Skip to main content
  • 40 Accesses

Summary

Radioactive nuclides are produced by cosmic radiation in the atmosphere, the hydrosphere and the lithosphere. The present knowledge mainly refers to production in the atmosphere and in meteorites. The most efficient nuclear reactions inducing radioactivity are the spallations of the constituents of the atmosphere or of iron in the case of meteorites. There is only one important exception: thermal neutron capture by nitrogen bringing forth C14. —The production of radioactive nuclides strongly depends on altitude and geomagnetic latitude according to the behaviour of the nucleonic or star-producing component of cosmic radiation. The intensity of the cosmic radiation may vary considerably during short periods. Its mean value appears to have been constant within a factor of 2 for millions of years and to have altered not much more during the last 109 years as indicated by observations on long-lived radioactive species in meteorites. —The C14 produced in the atmosphere is distributed over the biosphere and the ocean also. A steady-state model gives a good approximation for the reservoirs and the exchange times. The natural concentration of C14 is diluted by “old” CO2 due to industrial combustion and enlarged by additional production due to nuclear weapon tests. C14 measurements have proved to be a valuable tool for studying atmospheric and oceanic transport phenomena and ground water problems. —Be7 and Be10 are spallation products of nitrogen. Be7 is easily detected in atmospheric air and precipitation. Be10 was observed in deep-sea cores. Numerous nuclides are produced by spallation of argon. Up to now Na22, Si32, P32, P33, S35, CI36, CI39 were detected. There is a certain contribution from weapon tests to S35 and a very large one to CI36. Short-lived nuclides reaching ground-level are mainly produced in the troposphere. Their concentrations can be used to calculate storage times. —The natural tritium production is not known too well. Only very few measurements were made before the start of artificial production by weapon tests which was higher by orders of magnitude. Some investigations with Greenland ice were carried out back to 1944. The fluctuations of the atmospheric tritium content in recent years cannot be explained without doubt as yet. Tritium has been used for hydrological studies. To construct a model for the world-wide distribution similar to that for C14 is still unfeasible. —Production of radioactive nuclides in the terrestrial lithosphere was detected only in high altitude. Many radioactive substances have been found in the meteorites which were exposed to a rather intense and energetic cosmic radiation for a long time. With recent falls short-lived activities down to 16 days half-life have been observed. The investigations are useful to study possible variations of cosmic radiation in time and space. Regarding space too few measurements are available at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  • Anders, E.: The record in the meteorites. II. On the presence of aluminium-26 in meteorites and tektites. Geochim. et Cosmochim. Acta 19, 53–62 (1960).

    Google Scholar 

  • Anderson, E. C.: The production and distribution of natural radiocarbon. Annual Rev. Nucl. Sei. 2, 63–78 (1953).

    Google Scholar 

  • Anders E., W. F. Libby, S. Weinhouse, A. F. Reid, A. D. Kirshenbaum and A. V. Grosse: Natural radiocarbon from cosmic radiation. Phys. Rev. 72, 931–936 (1947).

    Article  ADS  Google Scholar 

  • Arnold, J. R.: Beryllium-10 produced by cosmic rays. Science 124, 584–585 (1956).

    Article  ADS  Google Scholar 

  • Arnold, J. R. and H. A. Al-Salih: Beryllium-7 produced by cosmic rays. Science 121, 451–453 (1955).

    Article  ADS  Google Scholar 

  • Arnold, J. R and E. C. Anderson: The distribution of C-14 in nature. Tellus 9, 28–32 (1957).

    Article  ADS  Google Scholar 

  • Arnold, J. R, M. Honda and D. Lal: The record of cosmic ray intensity in the meteorites. (Im Druck.) Baker, E., G. Friedlander and J. Hudis: Formation of Be7 in interactions of various nuclei with high-energy protons. Phys. Rev. 112, 1319–1321 (1958).

    Google Scholar 

  • Batzel, R. E., D. R. Miller and G. T. Seaborg: The high energy spallation products of copper. Phys. Rev. 84, 671–683 (1951).

    Article  ADS  Google Scholar 

  • Begemann, F.: Neubestimmung der natürlichen irdischen Tritiumzerfallsrate und die Frage der Herkunft des,,natürlichen Tritium. Z. Naturforsch. 14a, 334–342 (1959).

    ADS  Google Scholar 

  • Begemann, F., P. Eberhardt U. D. C. Hess: He-3-H-3-Strahlungsalter eines Steinmeteoriten. Z. Natur-forsch. 14a, 500–503 (1959).

    ADS  Google Scholar 

  • Begemann, F. and J. Friedman: Tritium and deuterium content of atmospheric hydrogen. Z. Natur-forsch. 14a, 1024–1031 (1959).

    ADS  Google Scholar 

  • Begemann, F. J. Geiss and D. C. Hess: Radiation age of a meteorite from cosmic-ray-produced He-3 and H-3. Phys. Rev. 107, 540–542 (1957).

