Advertisement

Erzeugung radioaktiver Kernarten durch die kosmische Strahlung

Chapter
  • 35 Downloads

Summary

Radioactive nuclides are produced by cosmic radiation in the atmosphere, the hydrosphere and the lithosphere. The present knowledge mainly refers to production in the atmosphere and in meteorites. The most efficient nuclear reactions inducing radioactivity are the spallations of the constituents of the atmosphere or of iron in the case of meteorites. There is only one important exception: thermal neutron capture by nitrogen bringing forth C14. —The production of radioactive nuclides strongly depends on altitude and geomagnetic latitude according to the behaviour of the nucleonic or star-producing component of cosmic radiation. The intensity of the cosmic radiation may vary considerably during short periods. Its mean value appears to have been constant within a factor of 2 for millions of years and to have altered not much more during the last 109 years as indicated by observations on long-lived radioactive species in meteorites. —The C14 produced in the atmosphere is distributed over the biosphere and the ocean also. A steady-state model gives a good approximation for the reservoirs and the exchange times. The natural concentration of C14 is diluted by “old” CO2 due to industrial combustion and enlarged by additional production due to nuclear weapon tests. C14 measurements have proved to be a valuable tool for studying atmospheric and oceanic transport phenomena and ground water problems. —Be7 and Be10 are spallation products of nitrogen. Be7 is easily detected in atmospheric air and precipitation. Be10 was observed in deep-sea cores. Numerous nuclides are produced by spallation of argon. Up to now Na22, Si32, P32, P33, S35, CI36, CI39 were detected. There is a certain contribution from weapon tests to S35 and a very large one to CI36. Short-lived nuclides reaching ground-level are mainly produced in the troposphere. Their concentrations can be used to calculate storage times. —The natural tritium production is not known too well. Only very few measurements were made before the start of artificial production by weapon tests which was higher by orders of magnitude. Some investigations with Greenland ice were carried out back to 1944. The fluctuations of the atmospheric tritium content in recent years cannot be explained without doubt as yet. Tritium has been used for hydrological studies. To construct a model for the world-wide distribution similar to that for C14 is still unfeasible. —Production of radioactive nuclides in the terrestrial lithosphere was detected only in high altitude. Many radioactive substances have been found in the meteorites which were exposed to a rather intense and energetic cosmic radiation for a long time. With recent falls short-lived activities down to 16 days half-life have been observed. The investigations are useful to study possible variations of cosmic radiation in time and space. Regarding space too few measurements are available at present.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Anders, E.: The record in the meteorites. II. On the presence of aluminium-26 in meteorites and tektites. Geochim. et Cosmochim. Acta 19, 53–62 (1960).Google Scholar
  2. Anderson, E. C.: The production and distribution of natural radiocarbon. Annual Rev. Nucl. Sei. 2, 63–78 (1953).Google Scholar
  3. Anders E., W. F. Libby, S. Weinhouse, A. F. Reid, A. D. Kirshenbaum and A. V. Grosse: Natural radiocarbon from cosmic radiation. Phys. Rev. 72, 931–936 (1947).ADSCrossRefGoogle Scholar
  4. Arnold, J. R.: Beryllium-10 produced by cosmic rays. Science 124, 584–585 (1956).ADSCrossRefGoogle Scholar
  5. Arnold, J. R. and H. A. Al-Salih: Beryllium-7 produced by cosmic rays. Science 121, 451–453 (1955).ADSCrossRefGoogle Scholar
  6. Arnold, J. R and E. C. Anderson: The distribution of C-14 in nature. Tellus 9, 28–32 (1957).ADSCrossRefGoogle Scholar
  7. Arnold, J. R, M. Honda and D. Lal: The record of cosmic ray intensity in the meteorites. (Im Druck.) Baker, E., G. Friedlander and J. Hudis: Formation of Be7 in interactions of various nuclei with high-energy protons. Phys. Rev. 112, 1319–1321 (1958).Google Scholar
  8. Batzel, R. E., D. R. Miller and G. T. Seaborg: The high energy spallation products of copper. Phys. Rev. 84, 671–683 (1951).ADSCrossRefGoogle Scholar
  9. Begemann, F.: Neubestimmung der natürlichen irdischen Tritiumzerfallsrate und die Frage der Herkunft des,,natürlichen Tritium. Z. Naturforsch. 14a, 334–342 (1959).ADSGoogle Scholar
  10. Begemann, F., P. Eberhardt U. D. C. Hess: He-3-H-3-Strahlungsalter eines Steinmeteoriten. Z. Natur-forsch. 14a, 500–503 (1959).ADSGoogle Scholar
  11. Begemann, F. and J. Friedman: Tritium and deuterium content of atmospheric hydrogen. Z. Natur-forsch. 14a, 1024–1031 (1959).ADSGoogle Scholar
  12. Begemann, F. J. Geiss and D. C. Hess: Radiation age of a meteorite from cosmic-ray-produced He-3 and H-3. Phys. Rev. 107, 540–542 (1957).ADSCrossRefGoogle Scholar
  13. Begemann, F., and W. F. Libby: Continental water balance, ground water inventory and storage time, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim. et Cosmochim. Acta 12, 277–296 (1957).Google Scholar
  14. Benioff, P. A.: (L) Cosmic-ray production rate and mean removal time of beryllium-7 from the atmosphere. Phys. Rev. 104, 1122–1130 (1956).ADSCrossRefGoogle Scholar
  15. Begemann, F. (2) Nuclear reactions of low-Z elements with 5. 7 BeV protons. Phys. Rev. 119, 316–323 (I960).Google Scholar
  16. Bien, G. S., N. W. Rakestraw and H. E. SUESS: Radiocarbon concentration in Pacific Ocean water. Tellus 12, 436–443 (I960).Google Scholar
  17. Boggild, J. K., and F. H. Tenney: Neutron stars in oxygen, neon and argon. Phys. Rev. 82, 307 (1951).Google Scholar
  18. Bolin, B.: (1) On the use of tritium as a tracer for water in nature. 2nd Conf. Atomic Energy Geneva, Proc. 18, pp. 336–343 (1958).Google Scholar
  19. Bolin, B.: (2) Atmospheric chemistry and broad geophysical relationships. Proc. nat. Acad. Sei. Wash. 45, 1663–1672 (1959).CrossRefGoogle Scholar
  20. Bolin, B.: (3) On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12, 274–281 (I960).Google Scholar
  21. Bolin, B. and E. Eriksson: Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion. Rossby Memorial Volume. New York: Rockefeller Institute Press 1959.Google Scholar
  22. Brinkmann, R., K. O. Münnich U. J. C. Vogel: Anwendung der C-14-Methode auf Bodenbildung und Grundwasserkreislauf. Geol. Rdsch. 49 (l), 244–253 (I960).Google Scholar
  23. Broecker, W. S., R. D. Gerard, M. Ewing and B. C. Heezen: Natural radiocarbon in the Atlantic Ozean. J. Geophys. Res. 65, 2903–2931 (1960).ADSCrossRefGoogle Scholar
  24. Broecker, W. S. and E. A. Olson: Radiocarbon from nuclear tests. II. Science 132, 712–721 (I960).Google Scholar
  25. Broecker, W. S. and A. Walton: Radiocarbon from nuclear tests. Science 130, 309–314 (1959).ADSCrossRefGoogle Scholar
  26. Brown, H.: The carbon cycle in nature. Fortschr. Chemie org. Naturstoffe 14, 317–333 (1957).Google Scholar
  27. Brown, R. M., and W. E. Grummit: The determination of tritium in natural waters. Canad. J. Chem. 34, 220–226 (1956).CrossRefGoogle Scholar
  28. Brown, W. W.: Cosmic-ray nuclear interactions in gases. Phys. Rev. 93, 528–534 (1954).ADSCrossRefGoogle Scholar
  29. Bullock, F. W.: Nuclear disintegrations produced by cosmic ray particles in a high pressure cloud chamber. Proc. Phys. Soc. Lond. A 70, 134–141 (1957).ADSCrossRefGoogle Scholar
  30. Buttlar, H. V., and W. F. Libby: Natural distribution of cosmic-ray produced tritium. II. J. Inorg. and Nucl. Chem. 1, 75–91 (1955).CrossRefGoogle Scholar
  31. Buttlar, H. V., and J. WENDT: Ground water studies in New Mexico using tritium as a tracer. 2nd Conf. Atomic Energy Geneva, Proc. 18, pp. 591–597 (1958).Google Scholar
  32. Coon, J. H., and R. A. Nobles: Disintegration of He-3 and N-14 by thermal neutrons. Phys. Rev. 75, 1358–1361 (1949).ADSCrossRefGoogle Scholar
  33. Craig, H.: (1) The natural distribution of radiocarbon and the exchange time of carbondioxide between the atmosphere and sea. Tellus 9, 1–17 (1957).ADSCrossRefGoogle Scholar
  34. Craig, H.: (2) Distribution, production rate, and possible solar origin of natural tritium. Phys. Rev. 105, 1125–1127 (1957).ADSCrossRefGoogle Scholar
  35. Craig, H.: (3) Isotopic tracer techniques for measurement of physical processes in the sea and the atmosphere. Nat. Acad. Sei. — Nat. Res. Council Publ. No. 551, 103–120 (1957).Google Scholar
  36. Craig, H.: (4) A critical evaluation of mixing rates in ocean and atmosphere by use of radiocarbon techniques. 2nd Conf. Atomic Energy Geneva, Proc. 18, pp. 358–363 (1958).Google Scholar
  37. Craig, H.:, and D. LAL: The production rate of natural tritium. Tellus 13, 85–105 (1961).ADSCrossRefGoogle Scholar
  38. Cruikshank, A. J., G. Cowper and W. E. Grummit: Production of Be-7 in the atmosphere. Canad. J. Chem. 34, 214–219 (1956).CrossRefGoogle Scholar
  39. Currie, L. A.: Tritium production by 6 BeV-protons. Phys. Rev. 114, 878 —880 (1959).Google Scholar
  40. Currie, L. A., W. F. Libby and R. L. Wolfgang: Tritium production by high-energy protons. Phys. Rev. 101, 1557 (1956).ADSCrossRefGoogle Scholar
  41. Davis, R., and O. A. Schaeffer: Chlorine-36 in nature. Brookhaven Nat. Lab. BNL 340 (T-59), June 1955. Ann. New York Acad. Sei. 62, 105–121 (1955).Google Scholar
  42. Dickson, J. M., and T. C. Randle: The excitation function for the production of Be-7 by the bombardment of C-12 by protons. Proc. Phys. Soc. Lond. A 64, 902–905 (1951).ADSCrossRefGoogle Scholar
  43. Dilla, M. A. Van, J. R. Arnold and E. C. Anderson: Spectrometric measurement of natural and cosmic-ray induced radioactivity in meteorites. Geochim. et Cosmochim. Acta 20, 115–121 (I960).Google Scholar
  44. Faltings, V., u. P. Harteck: Der Tritiumgehalt der Atmosphäre. Z. Naturforsch. 5a, 438–439 (1950).ADSGoogle Scholar
  45. Fergusson, G. A., J. Halpern, R. Nathans and P. F. Yergin: Photoneutron cross sections in He, N, O, F, Ne, and A. Phys. Rev. 95, 776–780 (1954).ADSCrossRefGoogle Scholar
  46. Fergusson, G. J.: Reduction of atmospheric radiocarbon concentration by fossil fuel carbon dioxide and the mean life of carbon dioxide in the atmosphere. Proc. Roy. Soc. Lond. A 243, 561–574 (1958).ADSCrossRefGoogle Scholar
  47. Fireman, E. L.: (1) Measurement on the (n, H-3) cross section in nitrogen and its relationship to the tritium production in the atmosphere. Phys. Rev. 91, 922–926 (1953).ADSCrossRefGoogle Scholar
  48. Fireman, E. L.: (2) Tritium production by 2,2-BeV-protons on iron and its relation to cosmic radiation. Phys. Rev. 97, 1303–1304 (1955).ADSCrossRefGoogle Scholar
  49. Fireman, E. L.: (3) Argon-39 in the Sikhote-Alin meteorite fall. Nature, Lond. 181, 1613 - 1614 (1958).ADSCrossRefGoogle Scholar
  50. Fireman, E. L.: (4) The distribution of Helium-3 in the grant meteorite and a determination of the original mass. Planet. Space Sei. 1, 66–70 (1959).ADSCrossRefGoogle Scholar
  51. Fireman, E. L., and J. Defelice: (L) Argon-37, argon-39 and tritium in meteorites and the spatial con-stancy of cosmic rays. J. Geophys. Res. 65, 3035–3041 (I960).Google Scholar
  52. Fireman, E. L., and J. Defelice: (2) Argon-39 and tritium in meteorites. Geochim. et Cosmochim. Acta 18, 183–192 (I960).Google Scholar
  53. Fireman, E. L., and F. S. Rowland: Tritium and neutron production by 2,2 Bev protons on nitrogen and oxygen. Phys. Rev. 97, 780–782 (1955).ADSCrossRefGoogle Scholar
  54. Fireman, E. L. and J. Zähringer: Depth variation of tritium and argon-37 produced by high-energy protons in iron. Phys. Rev. 107, 1695 - 1698 (1957).ADSCrossRefGoogle Scholar
  55. Fonselius, S., and G. Östlund: Natural radiocarbon measurements on surface water from the North Atlantic and Arctic Sea. Tellus 11, 77–82 (1959).ADSCrossRefGoogle Scholar
  56. Freese, E., U. P. Meyer: Neutronen in der Atmosphäre. In: Kosmische Strahlung (ed. W. Heisenberg), 2. Aufl., S. 225 — 237. Berlin-Göttingen-Heidelberg: Springer 1953.Google Scholar
  57. Fuller, M. O.: Disintegration of oxygen by 300 MeV neutrons. University of California Radiation Laboratory UCRL 2699, 1954.Google Scholar
  58. Gabbe, J. D.: Some measurements of atmospheric neutrons. Phys. Rev. 112, 497–502 (1958).ADSCrossRefGoogle Scholar
  59. Geiss, J., and D. C. Hess: Argon-potassium ages and the isotopic composition of argon from meteorites. Astrophys. J. 127, 224–235 (1958).ADSCrossRefGoogle Scholar
  60. Geiss J. H., Oeschger I. and U. Schwarz: The history of cosmic radiation as revealed by isotopic changes in the meteorites and on the earth. Varenna Summer School Course on Cosmic Rays, Solar Particles and Space Research 1961.Google Scholar
  61. Geiss, J. H. Oeschger I. and P. Signer: Radiation ages of chondrites. Z. Naturforsch. 15a, 1016–1017 (I960).Google Scholar
  62. Gentner, W., U. J. Zähringer: (L) Argon und Helium als Kernreaktionsprodukte in Me-teoriten. Geochim. et Cosmochim. Acta 11, 60–71 (1957).ADSCrossRefGoogle Scholar
  63. Gentner, W., U. J. Zähringer (2) Das Kalium-Argon-Alter von Tektiten. Z. Naturforsch. 15a, 93–99 (i960).Google Scholar
  64. Gerling, G. K., U. T. G. Pavlova: Bestimmung des geologischen Alters von zwei Meteoritennach der Argon-Methode. (Orig. russ.) Dokl. Akad. Nauk SSSR. 77, 85–86 (1951).Google Scholar
  65. Gfeller, C., W. Heer, F. G. Houtermans and H. Oeschger: Cl-36 in meteorites. Helv. phys. Acta 32, 277 - 279 (1959).Google Scholar
  66. Giletti, B. J., F. Bazan and J. L. Kulp: The geochemistry of tritium. Trans. Amer. Geophys. Un. 39, 807 (1958).Google Scholar
  67. Goebel, K. and U. P. Schmidlin: (L) Tritium-Messungen an Steinmeteoriten. Z. Naturforsch. 15a, 79-82 (I960).Google Scholar
  68. Goebel, K. and U. P. Schmidlin: (2) Der Meteorit von Breitscheid. IV. Radiochemische Untersuchungen. B. Tritium. Geochim. et Cosmochim. Acta 17, 342–349 (1959).Google Scholar
  69. Goebel, K. and U. P. Schmidlin: (3) The radiation age of meteorites. Conference on the Use of Radioisotopes in the Physical Sciences and Industry I960.Google Scholar
  70. Goebel K., U. P. Schmidlin, and U. J. Zähringer: Erzeugung von Tritium und Edelgasisotopen bei Bestrahlung von Fe und Cu mit Protonen von 25 GeV Energie. Z. Naturforsch. 16a, 231–236 (1961).ADSGoogle Scholar
  71. Goel, P. S.: Radioactive sulphur produced by cosmic rays in rain water. Nature, Lond. 178, 1458 - 1459 (1956).ADSCrossRefGoogle Scholar
  72. Goel, P. S. S. Iha, D. Lal, P. Ramakrishna and T. Rama: Cosmic-ray produced beryllium isotopes in rain water. Nuclear Phys. 1, 196–201 (1956).ADSGoogle Scholar
  73. Goel, P. S. D. P. Kharkhar, D. Lal, V. Narasappaya, B. Peters and V. Yatirajam: The beryl- lium-10 concentration in deep sea sediments. Deep Sea Res. 4, 202–210 (1957).CrossRefGoogle Scholar
  74. Goel, P. S. N. Narasappaya, T. Rama, P. K. Zutshi and C. Prabhakara: Study of cosmic ray produced short-lived P-32, P-33, Be-7 and S-35 in tropical latitudes. Tellus 11, 91–100(1959).Google Scholar
  75. Goldberg, E. D., and Arrhenius: Chemistry of Pacific pelagic sediments. Geochim. Et Cosmochim. Acta 13, 153–212 (1958).Google Scholar
  76. Goldschmidt, V. M.: Geochemistry. Oxford: Clarendon Press 1954.Google Scholar
  77. Gonsior, B.: (1) Tritium-Anstieg im atmosphärischen Wasserstoff. Naturwissenschaften 46, 201 - 202 (1959).ADSCrossRefGoogle Scholar
  78. Gonsior, B.: (2) Die Konzentration des Tritiums in der Atmosphäre. Diss. Heidelberg 1960.Google Scholar
  79. Grosse, A. V., W. H. Johnston, R. L. Wolfgang and W. F. Libby: Tritium in nature. Science 113, 1–2 (1951).ADSCrossRefGoogle Scholar
  80. Grosse, A. V., A. D. Kirshenbaum J. L., Kulp and W. S. Broecker: The natural tritium content of atmospheric hydrogen. Phys. Rev. 93, 250–251 (1954).Google Scholar
  81. Hagemann, F., J. Gray, L. Machta and A. Turkevich: Stratospheric carbon-14, carbon dioxide, and tritium. Science 130, 542 - 552 (1959).ADSCrossRefGoogle Scholar
  82. Harteck, P.: Relative abundance of HT and HTO in the atmosphere. J. Chem. Phys. 22, 1746 - 1751 (1954).ADSCrossRefGoogle Scholar
  83. Hernegger, F., U. H. Wänke: Über den Uran-Gehalt der Steinmeteorite und deren,,Alter. Z. Naturforsch. 12a, 759 - 762 (1957).ADSGoogle Scholar
  84. Hess, W. N., H. W. Patterson, R. Wallace and E. L. Chupp: Cosmic-ray neutron energy spectrum. Phys. Rev. 116, 445 - 457 (1959).ADSCrossRefGoogle Scholar
  85. Heymann, D., and O. A. Schaeffer: Geochim. et Cosmochim. Acta (im Druck). HODGSON, P. E.: Nuclear disintegrations caused by 50–125 MeV protons. Phil. Mag. 45, 190 - 201 (1954).Google Scholar
  86. Hoffman, J. H., and A. O. Nier: Production of helium in iron meteorites by the action of cosmic rays. Phys. Rev. 112, 2112 - 2117 (1958).ADSCrossRefGoogle Scholar
  87. Honda, M.: Cosmogenic potassium-40 in iron meteorites. Geochim. et Cosmochim. Acta 17, 148 - 150 (1959).Google Scholar
  88. Honda M., and J. R. Arnold: Radioactive species produced by cosmic rays in the Aroos iron meteorite. Geochim. et Cosmochim. Acta 23, 219–232 (1961).Google Scholar
  89. Honda M. and D. Lal: Some cross sections for the production of radio-nuclides in the bombardment of C, N, O, and Fe by medium energy protons. Phys. Rev. 118, I6l8–1625 (I960).Google Scholar
  90. Honda M., J. P. Shedlovsky and J. R. Arnold: Radioactive species produced by cosmic rays in iron meteorites. Geochim. et Cosmochim. Acta 22, 133–154 (1961).Google Scholar
  91. Hutchinson, G. E.: The biochemistry of the terrestrial atmosphere, carbon dioxide and other compounds. IN: The earth as a planet (G. KUIPER, ed.). Chicago: University of Chicago Press 1954. ISRAËL, G.: Dipl. -Arbeit Heidelberg 1961.Google Scholar
  92. Johnson, C. H., and H. H. Barschall: Interaction of fast neutrons with nitrogen. Phys. Rev. 80, 818–823 (1950).ADSCrossRefGoogle Scholar
  93. Kanwisher, J.: (1) General Assembly Intern. Union of Geophysics and Geodesy Helsinki I960, Symposium on carbon dioxide in the atmosphere and the sea surface.Google Scholar
  94. Kanwisher, J.: (2) pC02 in sea water and its effect on the movement of C02 in nature. Tellus 12, 209–215 (I960).Google Scholar
  95. Kaufman, S., and W. F. Libby: The natural distribution of tritium. Phys. Rev. 93, 1337–1344 (1954).ADSCrossRefGoogle Scholar
  96. Kellogg, D. A.: Cross sections for products of 90 MeV neutrons on carbon. Phys. Rev. 90, 224 - 232 (1953).ADSCrossRefGoogle Scholar
  97. Kohman, T. P., and W. D. Ehmann: Cosmic-ray-induced radioactivity in meteorites and tektites. Radioisotopes in Scientific Research, UNESCO Conf. Paris, vol. 2, pp. 661–680 (1957).Google Scholar
  98. Kulp, J. L., and H. L. Volchok: Constancy of cosmic-ray flux over the past 30000 years. Phys. Rev. 90, 713 - 714 (1953).ADSCrossRefGoogle Scholar
  99. Kurchatov, B. V., Y. N. Mekhedov, N. J. Borisova, M. YA. Kuznetsova, L. N. Kurchatova and L. V. Chistyakov: Radiochemical investigation of the products of the spallation of silver with high-energy particles. Conf. Acad. Sei. USSR Atomic Energy 1955, Div. Chem. Sei., Transi, p. 111.Google Scholar
  100. Lal, D.: Cosmic ray produced radioisotopes for studying the general circulation in the atmosphere. Indian J. Met. Geophys. 10, 147–154 (1959).Google Scholar
  101. Lal D., J. R. Arnold and M. Honda: Cosmic-ray production rates of Be-7 in oxygen, and P-32, P-33, S-35 in argon at mountain altitudes. Phys. Rev. 118, 1626–1632 (I960).Google Scholar
  102. Lal D., E. D. Goldberg and M. Koide: Cosmic-ray produced silicon-32 in nature. Science 131, 332-337 (I960).Google Scholar
  103. Lal D., P. K. Malhotra and B. Peters: On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmosph. Terr. Phys. 12, 306–328 (1958).CrossRefGoogle Scholar
  104. Lal D., K. Narsappaya and P. K. Zutshi: Phosphorus isotopes P-32 and P-33 in rain water. Nuclear Phys. 3, 69–75 (1957).ADSCrossRefGoogle Scholar
  105. Lal D., and B. Peters: Cosmic ray produced isotopes as tracers for studying large scale atmospheric circulation. 2nd Conf. Atomic Energy Geneva 1958, Proc. 18, pp. 533–544 (1958).Google Scholar
  106. Lal D., and B. Peters: Cosmic ray produced isotopes and their application to geophysics. Progr. Cosmic Ray Physics (im Druck).Google Scholar
  107. Lal D., T. Rama and P. K. Zutshi: Radioisotopes P-32, Be-7, and S-35 in the atmosphere. J. Geophys. Res. 65, 669–674 (I960).Google Scholar
  108. Libby, W. F.: (1) Radiocarbon dating, 2nd ed. Chicago: Chicago University Press 1955-Google Scholar
  109. Libby, W. F.: (2) Radioactive fallout. Bull. Schweiz. Akad. med. Wiss. 14, 309–347 (1958).Google Scholar
  110. Libby, W. F.: ( 3 ) Tritium geophysics; recent data and results. May 1961. Preprint.Google Scholar
  111. Lord, J. J.: The altitude and latitude variation in the rate of occurrence of nuclear disintegrations produced in the stratosphere by cosmic rays. Phys. Rev. 81, 901–909 (1951).ADSCrossRefGoogle Scholar
  112. MacDonald, F. B.: Primary cosmic-ray intensity near solar maximum. Phys. Rev. 116, 462 - 464 (1959).ADSCrossRefGoogle Scholar
  113. Mann, W. B., u. a.: Vgl. News Note: Carbon-14 half-life redetermined. Science 133, 183 (1961).Google Scholar
  114. Marquez, L., and N. L. Costa: The formation of P-32 from atmospheric argon by cosmic rays. Nuovo Cim. 2, 1038–1041 (1955)CrossRefGoogle Scholar
  115. Marquez, L., N. L. Costa and I. G. Almeida: The formation of Na-22 from atmospheric argon by cosmic rays. Nuovo Cim. 6, 1292 (1957).CrossRefGoogle Scholar
  116. Marquez, L. and I. Perlman: Observations on lithium and beryllium nuclei ejected from heavy nuclei by high energy particles. Phys. Rev. 81, 953–957 (1951).ADSCrossRefGoogle Scholar
  117. Marshall, R. R.: Calculation of a ‘cosmic ray age’ for the iron meteorite ‘Carbo’. Nature, Lond. 184, 117–118 (1959).ADSCrossRefGoogle Scholar
  118. Merrill, J. R., M. Honda and J. R. Arnold: Beryllium geochemistry and beryllium-10 age determinations. 2nd Conf. Atomic Energy Geneva 1958, Proc. 2, pp. 251–254 (1958).Google Scholar
  119. Merrill J. R., E. F. X. Lyden, M. Monda and J. R. Arnold: The sedimentary geochemistry of the beryllium isotopes. Geochim. et Cosmochim. Acta 18, 108–129 (1960).Google Scholar
  120. Messel, H.: The development of a nucleon cascade. Progr. Cosmic Ray Physics 2, 135–216 (1954).Google Scholar
  121. Meyer, P., and J. A. Simpson: Changes in the low-energy particle cutoff and primary spectrum of cosmic rays. Phys. Rev. 106, 562–571 (1957).ADSCrossRefGoogle Scholar
  122. Münnich, K. O.: Messung des C14-Gehaltes von hartem Grundwasser. Naturwissenschaften 44, 32–33 (1957).ADSCrossRefGoogle Scholar
  123. Münnich K. O., U. J. C. Vogel: (1) Durch Atombomben erzeugter Radiokohlenstoff in der Atmosphäre. Naturwissenschaften 14, 327–329 (1958).CrossRefGoogle Scholar
  124. Münnich K. O., U. J. C. Vogel: (2) Variations in C-14 content during the last years. Internat. C-14-Symposium Groningen 1959-Google Scholar
  125. Münnich K. O., U. J. C. Vogel: (3) Jahreszeitliche Schwankungen im C-14-Gehalt der Atmosphäre. Phys. Verh. 11, 62–63 (I960).Google Scholar
  126. Münnich K. O., U. J. C. Vogel: (4) C-14 age determination of deep ground-waters. Internat. Assoc. Sei. Hydrology. Commission of Subterrenean Waters, Publ. 52, 537–541 (1960).Google Scholar
  127. Nilsson R., K. Siegbahn, A. Berggren and B. Ingelman: Be-7 content in snow. Ark. Fysik 11, 445–451 (1957).Google Scholar
  128. Nilsson R., I. Olsson, A. Berggren and K. Siegbahn: S-35 and Be-7 contents in rain and snow. Ark. Geofys. 3, 111–122 (1959).Google Scholar
  129. Östlund, G.: Intern. Atomic Energy Agency Symposium on Detection and Use of Tritium in the Physical and Biological Science. Wien 1961.Google Scholar
  130. Patterson, R. L., and J. H. Blifford: Atmospheric carbon-14. Science 126, 26–28 (1957).ADSCrossRefGoogle Scholar
  131. Peters, B.: (1) The nature of primary cosmic radiation. Progr. Cosmic Ray Physics 1, 193–244 (1952).Google Scholar
  132. Peters, B.: (2) Radioactive beryllium in the atmosphere and on the earth. Proc. Indian Acad. Sei. 41, 67–71 (1955).Google Scholar
  133. Peters, B.: (3) Über die Anwendbarkeit der Be-10-Methode zur Messung kosmischer Strahlungsintensität und der Ablagerungs-Geschwindigkeit von Tiefseesedimenten vor einigen Millionen Jahren. Z. Physik 148, 93–111 (1957).ADSCrossRefGoogle Scholar
  134. Peters, B.: (4) Cosmic-ray produced radioactive isotopes as tracers for studying large-scale atmospheric circulation. J. Atmosph. Terr. Phys. 13, 351–370 (1959).CrossRefGoogle Scholar
  135. Pfotzer, G.: Die Neutronenkomponente der Ultrastrahlung. Naturwissenschaften 39, 149–158 (1952).ADSCrossRefGoogle Scholar
  136. Rafter, T. A., and G. J. Fergusson: (1) ‘Atom bomb effect’–recent increase of carbon-14 content of the atmosphere and biosphere. Science 126, 557–558 (1957).ADSCrossRefGoogle Scholar
  137. Rafter, T. A.,, and G. J. Fergusson: (2) Atmospheric radiocarbon as a tracer in geophysical circulation- problems. 2nd Conf. Atomic Energy Geneva 1958, Proc. 18, pp. 526–532 (1958).Google Scholar
  138. Rama, T.: Investigations of the radioisotopes Be-7, P-32 and S-35 in rain water. J. Geophys. Res. 65, 3773–3776 (i960).Google Scholar
  139. Rama, T., and P. K. Zutshi: Annual deposition of cosmic ray produced Be-7 at equatorial latitudes. Tellus 10, 99–103 (1958).ADSCrossRefGoogle Scholar
  140. Reed, G. W., and A. Turkevich: Uranium, helium and the age of meteorites. Nature, Lond. 180, 594–596 (1957).ADSCrossRefGoogle Scholar
  141. Revelle, R., and H. E. Suess: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric C02 during the past decades. Tellus 9, 18–27 (1957).ADSCrossRefGoogle Scholar
  142. Riley, G. A., H. Stommel and D. F. Bumpus: Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham Ocean. Coll. 12, Art. 3, 169 (1949).Google Scholar
  143. Rose, D. C., K. B. Fenton, J. Katzman and J. A. Simpson: Latitude effect of the cosmic ray nucleon and meson components at sea level from the arctic to the antarctic. Canad. J. Phys. 34, 968–984 (1956).ADSCrossRefGoogle Scholar
  144. Rossi, B.: High-energy particles. New York 1952.Google Scholar
  145. Rubey, W. W.: Geologic history of sea water. Bull. Geol. Soc. Amer. 62, 1111–1147 (1951).CrossRefGoogle Scholar
  146. Rudstam, S. G.: (1) Spallation of vanadium, manganese, and cobalt with 187 MeV protons. Phil. Mag. 44 (7), 1131–1141 (1953).Google Scholar
  147. Rudstam, S. G.: (2) Spallation of elements in the mass range 51–75- Phil. Mag. (7) 46, 344–356 (1955).Google Scholar
  148. Schaeffer, O. A., and D. E. Fisher: Exposure ages for iron meteorites. Nature, Lond. 186, 1040–1042 (I960).Google Scholar
  149. Schaeffer, O. A., S. O. Thompson and N. L. Lark: Chlorine-36 radioactivity in rain. J. Geophys. Res. 65, 4013–4016 (I960).Google Scholar
  150. Schaeffer, O. A., U. J. Zähringer: Helium- und Argon-Erzeugung in Eisentargets durch energiereiche Protonen. Z. Naturforsch. 13a, 346–347 (1958).ADSGoogle Scholar
  151. Schumann, G., U. G. Eulitz: Die jahreszeitliche Variation der stratosphärischen Fallout- Komponente. Naturwissenschaften 47, 13–14 (I960).Google Scholar
  152. Serber, R.: Nuclear reactions at high energies. Phys. Rev. 72, 1114–1115 (1947)ADSCrossRefGoogle Scholar
  153. Shedlovsky, J. P.: Cosmic ray produced Mn-53 in iron meteorites. Geochim. et Cosmochim. Acta 21, 156–158 (1960).Google Scholar
  154. Simpson, J. A.: (1) Neutrons produced in the atmosphere by the cosmic radiations. Phys. Rev. 83, 1175–1188 (1951).ADSCrossRefGoogle Scholar
  155. Simpson, J. A.: (2) The production of tritium and C-14 in the terrestrial atmosphere by solar protons. J. Geophys. Res. 65, 1615–1616 (1960).ADSCrossRefGoogle Scholar
  156. Simpson J. A., H. W. Baldwin and R. B. Uretz: Nuclear bursts produced in the low energy nuclear component of the cosmic radiation. Phys. Rev. 84, 332–339 (1951)ADSCrossRefGoogle Scholar
  157. Simpson J. A. and W. C. Fagot: Properties of the low energy nucleonic component at large atmospheric depths. Phys. Rev. 90, 1068–1072 (1953).ADSCrossRefGoogle Scholar
  158. Soberman, R. K.: High-altitude cosmic-ray neutron intensity variations. Phys. Rev. 102, 1399 - 1409 (1956).ADSCrossRefGoogle Scholar
  159. Sprenkel, E. L., R. Davis and E. O. Wiig: Cosmic-ray produced CI36 and A39 in iron meteorites. Bull. Amer. Phys. Soc. 4, 223 (1959).Google Scholar
  160. Stewart, N. G., R. G. D. Osmond, R. N. Crooks and E. M. Fisher: The world-wide deposition of long-lived fisson products from nuclear test explosions. Atomic Energy Res. Establ. Harwell HP/R. 2354 (1957).Google Scholar
  161. Stoenner, R. W., O. A. Schaeffer and R. Davis: Meteorites as space probes for testingGoogle Scholar
  162. Stoenner, R. W: the spatial constancy of cosmic radiation. J. Geophys. Res. 65, 3025–3034 (1960).ADSCrossRefGoogle Scholar
  163. Stoenner, R. W and J. Zähringer: Potassium-argon age of iron meteorites. Geochim. et Cosmochim. Acta 15, 40–50 (1958).Google Scholar
  164. Stuiver, M.: Variations in radiocarbon concentration and sun spot activity. J. Geophys. Res. 66, 273–276 (1961).ADSCrossRefGoogle Scholar
  165. Suess, H. E.: (1) Radiocarbon concentration in modern wood. Science 122, 415–417 (1955).ADSCrossRefGoogle Scholar
  166. Suess, H. E.: (2) The radioactivity of the atmosphere and hydrosphere. Annual Rev. Nucl. Sei. 8, 243–256 (1958).ADSCrossRefGoogle Scholar
  167. Vernov, S. N., and N. L. Grigorov: Interaction of primary cosmic ray particles of different energies with the nuclei in the atmosphere. Nuovo Cim. (10) Suppl. 4, 879–889 (1956).CrossRefGoogle Scholar
  168. Vilcsek, E., u. H. Wänke: Natrium-22 im Meteorit Breitscheid. Z. Naturforsch. 15a, 1004–1007 (1960).ADSGoogle Scholar
  169. Voshage, H., U. H. Hintenberger: Die Kalium-Isotope als Reaktionsprodukte der kosmischen Strahlung im Eisenmeteoriten Carbo. Z. Naturforsch. 14a, 194–195 (1959).ADSGoogle Scholar
  170. Vries, HL. DE: Variation in concentration of radiocarbon with time and location on earth. Proc. Kon. Ned. Akad. Wet. B 61, No. 2, 1–9 (1958).Google Scholar
  171. Wänke, H.: (1) Scandium-45 als Reaktionsprodukt der Höhenstrahlung in Eisenmeteoriten I. Z. Naturforsch. 13a, 645–649 (1958).ADSGoogle Scholar
  172. Wänke, H.: (2) Über den Kaliumgehalt der Chondrite, Achondrite und Siderite. Z. Naturforsch. 16a, 127–130 (1961).ADSGoogle Scholar
  173. Wänke, H.: and E. Vilcsek: Argon-39 als Reaktionsprodukt der Höhenstrahlung in Eisenmeteoriten. Z. Naturforsch. 14a, 929–934 (1959)Google Scholar
  174. Wheeler, J. A.: Some consequences of the electromagnetic interaction between J- mesons and nuclei. Rev. Mod. Phys. 21, 133–143 (1949).ADSCrossRefGoogle Scholar
  175. Willis, E. H., H. Tauber and K. O. Münnich: Variations in the atmospheric radiocarbon concentration over the past 1300 years. Amer. J. Sei. Radiocarbon Suppl. 2, 1–4 (1960).Google Scholar
  176. Winckler, J. R.: Balloon study of high-altitude radiations during the International Geophysical Year. J. Geophys. Res. 65, 1331–1360 (i960).Google Scholar
  177. Winsberg, L.: The production of chlorine-39 in the lower atmosphere by cosmic radiation. Geochim. et Cosmochim. Acta 9, 183–189 (1956).Google Scholar
  178. Yuan, L. C. L.: Distribution of slow neutrons in free atmosphere up to 100000 ft. Phys. Rev. 81, 175–184 (1951).ADSCrossRefGoogle Scholar
  179. Zähringer, J.: Priv. Mitteilung.Google Scholar

Copyright information

© Springer- Verlag OHG / Berlin · Göttingen · Heidelberg 1962

Authors and Affiliations

There are no affiliations available

Personalised recommendations