dunster: Deposition of radioactivity in north-west England from the accident at onidscale. Nature, Lond. 182, 629–630 (1958).

    Article  ADS  Google Scholar 

  • Chamberlain, A. C and E.D. Dyson: The dose to the trachea and bronchi from the decay products of radon and thoron. Brit. J. Radiol. 29, 317–325 (1956).

    Article  Google Scholar 

  • Chamberlain A. C, W. J. Megaw and R.D. Wiffen: Role of condensation nuclei as carriers of radioactive particles. Geofis. pura e appi. 36, 233–242 (1957).

    Article  ADS  Google Scholar 

  • Chamberlain, A. C and R.D. Wiffen: Some observations on the behaviour of radio-iodine vapour in the atmosphere. Geofis. pura e appi. 42, 42–48 (1959)•

    Google Scholar 

  • Chambers L.A., J.F.Milton and C.E. Cholak: A comparison of particulate loadings in the atmospheres of certain American cities. Paper presented at the Third National Air Pollution Symposium, Pasadena, California 1955

    Google Scholar 

  • Chambers, L.A., E.C. Tabor and M.J. Foter: The characteristics and distributions of organic substances in the air of some American cities. Paper presented at 48th Annual Meeting of the Air Pollution Control Association, Detroit, Michigan 1955

    Google Scholar 

  • Chan, H. K.: Activity-size relationship of fallout particles from two shots, operation redwing. U.S. Naval Radiological Defense Lab. Technical Report, USNRDL-TR-314, 1–71 (1959).

    Google Scholar 

  • Dobson, G. M. B.: Origin and distribution of the polyatomic molecules in the atmosphere. Proc. Roy. Soc. Lond. A 236, 187–193 (1956).

    Article  ADS  Google Scholar 

  • Facy, L.: La capture des noyaux de condensation par choes moléculaires air cours des pro-cessus de condensation. Arch. Meteor. Geophys. u. Bioklim. A 8, 229–236 (1955).

    Article  Google Scholar 

  • Friedlander, S. K.: On the particle size spectrum of atmospheric aerosols. Paper submitted to the J. Meteorology I960.

    Google Scholar 

  • Georgii, H. W.: Ein Beitrag zum Größenverteilungsgesetz des atmosphärischen Aerosols über dem Kontinent. Meteor. Rdsch. 11, 33–34 (1958).

    Google Scholar 

  • Goel, P. S., N. Narasappaya, C. Prabhakara, Thor RAMA, and P. K. Zutshi: Study of cosmic ray produced short-lived isotopes P32, P33, Be7, and S35: in tropical latitudes. Tellus 11, 91–100 (1959).

    Article  ADS  Google Scholar 

  • Haxel, O., u. G.Schumann: Selbstreinigung der Atmosphäre. Z. Physik 142, 127–132 (1955).

    Article  ADS  Google Scholar 

  • Israël, H.: Radioactivity of the atmosphere. Compendium of meteorology. Amer. Met. Soc. 1951, P-155–161.

    Google Scholar 

  • Jacobi, W., A. Schraub, K. Aurand U. H. Muth: Über das Verhalten der Zerfallsprodukte des Radons in der Atmosphäre. Beitr. Phys. Atmosph. 31, 244–257 (1959).

    Google Scholar 

  • Jones, S.: Persönliche Mitteilung I960.

    Google Scholar 

  • Junge, C.E.: Austausch und großräumige Vertikalverteilung von Luftbeimengungen. Ann. Meteor. 380–392 (1952).

    Google Scholar 

  • Junge, C.E.: The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J. Meteorology 12, 13–25 (1955)

    Article  Google Scholar 

  • Junge, C.E.: Remarks about the size distribution of natural aerosols. In: Artificial stimulation of rain. New York: Pergamon Press 1957.

    Google Scholar 

  • Junge, C.E.: Recent investigations in air chemistry. Tellus 8, 127–139 (1956).

    Article  ADS  Google Scholar 

  • Junge, C.E.: Air chemistry. Adv. Geophys. 4, 1–109 (1958).

    Article  ADS  Google Scholar 

  • Junge, C.E.: Sulfur in the atmosphere. J. Geophys. Res. 65, 227–237 (I960).

    Google Scholar 

  • Junge, C.E.: C.W. Chagnon and J.E. Manson: Stratospheric aerosols. J. Meteorology (in Press I960).

    Google Scholar 

  • Junge, C.E.:, and J.E. Manson: Unpublished I960.