    Article  ADS  Google Scholar 

  • Begemann, F., and W. F. Libby: Continental water balance, ground water inventory and storage time, surface ocean mixing rates and world-wide water circulation patterns from cosmic-ray and bomb tritium. Geochim. et Cosmochim. Acta 12, 277–296 (1957).

    Google Scholar 

  • Benioff, P. A.: (L) Cosmic-ray production rate and mean removal time of beryllium-7 from the atmosphere. Phys. Rev. 104, 1122–1130 (1956).

    Article  ADS  Google Scholar 

  • Begemann, F. (2) Nuclear reactions of low-Z elements with 5. 7 BeV protons. Phys. Rev. 119, 316–323 (I960).

    Google Scholar 

  • Bien, G. S., N. W. Rakestraw and H. E. SUESS: Radiocarbon concentration in Pacific Ocean water. Tellus 12, 436–443 (I960).

    Google Scholar 

  • Boggild, J. K., and F. H. Tenney: Neutron stars in oxygen, neon and argon. Phys. Rev. 82, 307 (1951).

    Google Scholar 

  • Bolin, B.: (1) On the use of tritium as a tracer for water in nature. 2nd Conf. Atomic Energy Geneva, Proc. 18, pp. 336–343 (1958).

    Google Scholar 

  • Bolin, B.: (2) Atmospheric chemistry and broad geophysical relationships. Proc. nat. Acad. Sei. Wash. 45, 1663–1672 (1959).

    Article  Google Scholar 

  • Bolin, B.: (3) On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12, 274–281 (I960).

    Google Scholar 

  • Bolin, B. and E. Eriksson: Changes in the carbon dioxide content of the atmosphere and sea due to fossil fuel combustion. Rossby Memorial Volume. New York: Rockefeller Institute Press 1959.

    Google Scholar 

  • Brinkmann, R., K. O. Münnich U. J. C. Vogel: Anwendung der C-14-Methode auf Bodenbildung und Grundwasserkreislauf. Geol. Rdsch. 49 (l), 244–253 (I960).

    Google Scholar 

  • Broecker, W. S., R. D. Gerard, M. Ewing and B. C. Heezen: Natural radiocarbon in the Atlantic Ozean. J. Geophys. Res. 65, 2903–2931 (1960).

    Article  ADS  Google Scholar 

  • Broecker, W. S. and E. A. Olson: Radiocarbon from nuclear tests. II. Science 132, 712–721 (I960).

    Google Scholar 

  • Broecker, W. S. and A. Walton: Radiocarbon from nuclear tests. Science 130, 309–314 (1959).

    Article  ADS  Google Scholar 

  • Brown, H.: The carbon cycle in nature. Fortschr. Chemie org. Naturstoffe 14, 317–333 (1957).

    Google Scholar 

  • Brown, R. M., and W. E. Grummit: The determination of tritium in natural waters. Canad. J. Chem. 34, 220–226 (1956).

    Article  Google Scholar 

  • Brown, W. W.: Cosmic-ray nuclear interactions in gases. Phys. Rev. 93, 528–534 (1954).

    Article  ADS  Google Scholar 

  • Bullock, F. W.: Nuclear disintegrations produced by cosmic ray particles in a high pressure cloud chamber. Proc. Phys. Soc. Lond. A 70, 134–141 (1957).

    Article  ADS  Google Scholar 

  • Buttlar, H. V., and W. F. Libby: Natural distribution of cosmic-ray produced tritium. II. J. Inorg. and Nucl. Chem. 1, 75–91 (1955).

    Article  Google Scholar 

  • Buttlar, H. V., and J. WENDT: Ground water studies in New Mexico using tritium as a tracer. 2nd Conf. Atomic Energy Geneva, Proc. 18, pp. 591–597 (1958).

    Google Scholar 

  • Coon, J. H., and R. A. Nobles: Disintegration of He-3 and N-14 by thermal neutrons. Phys. Rev. 75, 1358–1361 (1949).

    Article  ADS  Google Scholar 

  • Craig, H.: (1) The natural distribution of radiocarbon and the exchange time of carbondioxide between the atmosphere and sea. Tellus 9, 1–17 (1957).

    Article  ADS  Google Scholar 

  • Craig, H.: (2) Distribution, production rate, and possible solar origin of natural tritium. Phys. Rev. 105, 1125–1127 (1957).

    Article  ADS  Google Scholar 

  • Craig, H.: (3) Isotopic tracer techniques for measurement of physical processes in the sea and the atmosphere. Nat. Acad. Sei. — Nat. Res. Council Publ. No. 551, 103–120 (1957).

    Google Scholar 

  • Craig, H.: (4) A critical evaluation of mixing rates in ocean and atmosphere by use of radiocarbon techniques. 2nd Conf. Atomic Energy Geneva, Proc. 18, pp. 358–363 (1958).

    Google Scholar 

  • Craig, H.:, and D. LAL: The production rate of natural tritium. Tellus 13, 85–105 (1961).

    Article  ADS  Google Scholar 

  • Cruikshank, A. J., G. Cowper and W. E. Grummit: Production of Be-7 in the atmosphere. Canad. J. Chem. 34, 214–219 (1956).

    Article  Google Scholar 

  • Currie, L. A.: Tritium production by 6 BeV-protons. Phys. Rev. 114, 878 —880 (1959).

    Google Scholar 

  • Currie, L. A., W. F. Libby and R. L. Wolfgang: Tritium production by high-energy protons. Phys. Rev. 101, 1557 (1956).

    Article  ADS  Google Scholar 

  • Davis, R., and O. A. Schaeffer: Chlorine-36 in nature. Brookhaven Nat. Lab. BNL 340 (T-59), June 1955. Ann. New York Acad. Sei. 62, 105–121 (1955).

    Google Scholar 

  • Dickson, J. M., and T. C. Randle: The excitation function for the production of Be-7 by the bombardment of C-12 by protons. Proc. Phys. Soc. Lond. A 64, 902–905 (1951).

    Article  ADS  Google Scholar 

  • Dilla, M. A. Van, J. R. Arnold and E. C. Anderson: Spectrometric measurement of natural and cosmic-ray induced radioactivity in meteorites. Geochim. et Cosmochim. Acta 20, 115–121 (I960).

    Google Scholar 

  • Faltings, V., u. P. Harteck: Der Tritiumgehalt der Atmosphäre. Z. Naturforsch. 5a, 438–439 (1950).

    ADS  Google Scholar 

  • Fergusson, G. A., J. Halpern, R. Nathans and P. F. Yergin: Photoneutron cross sections in He, N, O, F, Ne, and A. Phys. Rev. 95, 776–780 (1954).

    Article  ADS  Google Scholar 

  • Fergusson, G. J.: Reduction of atmospheric radiocarbon concentration by fossil fuel carbon dioxide and the mean life of carbon dioxide in the atmosphere. Proc. Roy. Soc. Lond. A 243, 561–574 (1958).

    Article  ADS  Google Scholar 

  • Fireman, E. L.: (1) Measurement on the (n, H-3) cross section in nitrogen and its relationship to the tritium production in the atmosphere. Phys. Rev. 91, 922–926 (1953).

    Article  ADS  Google Scholar 

  • Fireman, E. L.: (2) Tritium production by 2,2-BeV-protons on iron and its relation to cosmic radiation. Phys. Rev. 97, 1303–1304 (1955).

    Article  ADS  Google Scholar 

  • Fireman, E. L.: (3) Argon-39 in the Sikhote-Alin meteorite fall. Nature, Lond. 181, 1613 - 1614 (1958).

    Article  ADS  Google Scholar 

  • Fireman, E. L.: (4) The distribution of Helium-3 in the grant meteorite and a determination of the original mass. Planet. Space Sei. 1, 66–70 (1959).

    Article  ADS  Google Scholar 

  • Fireman, E. L., and J. Defelice: (L) Argon-37, argon-39 and tritium in meteorites and the spatial con-stancy of cosmic rays. J. Geophys. Res. 65, 3035–3041 (I960).

    Google Scholar 

  • Fireman, E. L., and J. Defelice: (2) Argon-39 and tritium in meteorites. Geochim. et Cosmochim. Acta 18, 183–192 (I960).

    Google Scholar 

  • Fireman, E. L., and F. S. Rowland: Tritium and neutron production by 2,2 Bev protons on nitrogen and oxygen. Phys. Rev. 97, 780–782 (1955).

    Article  ADS  Google Scholar 

  • Fireman, E. L. and J. Zähringer: Depth variation of tritium and argon-37 produced by high-energy protons in iron. Phys. Rev. 107, 1695 - 1698 (1957).

    Article  ADS  Google Scholar 

  • Fonselius, S., and G. Östlund: Natural radiocarbon measurements on surface water from the North Atlantic and Arctic Sea. Tellus 11, 77–82 (1959).

    Article  ADS  Google Scholar 

  • Freese, E., U. P. Meyer: Neutronen in der Atmosphäre. In: Kosmische Strahlung (ed. W. Heisenberg), 2. Aufl., S. 225 — 237. Berlin-Göttingen-Heidelberg: Springer 1953.

    Google Scholar 

  • Fuller, M. O.: Disintegration of oxygen by 300 MeV neutrons. University of California Radiation Laboratory UCRL 2699, 1954.

    Google Scholar 

  • Gabbe, J. D.: Some measurements of atmospheric neutrons. Phys. Rev. 112, 497–502 (1958).

    Article  ADS  Google Scholar 

  • Geiss, J., and D. C. Hess: Argon-potassium ages and the isotopic composition of argon from meteorites. Astrophys. J. 127, 224–235 (1958).

    Article  ADS  Google Scholar 

  • Geiss J. H., Oeschger I. and U. Schwarz: The history of cosmic radiation as revealed by isotopic changes in the meteorites and on the earth. Varenna Summer School Course on Cosmic Rays, Solar Particles and Space Research 1961.

    Google Scholar 

  • Geiss, J. H. Oeschger I. and P. Signer: Radiation ages of chondrites. Z. Naturforsch. 15a, 1016–1017 (I960).

    Google Scholar 

  • Gentner, W., U. J. Zähringer: (L) Argon und Helium als Kernreaktionsprodukte in Me-teoriten. Geochim. et Cosmochim. Acta 11, 60–71 (1957).

    Article  ADS  Google Scholar 

  • Gentner, W., U. J. Zähringer (2) Das Kalium-Argon-Alter von Tektiten. Z. Naturforsch. 15a, 93–99 (i960).

    Google Scholar 

  • Gerling, G. K., U. T. G. Pavlova: Bestimmung des geologischen Alters von zwei Meteoritennach der Argon-Methode. (Orig. russ.) Dokl. Akad. Nauk SSSR. 77, 85–86 (1951).

    Google Scholar 

  • Gfeller, C., W. Heer, F. G. Houtermans and H. Oeschger: Cl-36 in meteorites. Helv. phys. Acta 32, 277 - 279 (1959).

    Google Scholar 

  • Giletti, B. J., F. Bazan and J. L. Kulp: The geochemistry of tritium. Trans. Amer. Geophys. Un. 39, 807 (1958).

    Google Scholar 

  • Goebel, K. and U. P. Schmidlin: (L) Tritium-Messungen an Steinmeteoriten. Z. Naturforsch. 15a, 79-82 (I960).

    Google Scholar 

  • Goebel, K. and U. P. Schmidlin: (2) Der Meteorit von Breitscheid. IV. Radiochemische Untersuchungen. B. Tritium. Geochim. et Cosmochim. Acta 17, 342–349 (1959).

    Google Scholar 

  • Goebel, K. and U. P. Schmidlin: (3) The radiation age of meteorites. Conference on the Use of Radioisotopes in the Physical Sciences and Industry I960.

    Google Scholar 

  • Goebel K., U. P. Schmidlin, and U. J. Zähringer: Erzeugung von Tritium und Edelgasisotopen bei Bestrahlung von Fe und Cu mit Protonen von 25 GeV Energie. Z. Naturforsch. 16a, 231–236 (1961).

    ADS  Google Scholar 

  • Goel, P. S.: Radioactive sulphur produced by cosmic rays in rain water. Nature, Lond. 178, 1458 - 1459 (1956).

    Article  ADS  Google Scholar 

  • Goel, P. S. S. Iha, D. Lal, P. Ramakrishna and T. Rama: Cosmic-ray produced beryllium isotopes in rain water. Nuclear Phys. 1, 196–201 (1956).

    ADS  Google Scholar 

  • Goel, P. S. D. P. Kharkhar, D. Lal, V. Narasappaya, B. Peters and V. Yatirajam: The beryl- lium-10 concentration in deep sea sediments. Deep Sea Res. 4, 202–210 (1957).

    Article  Google Scholar 

  • Goel, P. S. N. Narasappaya, T. Rama, P. K. Zutshi and C. Prabhakara: Study of cosmic ray produced short-lived P-32, P-33, Be-7 and S-35 in tropical latitudes. Tellus 11, 91–100(1959).

    Google Scholar 

  • Goldberg, E. D., and Arrhenius: Chemistry of Pacific pelagic sediments. Geochim. Et Cosmochim. Acta 13, 153–212 (1958).

    Google Scholar 

  • Goldschmidt, V. M.: Geochemistry. Oxford: Clarendon Press 1954.

    Google Scholar 

  • Gonsior, B.: (1) Tritium-Anstieg im atmosphärischen Wasserstoff. Naturwissenschaften 46, 201 - 202 (1959).

    Article  ADS  Google Scholar 

  • Gonsior, B.: (2) Die Konzentration des Tritiums in der Atmosphäre. Diss. Heidelberg 1960.

    Google Scholar 

  • Grosse, A. V., W. H. Johnston, R. L. Wolfgang and W. F. Libby: Tritium in nature. Science 113, 1–2 (1951).

    Article  ADS  Google Scholar 

  • Grosse, A. V., A. D. Kirshenbaum J. L., Kulp and W. S. Broecker: The natural tritium content of atmospheric hydrogen. Phys. Rev. 93, 250–251 (1954).

    Google Scholar 

  • Hagemann, F., J. Gray, L. Machta and A. Turkevich: Stratospheric carbon-14, carbon dioxide, and tritium. Science 130, 542 - 552 (1959).

    Article  ADS  Google Scholar 

  • Harteck, P.: Relative abundance of HT and HTO in the atmosphere. J. Chem. Phys. 22, 1746 - 1751 (1954).

    Article  ADS  Google Scholar 

  • Hernegger, F., U. H. Wänke: Über den Uran-Gehalt der Steinmeteorite und deren,,Alter. Z. Naturforsch. 12a, 759 - 762 (1957).

    ADS  Google Scholar 

  • Hess, W. N., H. W. Patterson, R. Wallace and E. L. Chupp: Cosmic-ray neutron energy spectrum. Phys. Rev. 116, 445 - 457 (1959).

    Article  ADS  Google Scholar 

  • Heymann, D., and O. A. Schaeffer: Geochim. et Cosmochim. Acta (im Druck). HODGSON, P. E.: Nuclear disintegrations caused by 50–125 MeV protons. Phil. Mag. 45, 190 - 201 (1954).

    Google Scholar 

  • Hoffman, J. H., and A. O. Nier: Production of helium in iron meteorites by the action of cosmic rays. Phys. Rev. 112, 2112 - 2117 (1958).

    Article  ADS  Google Scholar 

  • Honda, M.: Cosmogenic potassium-40 in iron meteorites. Geochim. et Cosmochim. Acta 17, 148 - 150 (1959).

    Google Scholar 

  • Honda M., and J. R. Arnold: Radioactive species produced by cosmic rays in the Aroos iron meteorite. Geochim. et Cosmochim. Acta 23, 219–232 (1961).

    Google Scholar 

  • Honda M. and D. Lal: Some cross sections for the production of radio-nuclides in the bombardment of C, N, O, and Fe by medium energy protons. Phys. Rev. 118, I6l8–1625 (I960).

    Google Scholar 

  • Honda M., J. P. Shedlovsky and J. R. Arnold: Radioactive species produced by cosmic rays in iron meteorites. Geochim. et Cosmochim. Acta 22, 133–154 (1961).

    Google Scholar 

  • Hutchinson, G. E.: The biochemistry of the terrestrial atmosphere, carbon dioxide and other compounds. IN: The earth as a planet (G. KUIPER, ed.). Chicago: University of Chicago Press 1954. ISRAËL, G.: Dipl. -Arbeit Heidelberg 1961.

    Google Scholar 

  • Johnson, C. H., and H. H. Barschall: Interaction of fast neutrons with nitrogen. Phys. Rev. 80, 818–823 (1950).

    Article  ADS  Google Scholar 

  • Kanwisher, J.: (1) General Assembly Intern. Union of Geophysics and Geodesy Helsinki I960, Symposium on carbon dioxide in the atmosphere and the sea surface.

    Google Scholar 

  • Kanwisher, J.: (2) pC02 in sea water and its effect on the movement of C02 in nature. Tellus 12, 209–215 (I960).

    Google Scholar 

  • Kaufman, S., and W. F. Libby: The natural distribution of tritium. Phys. Rev. 93, 1337–1344 (1954).

    Article  ADS  Google Scholar 

  • Kellogg, D. A.: Cross sections for products of 90 MeV neutrons on carbon. Phys. Rev. 90, 224 - 232 (1953).

    Article  ADS  Google Scholar 

  • Kohman, T. P., and W. D. Ehmann: Cosmic-ray-induced radioactivity in meteorites and tektites. Radioisotopes in Scientific Research, UNESCO Conf. Paris, vol. 2, pp. 661–680 (1957).

    Google Scholar 

  • Kulp, J. L., and H. L. Volchok: Constancy of cosmic-ray flux over the past 30000 years. Phys. Rev. 90, 713 - 714 (1953).

    Article  ADS  Google Scholar 

  • Kurchatov, B. V., Y. N. Mekhedov, N. J. Borisova, M. YA. Kuznetsova, L. N. Kurchatova and L. V. Chistyakov: Radiochemical investigation of the products of the spallation of silver with high-energy particles. Conf. Acad. Sei. USSR Atomic Energy 1955, Div. Chem. Sei., Transi, p. 111.

    Google Scholar 

  • Lal, D.: Cosmic ray produced radioisotopes for studying the general circulation in the atmosphere. Indian J. Met. Geophys. 10, 147–154 (1959).

    Google Scholar 

  • Lal D., J. R. Arnold and M. Honda: Cosmic-ray production rates of Be-7 in oxygen, and P-32, P-33, S-35 in argon at mountain altitudes. Phys. Rev. 118, 1626–1632 (I960).

    Google Scholar 

  • Lal D., E. D. Goldberg and M. Koide: Cosmic-ray produced silicon-32 in nature. Science 131, 332-337 (I960).

    Google Scholar 

  • Lal D., P. K. Malhotra and B. Peters: On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmosph. Terr. Phys. 12, 306–328 (1958).

    Article  Google Scholar 

  • Lal D., K. Narsappaya and P. K. Zutshi: Phosphorus isotopes P-32 and P-33 in rain water. Nuclear Phys. 3, 69–75 (1957).

    Article  ADS  Google Scholar 

  • Lal D., and B. Peters: Cosmic ray produced isotopes as tracers for studying large scale atmospheric circulation. 2nd Conf. Atomic Energy Geneva 1958, Proc. 18, pp. 533–544 (1958).

    Google Scholar 

  • Lal D., and B. Peters: Cosmic ray produced isotopes and their application to geophysics. Progr. Cosmic Ray Physics (im Druck).

    Google Scholar 

  • Lal D., T. Rama and P. K. Zutshi: Radioisotopes P-32, Be-7, and S-35 in the atmosphere. J. Geophys. Res. 65, 669–674 (I960).

    Google Scholar 

  • Libby, W. F.: (1) Radiocarbon dating, 2nd ed. Chicago: Chicago University Press 1955-

    Google Scholar 

  • Libby, W. F.: (2) Radioactive fallout. Bull. Schweiz. Akad. med. Wiss. 14, 309–347 (1958).

    Google Scholar 

  • Libby, W. F.: ( 3 ) Tritium geophysics; recent data and results. May 1961. Preprint.

    Google Scholar 

  • Lord, J. J.: The altitude and latitude variation in the rate of occurrence of nuclear disintegrations produced in the stratosphere by cosmic rays. Phys. Rev. 81, 901–909 (1951).

    Article  ADS  Google Scholar 

  • MacDonald, F. B.: Primary cosmic-ray intensity near solar maximum. Phys. Rev. 116, 462 - 464 (1959).

    Article  ADS  Google Scholar 

  • Mann, W. B., u. a.: Vgl. News Note: Carbon-14 half-life redetermined. Science 133, 183 (1961).

    Google Scholar 

  • Marquez, L., and N. L. Costa: The formation of P-32 from atmospheric argon by cosmic rays. Nuovo Cim. 2, 1038–1041 (1955)

    Article  Google Scholar 

  • Marquez, L., N. L. Costa and I. G. Almeida: The formation of Na-22 from atmospheric argon by cosmic rays. Nuovo Cim. 6, 1292 (1957).

    Article  Google Scholar 

  • Marquez, L. and I. Perlman: Observations on lithium and beryllium nuclei ejected from heavy nuclei by high energy particles. Phys. Rev. 81, 953–957 (1951).

    Article  ADS  Google Scholar 

  • Marshall, R. R.: Calculation of a ‘cosmic ray age’ for the iron meteorite ‘Carbo’. Nature, Lond. 184, 117–118 (1959).

    Article  ADS  Google Scholar 

  • Merrill, J. R., M. Honda and J. R. Arnold: Beryllium geochemistry and beryllium-10 age determinations. 2nd Conf. Atomic Energy Geneva 1958, Proc. 2, pp. 251–254 (1958).

    Google Scholar 

  • Merrill J. R., E. F. X. Lyden, M. Monda and J. R. Arnold: The sedimentary geochemistry of the beryllium isotopes. Geochim. et Cosmochim. Acta 18, 108–129 (1960).

    Google Scholar 

  • Messel, H.: The development of a nucleon cascade. Progr. Cosmic Ray Physics 2, 135–216 (1954).

    Google Scholar 

  • Meyer, P., and J. A. Simpson: Changes in the low-energy particle cutoff and primary spectrum of cosmic rays. Phys. Rev. 106, 562–571 (1957).

    Article  ADS  Google Scholar 

  • Münnich, K. O.: Messung des C14-Gehaltes von hartem Grundwasser. Naturwissenschaften 44, 32–33 (1957).

    Article  ADS  Google Scholar 

  • Münnich K. O., U. J. C. Vogel: (1) Durch Atombomben erzeugter Radiokohlenstoff in der Atmosphäre. Naturwissenschaften 14, 327–329 (1958).

    Article  Google Scholar 

  • Münnich K. O., U. J. C. Vogel: (2) Variations in C-14 content during the last years. Internat. C-14-Symposium Groningen 1959-

    Google Scholar 

  • Münnich K. O., U. J. C. Vogel: (3) Jahreszeitliche Schwankungen im C-14-Gehalt der Atmosphäre. Phys. Verh. 11, 62–63 (I960).

    Google Scholar 

  • Münnich K. O., U. J. C. Vogel: (4) C-14 age determination of deep ground-waters. Internat. Assoc. Sei. Hydrology. Commission of Subterrenean Waters, Publ. 52, 537–541 (1960).

    Google Scholar 

  • Nilsson R., K. Siegbahn, A. Berggren and B. Ingelman: Be-7 content in snow. Ark. Fysik 11, 445–451 (1957).

    Google Scholar 

  • Nilsson R., I. Olsson, A. Berggren and K. Siegbahn: S-35 and Be-7 contents in rain and snow. Ark. Geofys. 3, 111–122 (1959).

    Google Scholar 

  • Östlund, G.: Intern. Atomic Energy Agency Symposium on Detection and Use of Tritium in the Physical and Biological Science. Wien 1961.

    Google Scholar 

  • Patterson, R. L., and J. H. Blifford: Atmospheric carbon-14. Science 126, 26–28 (1957).

    Article  ADS  Google Scholar 

  • Peters, B.: (1) The nature of primary cosmic radiation. Progr. Cosmic Ray Physics 1, 193–244 (1952).

    Google Scholar 

  • Peters, B.: (2) Radioactive beryllium in the atmosphere and on the earth. Proc. Indian Acad. Sei. 41, 67–71 (1955).

    Google Scholar 

  • Peters, B.: (3) Über die Anwendbarkeit der Be-10-Methode zur Messung kosmischer Strahlungsintensität und der Ablagerungs-Geschwindigkeit von Tiefseesedimenten vor einigen Millionen Jahren. Z. Physik 148, 93–111 (1957).

    Article  ADS  Google Scholar 

  • Peters, B.: (4) Cosmic-ray produced radioactive isotopes as tracers for studying large-scale atmospheric circulation. J. Atmosph. Terr. Phys. 13, 351–370 (1959).

    Article  Google Scholar 

  • Pfotzer, G.: Die Neutronenkomponente der Ultrastrahlung. Naturwissenschaften 39, 149–158 (1952).

    Article  ADS  Google Scholar 

  • Rafter, T. A., and G. J. Fergusson: (1) ‘Atom bomb effect’–recent increase of carbon-14 content of the atmosphere and biosphere. Science 126, 557–558 (1957).

    Article  ADS  Google Scholar 

  • Rafter, T. A.,, and G. J. Fergusson: (2) Atmospheric radiocarbon as a tracer in geophysical circulation- problems. 2nd Conf. Atomic Energy Geneva 1958, Proc. 18, pp. 526–532 (1958).

    Google Scholar 

  • Rama, T.: Investigations of the radioisotopes Be-7, P-32 and S-35 in rain water. J. Geophys. Res. 65, 3773–3776 (i960).

    Google Scholar 

  • Rama, T., and P. K. Zutshi: Annual deposition of cosmic ray produced Be-7 at equatorial latitudes. Tellus 10, 99–103 (1958).

    Article  ADS  Google Scholar 

  • Reed, G. W., and A. Turkevich: Uranium, helium and the age of meteorites. Nature, Lond. 180, 594–596 (1957).

    Article  ADS  Google Scholar 

  • Revelle, R., and H. E. Suess: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric C02 during the past decades. Tellus 9, 18–27 (1957).

    Article  ADS  Google Scholar 

  • Riley, G. A., H. Stommel and D. F. Bumpus: Quantitative ecology of the plankton of the western North Atlantic. Bull. Bingham Ocean. Coll. 12, Art. 3, 169 (1949).

    Google Scholar 

  • Rose, D. C., K. B. Fenton, J. Katzman and J. A. Simpson: Latitude effect of the cosmic ray nucleon and meson components at sea level from the arctic to the antarctic. Canad. J. Phys. 34, 968–984 (1956).

    Article  ADS  Google Scholar 

  • Rossi, B.: High-energy particles. New York 1952.

    Google Scholar 

  • Rubey, W. W.: Geologic history of sea water. Bull. Geol. Soc. Amer. 62, 1111–1147 (1951).

    Article  Google Scholar 

  • Rudstam, S. G.: (1) Spallation of vanadium, manganese, and cobalt with 187 MeV protons. Phil. Mag. 44 (7), 1131–1141 (1953).

    Google Scholar 

  • Rudstam, S. G.: (2) Spallation of elements in the mass range 51–75- Phil. Mag. (7) 46, 344–356 (1955).

    Google Scholar 

  • Schaeffer, O. A., and D. E. Fisher: Exposure ages for iron meteorites. Nature, Lond. 186, 1040–1042 (I960).

    Google Scholar 

  • Schaeffer, O. A., S. O. Thompson and N. L. Lark: Chlorine-36 radioactivity in rain. J. Geophys. Res. 65, 4013–4016 (I960).

    Google Scholar 

  • Schaeffer, O. A., U. J. Zähringer: Helium- und Argon-Erzeugung in Eisentargets durch energiereiche Protonen. Z. Naturforsch. 13a, 346–347 (1958).

    ADS  Google Scholar 

  • Schumann, G., U. G. Eulitz: Die jahreszeitliche Variation der stratosphärischen Fallout- Komponente. Naturwissenschaften 47, 13–14 (I960).

    Google Scholar 

  • Serber, R.: Nuclear reactions at high energies. Phys. Rev. 72, 1114–1115 (1947)

    Article  ADS  Google Scholar 

  • Shedlovsky, J. P.: Cosmic ray produced Mn-53 in iron meteorites. Geochim. et Cosmochim. Acta 21, 156–158 (1960).

    Google Scholar 

  • Simpson, J. A.: (1) Neutrons produced in the atmosphere by the cosmic radiations. Phys. Rev. 83, 1175–1188 (1951).

    Article  ADS  Google Scholar 

  • Simpson, J. A.: (2) The production of tritium and C-14 in the terrestrial atmosphere by solar protons. J. Geophys. Res. 65, 1615–1616 (1960).

    Article  ADS  Google Scholar 

  • Simpson J. A., H. W. Baldwin and R. B. Uretz: Nuclear bursts produced in the low energy nuclear component of the cosmic radiation. Phys. Rev. 84, 332–339 (1951)

    Article  ADS  Google Scholar 

  • Simpson J. A. and W. C. Fagot: Properties of the low energy nucleonic component at large atmospheric depths. Phys. Rev. 90, 1068–1072 (1953).

    Article  ADS  Google Scholar 

  • Soberman, R. K.: High-altitude cosmic-ray neutron intensity variations. Phys. Rev. 102, 1399 - 1409 (1956).

    Article  ADS  Google Scholar 

  • Sprenkel, E. L., R. Davis and E. O. Wiig: Cosmic-ray produced CI36 and A39 in iron meteorites. Bull. Amer. Phys. Soc. 4, 223 (1959).

    Google Scholar 

  • Stewart, N. G., R. G. D. Osmond, R. N. Crooks and E. M. Fisher: The world-wide deposition of long-lived fisson products from nuclear test explosions. Atomic Energy Res. Establ. Harwell HP/R. 2354 (1957).

    Google Scholar 

  • Stoenner, R. W., O. A. Schaeffer and R. Davis: Meteorites as space probes for testing

    Google Scholar 

  • Stoenner, R. W: the spatial constancy of cosmic radiation. J. Geophys. Res. 65, 3025–3034 (1960).

    Article  ADS  Google Scholar 

  • Stoenner, R. W and J. Zähringer: Potassium-argon age of iron meteorites. Geochim. et Cosmochim. Acta 15, 40–50 (1958).

    Google Scholar 

  • Stuiver, M.: Variations in radiocarbon concentration and sun spot activity. J. Geophys. Res. 66, 273–276 (1961).

    Article  ADS  Google Scholar 

  • Suess, H. E.: (1) Radiocarbon concentration in modern wood. Science 122, 415–417 (1955).

    Article  ADS  Google Scholar 

  • Suess, H. E.: (2) The radioactivity of the atmosphere and hydrosphere. Annual Rev. Nucl. Sei. 8, 243–256 (1958).

    Article  ADS  Google Scholar 

  • Vernov, S. N., and N. L. Grigorov: Interaction of primary cosmic ray particles of different energies with the nuclei in the atmosphere. Nuovo Cim. (10) Suppl. 4, 879–889 (1956).

    Article  Google Scholar 

  • Vilcsek, E., u. H. Wänke: Natrium-22 im Meteorit Breitscheid. Z. Naturforsch. 15a, 1004–1007 (1960).

    ADS  Google Scholar 

  • Voshage, H., U. H. Hintenberger: Die Kalium-Isotope als Reaktionsprodukte der kosmischen Strahlung im Eisenmeteoriten Carbo. Z. Naturforsch. 14a, 194–195 (1959).

    ADS  Google Scholar 

  • Vries, HL. DE: Variation in concentration of radiocarbon with time and location on earth. Proc. Kon. Ned. Akad. Wet. B 61, No. 2, 1–9 (1958).

    Google Scholar 

  • Wänke, H.: (1) Scandium-45 als Reaktionsprodukt der Höhenstrahlung in Eisenmeteoriten I. Z. Naturforsch. 13a, 645–649 (1958).

    ADS  Google Scholar 

  • Wänke, H.: (2) Über den Kaliumgehalt der Chondrite, Achondrite und Siderite. Z. Naturforsch. 16a, 127–130 (1961).

    ADS  Google Scholar 

  • Wänke, H.: and E. Vilcsek: Argon-39 als Reaktionsprodukt der Höhenstrahlung in Eisenmeteoriten. Z. Naturforsch. 14a, 929–934 (1959)

    Google Scholar 

  • Wheeler, J. A.: Some consequences of the electromagnetic interaction between J- mesons and nuclei. Rev. Mod. Phys. 21, 133–143 (1949).

    Article  ADS  Google Scholar 

  • Willis, E. H., H. Tauber and K. O. Münnich: Variations in the atmospheric radiocarbon concentration over the past 1300 years. Amer. J. Sei. Radiocarbon Suppl. 2, 1–4 (1960).

    Google Scholar 

  • Winckler, J. R.: Balloon study of high-altitude radiations during the International Geophysical Year. J. Geophys. Res. 65, 1331–1360 (i960).

    Google Scholar 

  • Winsberg, L.: The production of chlorine-39 in the lower atmosphere by cosmic radiation. Geochim. et Cosmochim. Acta 9, 183–189 (1956).

    Google Scholar 

  • Yuan, L. C. L.: Distribution of slow neutrons in free atmosphere up to 100000 ft. Phys. Rev. 81, 175–184 (1951).

    Article  ADS  Google Scholar 

  • Zähringer, J.: Priv. Mitteilung.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer- Verlag OHG / Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Haxel, O., Schumann, G. (1962). Erzeugung radioaktiver Kernarten durch die kosmische Strahlung. In: Israël, H., Krebs, A. (eds) Nuclear Radiation in Geophysics / Kernstrahlung in der Geophysik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-92837-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-92837-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49046-0

  • Online ISBN: 978-3-642-92837-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics