Advertisement

Radioactivity in Oceanography

Chapter

Zusammenfassung

Die Verwendung radioaktiver Isotope bei ozeanographischen Untersuchungen hat in den letzten 20 Jahren dank der Entwicklung der Radiumchemie und der Verbesserung der Nachweismethoden rasch zugenommen. Im Wasser der Ozeane und in den Tiefsee-Sedimenten sind eine große Zahl von Radioisotopen bekannt, die sich in der Mehrzahl von den Zerfallsreihen des Urans und des Thoriums herleiten. Im Ozeanwasser ist die Radioaktivität im wesentlichen getragen von U238, U235, U234, Ra226 und ihren Folgeprodukten, ferner von K40, C14 und zu einem sehr geringen Teil vom H3. Künstlich erzeugte Isotope wie Sr90, Cs137, Ce144 und Pr147 sind nur in geringem Maße vorhanden, nehmen aber zu. Die Radioaktivität junger Tief see-Sedimente ist in der Hauptsache von folgenden Isotopen getragen: Th232 und Th230 mit ihren Folgeprodukten, Pa231 mit seinen Tochterprodukten, K40, C14 und Uran-Isotope. Die einzelnen Isotope sind absteigend nach dem Anteil ihres Beitrages zur Gesamtaktivität geordnet.

Wichtigste Anwendung radioaktiver Untersuchungen im Rahmen der Ozeano-graphie ist das Studium der Vermischung verschiedener Wassermassen, das durch Messungen des C14 und des Ra226 ermöglicht wird. Zum Studium von Diffusions-prozessen im Ozean und in den Sedimenten dient Ra226. Altersbestimmungen der Sedimente können für einen Altersbereich zwischen etwa 10000 bis 150000 Jahren aus dem Verhältnis Pa231/Th230 abgeleitet werden. C14-Datierungen in Carbonat- Sedimenten können bis zu maximalen Alterswerten von 40000 Jahren verwandt werden. Weitere Methoden beruhen auf der Bestimmung des Th230/Th232-Ver- hältnisses, des Th230-Zerfalls oder der Ra226-Verteilung in den Sedimenten.

Die Arbeit berichtet außerdem über wichtige neuere Erkenntnisse folgenden Inhalts: Die mittlere Aufenthaltszeit eines CO2-Moleküls in der Atmosphäre bis zu seinem Austausch mit Oberflächenwasser des Ozeans ist zu 7 Jahren zu schätzen. Das Verhältnis C14/C12 in mittleren Ozeantiefen läßt auf Verweilzeiten des Wassers in diesen Tiefen von 300 bis 1000 Jahren schließen, während sich aus dem gleichen Verhältnis die Verweilzeit von Tiefenwasser zwischen etwa 600 und 1500 Jahren ergibt. Die genannten Werte sind von Ozean zu Ozean verschieden. Aus C14-Datierungen läßt sich schließen, daß der letzte große Klimawechsel vor etwa 11000 Jahren stattgefunden hat, während Pa231/Th230-Datierungen in den Ozean-Sedimenten erkennen lassen, daß die letzte Zwischeneiszeit vor etwa 100 000 Jahren begann und etwa vor 65 000 Jahren endigte.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldrich, L. T., G. W. Wetherill, G. R. Tilton and G. L. Davis: Half-life of Rb87. Phys. Rev. 103, 1045–1047 (1956).ADSCrossRefGoogle Scholar
  2. Almodovar, I. : Thorium isotope method for dating marine sediments. Thesis, Carnegie Institute of Technology, Dept. of Chemistry I960.Google Scholar
  3. Arnold, J. R.: Scintillation counting of natural radiocarbon. Science 119, 155–158 (1954).ADSCrossRefGoogle Scholar
  4. Arnold, J. R.: Beryllium-10 produced by cosmic rays. Science 124, 584–585 (1956).ADSCrossRefGoogle Scholar
  5. Arnold, J. R., and H. A. Al-Salih: Beryllium-7 produced by cosmic rays. Science 121, 451–453 (1955).ADSCrossRefGoogle Scholar
  6. Arnold, J. R. and E. C. Anderson: The distribution of C14 in nature. Tellus 9, 28–32 (1957).ADSCrossRefGoogle Scholar
  7. Arrhenius, G.: Sediment cores from the east Pacific. Swedish Deep Sea Exped. 1947–1948. Repts. 5, fasc. I, 227 p. (1952).Google Scholar
  8. Arrhenius, G. : Sedimentation on the ocean floor. In: Researches in geochemistry, P. H. ABELSON, ed. , p. 1–24. New York: John Wiley & Sons 1959.Google Scholar
  9. Aten, A. H. W.: Radioactivity in marine organisms. In: United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/402, proc., vol. 18, p. 414–418 (1958).Google Scholar
  10. Baranov, V. I. , and L. A. Kuzmina: Radiochemical analysis of deep sea sediments in con-nection with the determination of the rate of sediment accumulation. In: Radioisotopes in scientific research. First UNESCO Internat. Conf. , Paris, 1957, Proc. vol. II, Chemistry and Geology, p. 601–618 (1957)-Google Scholar
  11. Baranov, V. I., and L. A. Kuzmina: The rate of silt deposition in the Indian Ocean. Geochemistry (English translation of Geokhimiya) No. 2, 131–140 (1958).Google Scholar
  12. Barker, A.: Radiocarbon dating; large scale preparation of acetylene from organic material. Nature, Lond. 172, 631–632 (1953).ADSCrossRefGoogle Scholar
  13. Barnes, J. W., E. J. Lang and H. A. Potratz: A radiochemical procedure for thorium and its applications to the determination of ionium. U. S. Atomic Energy Commission Report, LA-1845, 19 p (1954).Google Scholar
  14. Barnes, J. W., E. J. Lang and H. A. Potratz: Ratio of ionium to uranium in coral limestone. Science 124, 175–176 (1956).ADSCrossRefGoogle Scholar
  15. Begemann, F.: New measurements on the world-wide distribution of natural and artificially produced tritium. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/1963, Proc., vol. 18, p. 545–550 (1958).Google Scholar
  16. Begemann, F. and W. F. Libby: Continental water balance, ground water inventory and storage time, surface ocean mixing rates, and world-wide water circulation patterns from cosmic ray and bomb tritium. Geochim. et Cosmochim. Acta 12, 277–296 (1957).Google Scholar
  17. Bien, G. S. , N. W. Rakestraw and H. E. SUESS: Radiocarbon concentration in Pacific Ocean water. Tellus 12, 436–443 (I960).Google Scholar
  18. Bolin, B.: On the use of tritium as a tracer for water in nature. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/176, Proc., vol. 18, p. 336–343 (1958).Google Scholar
  19. Bolin, B. : On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12, 274–281 (I960).Google Scholar
  20. Bowen, V. T., and T. T. Sugihara: Strontium-90 in North Atlantic surface waters. Proc. Nat. Acad. Sci., Wash. 43, 576–580 (1957).ADSCrossRefGoogle Scholar
  21. Bowen, V. T., and T. T. Sugihara: Marine geochemical studies with fallout radioisotopes. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/403, Proc., vol. 18, p. 431–438 (1958).Google Scholar
  22. Bowen, V. T. , and T. T. Sugihara: Strontium-90 in the “mixed layer” of the Atlantic Ocean. Nature, Lond. 186, 71–72 (I960).Google Scholar
  23. Brannon, R. R., A. C. Daughtry, D. Perry, W. W. Whitaker and M. Williams: Radiocarbon evidence on the dilution of atmospheric oceanic carbon by carbon from fossil fuels. Trans. Amer. Geophys. Un. 38, 643–650 (1957)Google Scholar
  24. Broecker, W. S. , M. Ewing and B. C. Heezen: Evidence for an abrupt change in climate close to 11000 years ago. Amer. J. Sei. 258, 429–448 (i960).Google Scholar
  25. Broecker, W. S. R. Gerard, M. Ewing and B. C. Heezen: Natural radiocarbon in the Atlantic Ocean. J. Geophys. Res. 65, 2903–2931 (I960).Google Scholar
  26. Broecker, W. S., and E. A. Olson: Lamont radiocarbon measurements. VI. Amer. J. Sei. Radiocarbon Suppl. 1, 111–132 (1959).Google Scholar
  27. Broecker, W. S. Radiocarbon from nuclear tests, II. Science 32, 712–721 (1960).ADSCrossRefGoogle Scholar
  28. C. S. Tucek and E. A. Olson: Radiocarbon analysis of oceanic C02. Appl. Radiation ar. d Isotopes 7, 1–18 (1959).CrossRefGoogle Scholar
  29. Brown, R. M., and W. E. Grummitt: The determination of tritium in natural waters. Canad. J. Chem. 34, 220–226 (1956).CrossRefGoogle Scholar
  30. Burke jr., W. H., and W. G. Meinschein: C14 dating with a methane proportional counter. Rev. Sei. Instrum. 26, 1137–1140 (1955).ADSCrossRefGoogle Scholar
  31. Buttlar, H. V., and W. F. Libby: Natural distribution of cosmic ray produced tritium. II. J. Inorg. and Nucl. Chem. 1, 75–91 (1955).CrossRefGoogle Scholar
  32. Cannon jr., R. S., L. R. Stieff and T. W. Stern: Radiogenic lead in nonradioactive minerals. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, P/773, Proc., vol. 2, p. 215–223 (1958).Google Scholar
  33. Chow, T. J.: Lead isotopes in sea water and marine sediments. J. Mar. Res. 17, 120–127 (1958).Google Scholar
  34. Chow, T. J. and C. R. Mckinney: Mass spectrometric determination of lead in manganese nodules.Google Scholar
  35. Chow, T. J. Analyt. Chem. 30, 1499–1503 (1958).CrossRefGoogle Scholar
  36. Chow, T. J. and C. C. Patterson: Lead isotopes in manganese nodules. Geochim. et Cosmochim. Acta 17, 21–31 (1959).Google Scholar
  37. Craig, H.: The geochemistry of the stable carbon isotopes. Geochim. et Cosmochim. Acta 3, 53–92 (1953).MathSciNetGoogle Scholar
  38. Craig, H.: The natural distribution of radiocarbon and the exchange time of carbon dioxide between the atmosphere and sea. Tellus 9, 1–17 (1957a).ADSCrossRefGoogle Scholar
  39. Craig, H.: Distribution, production rate, and possible solar origin of natural tritium. Phys. Rev. 105, 1125–1127 (1957b).ADSCrossRefGoogle Scholar
  40. Craig, H.: Study of mixing rates in oceans and air using carbon-14. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/1979, Proc., vol. 18, p. 358–363 (1958).Google Scholar
  41. Craig, H. and D. Lal: The production rate of natural tritium. Tellus 13, 85–105 (1961).ADSCrossRefGoogle Scholar
  42. Crathorn, A. R.: Use of an acetylene-filled counter for natural radiocarbon. Nature, Lond. 172, 632 - 633 (1953).ADSCrossRefGoogle Scholar
  43. Cruikshank, A. J., G. Cowper and W. E. Grummitt: Production of Be7 in the atmosphere. Canad. J. Chem. 34, 214–219 (1956).CrossRefGoogle Scholar
  44. Currie, L. A., W. F. Libby and R. L. Wolfgang: Tritium production by high energy photons. Phys. Rev. 101, 1557–1563 (1956).ADSCrossRefGoogle Scholar
  45. Ehlmann, A. J.: Stages of glauconite formation in modern foraminiferal sediments. Geol. Soc. Amer., annual meeting, Denver, Colo 1960.Google Scholar
  46. Emiliani, C.: Pleistocene temperatures. J. Geology 63, 538–578 (1955).ADSCrossRefGoogle Scholar
  47. Emiliani, C.: Paleotemperature analysis of core 280 and pleistocene correlations. J. Geology 66, 264–275 (1958).ADSCrossRefGoogle Scholar
  48. Ericson, D. B., W. S. Broecker, J. L. Kulp and G. Wollin: Late-pleistocene climates and deep-sea sediments. Science 124, 385–389 (1956).ADSCrossRefGoogle Scholar
  49. Faltings, V. v., u. P. Harteck: Der Tritiumgehalt der Atmosphäre. Z. Naturforsch. 5a, 438–439 (1950).ADSGoogle Scholar
  50. Fergusson, G. J.: Reduction of atmospheric radiocarbon concentration by fossil fuel carbon dioxide and the mean life of carbon dioxide in the atmosphere. Proc. Roy. Soc. Lond. A 243, 561–564 (1958).ADSCrossRefGoogle Scholar
  51. Flynn, K. F., and L. E. Glendenin: Half-life and beta spectrum of Rb87. Phys. Rev. 116, 744–748 (1959).ADSCrossRefGoogle Scholar
  52. Foyn, E., B. Karlik, H. Pettersson and E. Rona: The radioactivity of sea water. Göteborgs Kgl. Vetenskaps-Vitterhets-Samhäll Handl., Ser. B 6, No. 12, 44 p., also, Nature, Lond. 143, 275–276 (1939).CrossRefGoogle Scholar
  53. Fonselius, S., and G. Östlund: Natural radiocarbon measurements on surface water from the North Atlantic and Arctic Sea. Tellus 11, 77–82 (1959).ADSCrossRefGoogle Scholar
  54. Giletti, B. F., F. Bazan and J. L. Kulp: The geochemistry of tritium. Trans. Amer. Geophys. Un. 39. 807–818 (1958).Google Scholar
  55. Goel, P. S., S. Jha, D. Lal, P. Radhakrishna and Rama: Cosmic ray produced beryllium isotopes in rain water. Nuclear Phys. 1, 196–201 (1956).ADSGoogle Scholar
  56. Goel, P. S. , D. P. Kharkar, D. LAL, V. Narasappaya, B. Peters and V. Yatirajam: The beryllium-10 concentration in deep sea sediments. Deep Sea Research 4, 202–210 (1957)-Google Scholar
  57. Goel, P. S N. Narasappaya, C. Prabhakara, Rama and P. K. Zutshi: Study of cosmic ray produced short-lived isotopes P32, P33, Be7 and S35 in tropical latitudes. Tellus 11, 91–100 (1959).Google Scholar
  58. Goldberg, E. D., and G. Arrhenius: Chemistry of Pacific pelagic sediments. Geochim. et Cosmochim. Acta 13, 153–212 (1958).Google Scholar
  59. Goel, P. S, and M. Koide: Ionium-thorium chronology in deep sea sediments of the Pacific. Science 128, 1003 (1958).ADSGoogle Scholar
  60. Goel, P. S C. C. Patterson and T. J. Chow: Ionium-thorium and lead isotope indicators of oceanic water masses. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, Geneva, 2nd, 1958, P/1980, vol. 18, p. 347–350 (1958).Google Scholar
  61. Goel, P. S, and E. Picciotto: Thorium determinations in manganese nodules. Science 121, 613–614 (1955).ADSGoogle Scholar
  62. Grosse, A. V., W. H. Johnston, R. L. Wolfgang and W. F. Libby: Tritium in nature. Science 113, 1–2 (1951).ADSCrossRefGoogle Scholar
  63. Hamer, A. N. , and E. J. Robbins: A search for variations in the natural abundance of uranium- 235. Geochim. et Cosmochim. Acta 19, 143–145 (I960).Google Scholar
  64. Haring, A., A. E. Devries and HL. Devries: Radiocarbon dating up to 70000 years by isotopic enrichment. Science 128, 472–473 (1958).ADSCrossRefGoogle Scholar
  65. Hecht, R., J. Korkisch, R. Patzak U. A. Thiard: Bestimmung kleinster Uranmengen in Gesteinen und natürlichen Wassern. Mikrochim. Acta (Wien) 7 /8, 1283–1309 (1956).Google Scholar
  66. Hernegger, F., U. B. Karlik: Die quantitative Bestimmung sehr kleiner Uranmengen und der Urangehalt des Meerwassers. Sitzungsber. Akad. Wiss. Wien, Math. -naturw. Kl., Abt. IIa 144, 21 (1934).Google Scholar
  67. Herr, W., u. Merz: Zur Bestimmung der Halbwertszeit des 187Re. Weitere Datierungen nach de Re/os Methode. Z. Naturforsch. 13a, 231–233 (1958).ADSGoogle Scholar
  68. Heydegger, H. R. , and P. K. Kuroda: Natural occurrence of the short-lived barium and strontium isotopes. J. Inorg. and Nucl. Chem. 12, 12–17 (1959)•Google Scholar
  69. Higano, R. : Radiochemical analysis of the equatorial Pacific surface water. Internat. Oceanographic Congr. , New York 1959, Preprints, p. 815–816.Google Scholar
  70. Hurley, P. M. , and others: Studies of the age of JF-phases in deep ocean sediments, in, variations in isotopic abundances of strontium, calcium and argon and related topics. U. S. Atomic Energy Commission Rept. , NYO-3941, p. 267–272 (I960).Google Scholar
  71. Isaac, N., and E. Picciotto: Ionium determination in deep sea sediments. Nature, Lond. 171, 742–743 (1953).ADSCrossRefGoogle Scholar
  72. Jentoft, R. E., and R. J. Robinson: The potassium-chlorinity ratio of ocean water. J. Mar. Res. 15, 170–180 (1956).Google Scholar
  73. Jones, W. M.: Half-life of tritium. Phys. Rev. 100, 124–125 (1955).ADSCrossRefGoogle Scholar
  74. Kaufman, S., and W. F. Libby: The natural distribution of tritium. Phys. Rev. 93, 1337–1344 (1954).ADSCrossRefGoogle Scholar
  75. Ketchum, B. H., and V. T. Bowen: Biological factors determining the distribution of radioisotopes in the sea. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2d, Geneva, 1958, P/402, Proc., vol. 18, p. 429–433 (1958).Google Scholar
  76. Koczy, F. F.: Natural radium as a tracer in the ocean. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2d, Geneva, 1958, P/2370, vol. 18, p. 351–357 (1958).Google Scholar
  77. Koczy, F. F., E. Picciotto, G. Poulaert et S. Wilgain: Mesure des isotopes du thorium dans l’eau de mer. Geochim. et Cosmochim. Acta 11, 103–129 (1957).Google Scholar
  78. Koczy, F. F. and H. Titze: Radium content of carbonate shells. J. Mar. Res. 17, 302–311 (1958).Google Scholar
  79. Koczy, F. F., E. Tomic U. T. Hecht: Zur Geochemie des Urans im Ostseebecken. Geochim. et Cosmochim. Acta 11, 86–102 (1957).ADSCrossRefGoogle Scholar
  80. Korkisch, J. , U. P. Antal: Zur Bestimmung von Mikrogrammengen Thorium in Silicat- gesteinen, Sedimenten und anderen Materialien nach vorangehender Anreicherung des Thoriums mittels Ionenaustausches. Z. Anal. Chem. 173, 126–138 (I960).Google Scholar
  81. Kröll, V.: The distribution of radium in deep sea cores. Swedish Deep Sea Exped., 1947 to 1948, Repts. 10, fasc. I, 32 p. (1955).Google Scholar
  82. Lal, D. , J. R. Arnold and M. Honda: Cosmic ray production rates of Be7 in oxygen and P32, P33, S35 in argon at mountain latitudes. Phys. Rev. 118, 1626–1632 (I960).Google Scholar
  83. Lal, D. , E. D. Goldberg and M. Koide: Cosmic ray produced silicon-32 in nature. Science 132, 332–337 (I960).Google Scholar
  84. Lal, D., P. K. Malhotra and B. Peters: On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmosph. Terr. Phys. 12, 306–328 (1958).Google Scholar
  85. Lal, D. , Rama and P. K. Zutshi: Radioisotopes P32, Be7 and S35 in the atmosphere. J. Geophys. Res. 65, 669–674 (I960).Google Scholar
  86. Libby, W. F.: Atmospheric helium three and radiocarbon from cosmic radiation. Phys. Rev. 69, 671–672 (1946).ADSCrossRefGoogle Scholar
  87. Libby,W. F.: Radiocarbon dating, 2nd ed., 1955, p-175-Chicago: Chicago University Press 1952.Google Scholar
  88. Libby,W. F.: Radioactive strontium fallout. Proc. Nat. Acad. Sei., Wash. 42, 365–390 (1956).ADSCrossRefGoogle Scholar
  89. Merrill, J. R., M. Honda and J. R. Arnold: Beryllium geochemistry and beryllium-10 age determinations. United Nations Internat. Conf. Peaceful Uses Atomic Energy, 2d, Geneva, 1958, P/412, Proc., vol. 2, p. 251–254 (1958).Google Scholar
  90. Libby, W. F. E. F. X. Lyden, M. Honda and J. R. Arnold: The sedimentary geochemistry of the beryllium isotopes. Geochim. et Cosmochim. Acta 18, 108–129 (i960).Google Scholar
  91. Münnich, K. O.: Heidelberg natural radiocarbon measurements. I. Science 126, 194–199 (1957).ADSGoogle Scholar
  92. Libby, W. U. and J. C. Vogel: Durch Atomexplosionen erzeugter Radiokohlenstoff in der Atmosphäre. Naturwissenschaften 45, 327–329 (1958).ADSCrossRefGoogle Scholar
  93. Nakai, Z. , S. Hattori, K. Honjo, T. Okutani and T. Kidachi: The present radioactive states of marine organisms in the sea adjacent to Japan. Internat. Cosmographic Congr. New York 1959. Preprints, p. 973–974.Google Scholar
  94. Nakanishi, M.: Fluorimetric mecrodetermination of uranium. V. The uranium content of sea water. Bull. Chem. Soc. Japan 24, 36–39 (1951).Google Scholar
  95. NBS (National Bur. of Standards): Redetermination of the half-life of carbon-14. U. S. Natl. Bur. of Standards Tech. News Bull. 45, p. 21 (1961).Google Scholar
  96. Nelepo, B. A. : Direct determination of radioactivity in the water of the Pacific Antarctic. Internat. Oceanographic Congr. , New York 1959. Preprints, p. 820.Google Scholar
  97. Nier, A. O.: The isotopic constitution of uranium and the half-lives of the uranium isotopes. Phys. Rev. 55, 150–153 (1939).ADSCrossRefGoogle Scholar
  98. Nier, A. O.: The isotopic constitution of radiogenic leads and the measurement of geologic time. II. Phys. Rev. 55, 153–163 (1939b).ADSzbMATHCrossRefGoogle Scholar
  99. Nier, A. O.: A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789–793 (1950).ADSCrossRefGoogle Scholar
  100. Patterson, C. C.: Age of meteorites and the earth. Geochim. et Cosmochim. Acta 10, 230–237 (1956).Google Scholar
  101. Nier, A. O.:, E. D. Goldberg and M. G. Inghram: Isotopic compositions of Quaternary leads from the Pacific Ocean. Bull. Geol. Soc. Amer. 64, 1387–1388 (1953).CrossRefGoogle Scholar
  102. Peters, B.: Radioactive beryllium in the atmosphere and on the earth. Proc. Ind. Acad. Sei. 41, 67–71 (1955).ADSGoogle Scholar
  103. Peters, B.:Über die Anwendbarkeit der Be~10-Methode für Messung kosmischer Strahlungsintensität und der Ablagerungsgeschwindigkeit von Tiefseesedimenten vor einigen Millionen Jahren. Z. Physik 148, 93–111 (1957).ADSCrossRefGoogle Scholar
  104. Peters, B.:Cosmic ray produced radioactive isotopes as tracers for studying large-scale atmospheric circulation. J. Atmosph. Terr. Phys. 13, 351–370 (1959).CrossRefGoogle Scholar
  105. Pettersson, H. : Das Verhältnis Thorium zu Uran in den Gesteinen und im Meer. Ann. Akad. Wiss. Wien, math. -naturw. Kl. 127–128 (1937)-Google Scholar
  106. Pettersson, H.:Radioactive elements in ocean waters and sediments. In: Nuclear geology, H. Faul, ed., p. 115–120. New York: John Wiley & Sons; London: Chapman & Hall Ltd. 1954.Google Scholar
  107. Picciotto, E., and S. Wilgain: Thorium determination in deep sea sediments. Nature, Lond. 173, 623–633 (1954).ADSCrossRefGoogle Scholar
  108. Piggot, C. S. : The radium content of ocean bottom sediments. Amer. J. Sei. 25, 229–238 (l933)-Google Scholar
  109. Piggot, C. S.: Radium content of ocean bottom sediments. Carnegie Inst. Wash. Publ. 556, Oceanography II, pt. 2, 183–193 (1944).Google Scholar
  110. Piggot, C. S. and W. D. Urry: The radium content of an ocean bottom core. J. Wash. Acad. Sei. 29, 405–415 (1939).Google Scholar
  111. Rafter, T. A. , and G. J. Fergusson: “Atom bomb effect” —recent increase of carbon-14 content of the atmosphere and biosphere. Science 126, 557–558 (1957)-Google Scholar
  112. Rafter, T. A., and G. J. Fergusson: Atmospheric radiocarbon as a tracer in geophysical circulation problems. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2d, Geneva 1958, P/2128, Proc., vol. 18, p. 526–532 (1958).Google Scholar
  113. Rama: Investigations of the radioisotopes Be7, P32, and S35 in rain water. J. Geophys. Res. 65, 3773–3776 (I960).Google Scholar
  114. M. Koide, and E. D. Goldberg: Lead-210 in natural waters. Science 134, 98–99 (1961).ADSCrossRefGoogle Scholar
  115. M. Koide, and P. K. Zutshi: Annual deposition of cosmic ray produced Be7 at equatorial latitudes. Tellus 10, 99–103 (1958).ADSCrossRefGoogle Scholar
  116. Rona, E., L. O. Gilpatrick and L. M. Jeffrey: Uranium determination in sea water. Trans. Amer. Geophys. Un. 37, 697–701 (1956)Google Scholar
  117. Rosholt, J. N. : Quantitative radiochemical determination for the sources of natural radioactivity. Analyt. Chem. 29, 1398–1408 (1957)-Google Scholar
  118. Rosholt, J. N.: Radioactive disequilibrium studies as an aid in understanding the natural migration of uranium and its decay products. In: United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/772, proc., vol. 2, p. 230–236 (1958).Google Scholar
  119. Rosholt, J. N., C. Emiliani, J. Geiss, F. F. Koczy and P. J. Wangersky: Absolute dating of deep-sea sediments by the Pa231/Th230 method. J. Geology 69, 162 - 185 (1961).Google Scholar
  120. Rubin, M.: U. S. Geological Survey radiocarbon dates. III. Science 123, 442–448 (1956).ADSCrossRefGoogle Scholar
  121. Rubin, M. and H. E. Suess: U. S. Geological survey radiocarbon dates. II. Science 121, 481–488 (1955).ADSCrossRefGoogle Scholar
  122. Russell, R. D. , and R. M. Farquhar: Lead isotopes in geology. 243 pp. New York: Inter- science Publishers I960.Google Scholar
  123. Sackett, W. M. : The protactinium-231 content of ocean water and sediments. Science 132, 1761–1762 (I960).Google Scholar
  124. Sackett, W. M.:H. Potratz and E. D. Goldberg: Thorium content of ocean water. Science 128, 204–205 (1958).Google Scholar
  125. Schaeffer, O. A. , S. O. Thompson and N. L. Lark: Chlorine-36 radioactivity in rain. J. Geophys. Res. 65, 4013–4016 (I960).Google Scholar
  126. Senftle, F. E., L. R. Stieff, F. Cuttitta and P. K. Kuroda: Comparison of the isotopic abundance of U235 and U238 and radium activity ratios in Colorado Plateau uranium ores. Geochim. et Cosmochim. Acta 11, 189–193 (1957).Google Scholar
  127. Smales, A. A., and L. Salmon: Determination by radioactivation of small amounts of rubidium and caesium in sea water and related materials of geochemical interest. Analyst 80, 37–50 (1955).ADSCrossRefGoogle Scholar
  128. Smales, A. A. and R. K. Webster: The determination of rubidium in sea water by stable isotope dilution method. Geochim. et Cosmochim. Acta 11, 139 (1957).Google Scholar
  129. Smith, A. P., and F. S. Grimaldi: The fluorimetric determination of uranium in nonsaline and saline waters. In F. S. Grimaldi Et Al., Compilers, Collected papers on methods for uranium and thorium. U. S. Geol. Survey Bull. 1006, p. 12–131 (1954).Google Scholar
  130. Starik, I. E., Y. V. Kuznetsov, S. M. Grashchenko and M. S. Frenklikh: The ionium method of determination of age of marine sediments. Geochemistry (English translation of Geokhimiya) No. 1, 1–15 (1958).Google Scholar
  131. Stewart, D. C., and W. C. Bentley: Analysis of uranium in sea water. Science 120, 50–52 (1954).ADSCrossRefGoogle Scholar
  132. Strom, K.: A concentration of uranium in black muds. Nature, Lond. 162, 922 (1948).ADSCrossRefGoogle Scholar
  133. Strominger, D., J. M. Hollander and G. T. Seaborg: Table of isotopes. Rev. Mod. Phys. 30, 585–904 (1958).ADSCrossRefGoogle Scholar
  134. Suess, H. E.: Natural radiocarbon measurements by acetylene counting. Science 120, 5–7 (1954).ADSCrossRefGoogle Scholar
  135. Suess, H. E.: Radiocarbon concentration in modern wood. Science 122, 415–417 (1955).ADSCrossRefGoogle Scholar
  136. Suess, H. E. and R. Revelle: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric C02 during the past decade. Tellus 9, 18–27 (1957).ADSCrossRefGoogle Scholar
  137. Sugihara, T. T., H. I. James, E. J. Troianello and V. T. Bowen: Radiochemical separation of fission products from large volumes of sea water, strontium, cesium, cerium, prome- thium. Analyt. Chem. 31, 44–49 (1959).CrossRefGoogle Scholar
  138. Sverdrup, H. U., M. W. Johnson and R. H. Fleming: The oceans, their physics, chemistry, and general biology. New York: Prentice-Hall, Inc. 1942, 1087 PGoogle Scholar
  139. Tilton, G. R., and G. L. Davis: Geochronology. In: Researches in Geochemistry, P. H. Abelson, ed., p. 190–213- New York: John Wiley & Sons 1959.Google Scholar
  140. Tomic, E., I. M. Ladenbauer U. M. Pollack: Beitrag zur Trennung des Uran von Thorium mittels Ionenaustausches und zur fluorimetrischen Uranbestimmung. Z. analyt. Chem. 161, 28–38 (1958).Google Scholar
  141. Urry, W. D.: Radioactivity in ocean sediments. VII. Rate of deposition of deep sea sediments. J. Marine Res. 7, 618–634 (1950).Google Scholar
  142. Vries, H. DE: Variation in concentration of radiocarbon with time and location on earth. Proc. Kon. Ned. Acad. Wet., Ser. B 61 (1958).Google Scholar
  143. Vries, H. DE: Atomic bomb effect, the natural activity of radiocarbon in plants, shells, and snails in the past 4 years. Science 128, 250–251 (1958).ADSCrossRefGoogle Scholar
  144. Vries, H. DE: Measurement and use of natural radiocarbon. In: Researches in geochemistry, P. H. Abelson, ed. , p. 169–189. New York: John Wiley & Sons 1959.Google Scholar
  145. Vries, H. DE and G. W. Barendsen: A new technique for radiocarbon dating by a proportional counter filled with carbon dioxide. Physica, Haag 19, 987–1003 (1953).ADSCrossRefGoogle Scholar
  146. Volchok, H. L., and J. E. Kulp: The ionium method of age determination. Geochim. et Cosmochim. Acta 11, 219–246 (1957).Google Scholar
  147. Wasserburg, G. L., R. J. Hayden and K. J. Jensen: A4–K40 dating of igneous rocks and sediments. Geochim. et Cosmochim. Acta 10, 153–165 (1956).Google Scholar
  148. Wetherill, G. W.: Radioactivity of potassium and geologic time. Science 126, 545–549 (1957).ADSCrossRefGoogle Scholar
  149. Wilson, A. T. , and G. J. Fergusson: Origin of terrestrial tritium. Geochim. et Cosmochim. Acta 18, 273–277 (I960).Google Scholar
  150. Yamagata, N. , and S. Matsuda: Cerium-137 in the coastal waters of Japan. Internat. Cosmo- graphic Congr. , New York 1959, Preprints, p. 825–827.Google Scholar

Copyright information

© Springer- Verlag OHG / Berlin · Göttingen · Heidelberg 1962

Authors and Affiliations

There are no affiliations available

Personalised recommendations