    Google Scholar 

  • Kalkstein, M.I., P.J. Drevinsky, E.A. Martell, C.W. Chagnon, J.E. Manson and C.E. JUNGE: Natural aerosols and nuclear debris studies, progress report II. GRD Research Notes No. 24, Geophysics Research Directorate, AF Cambridge Research Center, 1–36, Nov. 1959.

    Google Scholar 

  • Keefe, D., P.J.Nolan and T.A.Rich: Charge equilibrium in aerosols according to the Boltzmann law. Proc. Roy. Ir. Acad., Sect. A 60, No. 4, 27–450 (1959).

    Google Scholar 

  • Kientzler, C.F., A.B. Arons, D.C.Blanchard and A. H. Woodcock: Photographic investigation of the projection of droplets by bubbles bursting at a water surface. Tellus 6, 1–7 (1954).

    Article  ADS  Google Scholar 

  • King, P., L.B. Lockhart, R.A. Baus, R.L. Patterson, H. Friedman and J.H. Blifford: RaD, RaE, and Po in the atmosphere. Nucleonics 14, 78–84 (1956).

    Google Scholar 

  • Kumai, M.: Electron-microscope study of snow-crystal nuclei. J. Meteorology 8, 151 (1951)

    Article  Google Scholar 

  • Lal, D.: Cosmic ray produced radioisotopes for studying the general circulation in the atmos-phere. Indian J. Meteor, and Geophys. 10, 147–154 (1959).

    Google Scholar 

  • Lal D., P. K. Malhorta and B. Peters: On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmosph. Terr. Phys. 12, 306–328 (1958).

    Article  Google Scholar 

  • Lassen, L.: Die Anlagerung von Zerfallsprodukten der natürlichen Emanation an elektrisch geladene Aerosole (Schwebstoffe). Z. Physik 163, 363–376 (1961).

    Article  ADS  Google Scholar 

  • Lassen, L., U. G. Rau: Die Anlagerung radioaktiver Atome an Aerosole (Schwebstoffe). Z. Physik 160, 504–519 (1960).

    Article  ADS  Google Scholar 

  • Lassen, L., u. H. Weicksel: Die Anlagerung radioaktiver Atome an Aerosole (Schwebstoffe) im Größenbereich 0,7–5 f (Radius). Z. Physik 161, 339–345 (1961).

    Article  ADS  Google Scholar 

  • Lehmann, L., U. A. Sittkus: Bestimmung von Aerosolverweilzeiten aus dem RaD und RaF- Gehalt der atmosphärischen Luft und des Niederschlages. Naturwissenschaften 46, 9–10 (1959).

    Article  ADS  Google Scholar 

  • Lodge, J.P., J.E. Mcdonald and F. Baer: An investigation of the Melander effect. J. Meteorology 11, 318–322 (1954).

    Article  Google Scholar 

  • Machta, L.: Symposium über Luftchemie und Radioaktivität, Helsinki, Aug. I960.

    Google Scholar 

  • Machta, L. and H.F. Lucas jr.: Radon in the upper atmosphere. Science 135, 296–299 (1962).

    Article  ADS  Google Scholar 

  • Mason, B. J.: Bursting of air bubbles at the surface of sea water. Nature, Lond. 174, 470–471 (1954).

    Article  ADS  Google Scholar 

  • Mason, B. J.: The oceans as source of cloud-forming nuclei. Geofis. pura e appl. 36, 148–155 (1957).

    Article  ADS  Google Scholar 

  • May, R., U. H. Schneider: Verteilung der künstlichen Radioaktivität in Staubproben undRegenwasserrückständen. Atomkernenergie 4, 28–29 (1959).

    Google Scholar 

  • Metnieks, A. L.: The size spectrum of large and giant sea-salt nuclei under maritime conditions. Geophys. Bull. No. 15, School of Cosmic Physics, Dublin, 1–50 (1958).

    Google Scholar 

  • Mordy, W. A.: Computations of the growth by condensation of a population of cloud droplets Tellus 11, 16–44 (1959).

    Google Scholar 

  • Penndorf, R.: The vertical distribution of Mie particles in the troposphere. Geophysics Research Papers, No. 25, Geophysics Research Directorate, AF Cambridge Research Center 1954.

    Google Scholar 

  • Robbins, R.C., R.D. Cadle and D.L.Eckhardt: The conversion of sodium chloride to hydrogen chloride in the atmosphere. J. Meteorology 16, 53–56 (1959).

    Article  Google Scholar 

  • Rosinski, J., and J. Stockham: Preliminary studies of scavenging systems related to radioactive fallout. Summary Report ARF 3127–12, Armour Research Foundation, Chicago, 111. 1–51 (I960).

    Google Scholar 

  • Sagalyn, R.C., and G.A. Faucher: Aircraft investigation of the large ion content and conductivity of the atmosphere and their relation to meteorological factors. J. Atmosph. Terr. Phys. 5, 253–272 (1954).

    Article  Google Scholar 

  • Schumann, G.: Untersuchungen der Radioaktivität der Atmosphäre mit der Filtermethode. Arch. Meteor. Geophys. u. Bioklim. A 9, 204–223 (1956).

    Article  Google Scholar 

  • Sisefsky, J.: A method for photographic identification of microscopical radioactive particles. Brit. J. Appl. Phys. 10, 526–529 (1959)

    Article  ADS  Google Scholar 

  • Sisefsky, J.: Autoradiographic and microscopic examination of nuclear-weapon debris particles. Fors- varets Forskningsaustalt, Stockholm, FOA 4 Rapport A 4130–456, 1–37 (I960).

    Google Scholar 

  • Stern, S.: The sampling of radioactive debris in the stratosphere. Paper presented at the A.M.S. Symposium on Stratospheric Meteorology, Minneapolis, Minnesota, July 1959.

    Google Scholar 

  • Stewart, K.: The condensation of a vapour to an assembly of droplets or particles (with particular reference to atomic explosion debris). Trans. Faraday Soc. 52, 161–173 (1956).

    Article  Google Scholar 

  • Stewart, N.G., R.N. Crooks and E.M.R. Fisher: The radiological dose to persons in the U.K. due to debris from nuclear test explosions. Report for the M.R.P. Committee on the medical aspects of nuclear radiation. A.E.R.E., Harwell, 1–22, June 1955.

    Google Scholar 

  • Strahlenschutz Nr. 12, Schriftenreihe des Bundesministeriums für Atomkernenergie und Wasserwirtschaft, S. 1–204. Braunschweig: Gersbach & Sohn 1959.

    Google Scholar 

  • Sumi, L., A. Corkery and J.L. Moukman: Calcium sulfate content of urban air. In: Atmospheric chemistry of chlorine and sulfur compounds. J. P. LODGE ed. American Geophysical Union No. 652, 69–80 (1959).

    Google Scholar 

  • Turner, J.S.: The salinity of rainfall as a function of drop size. Quart. J. Roy. Meteor. Soc. 81, 418–429 (1955).

    Article  ADS  Google Scholar 

  • Twomey, S., and K.N. Mcmaster: The production of condensation nuclei by crystallizing salt particles. Tellus 7, 458–461 (1955).

    Article  ADS  Google Scholar 

  • Volz, F.: Die Optik und Meteorologie der atmosphärischen Trübung. Ber. dtsch. Wetterd. US-Zone, No. 13, 2, 1–47 (1954).

    Google Scholar 

  • Wasson, J.: Persönliche Mitteilung I960.

    Google Scholar 

  • Wexler, H., L. Macuta, D.H.Pack and F.D. White: Atomic energy and meteorology. Intern. Conference Atomic Energy, vol. 13, p. 333–344 (1956).

    Google Scholar 

  • Whytlaw-Gray, R., and M.S.Patterson: Smoke: A study of aerial disperse systems. London: E. Arnold & Co. 1932.

    Google Scholar 

  • Wigand, A.: Die vertikale Verteilung der Kondensationskerne in der freien Atmosphäre. Ann. Phys. 59, 689 - 742 (1919).

    Article  Google Scholar 

  • Wilkening, M.H.: Natural radioactivity as a tracer in the sorting of aerosols according to mobility. Rev. Sei. Instrum. 23, 13–16 (1952).

    Article  ADS  Google Scholar 

  • Woodcock, A.H.: Salt nuclei in marine air as a function of altitude and wind force. J. Meteorology 10, 362–371 (1953).

    Article  Google Scholar 

  • Zebel, G.: Zur Theorie der Koagulation elektrisch ungeladener Teilchen. Kolloid-Z. 156, 102–107 (1958).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer- Verlag OHG / Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Junge, C.E. (1962). Radioaktive Aerosole. In: Israël, H., Krebs, A. (eds) Nuclear Radiation in Geophysics / Kernstrahlung in der Geophysik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-92837-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-92837-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49046-0

  • Online ISBN: 978-3-642-92837-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics