Skip to main content

Radioactivity in Oceanography

  • Chapter

Zusammenfassung

Die Verwendung radioaktiver Isotope bei ozeanographischen Untersuchungen hat in den letzten 20 Jahren dank der Entwicklung der Radiumchemie und der Verbesserung der Nachweismethoden rasch zugenommen. Im Wasser der Ozeane und in den Tiefsee-Sedimenten sind eine große Zahl von Radioisotopen bekannt, die sich in der Mehrzahl von den Zerfallsreihen des Urans und des Thoriums herleiten. Im Ozeanwasser ist die Radioaktivität im wesentlichen getragen von U238, U235, U234, Ra226 und ihren Folgeprodukten, ferner von K40, C14 und zu einem sehr geringen Teil vom H3. Künstlich erzeugte Isotope wie Sr90, Cs137, Ce144 und Pr147 sind nur in geringem Maße vorhanden, nehmen aber zu. Die Radioaktivität junger Tief see-Sedimente ist in der Hauptsache von folgenden Isotopen getragen: Th232 und Th230 mit ihren Folgeprodukten, Pa231 mit seinen Tochterprodukten, K40, C14 und Uran-Isotope. Die einzelnen Isotope sind absteigend nach dem Anteil ihres Beitrages zur Gesamtaktivität geordnet.

Wichtigste Anwendung radioaktiver Untersuchungen im Rahmen der Ozeano-graphie ist das Studium der Vermischung verschiedener Wassermassen, das durch Messungen des C14 und des Ra226 ermöglicht wird. Zum Studium von Diffusions-prozessen im Ozean und in den Sedimenten dient Ra226. Altersbestimmungen der Sedimente können für einen Altersbereich zwischen etwa 10000 bis 150000 Jahren aus dem Verhältnis Pa231/Th230 abgeleitet werden. C14-Datierungen in Carbonat- Sedimenten können bis zu maximalen Alterswerten von 40000 Jahren verwandt werden. Weitere Methoden beruhen auf der Bestimmung des Th230/Th232-Ver- hältnisses, des Th230-Zerfalls oder der Ra226-Verteilung in den Sedimenten.

Die Arbeit berichtet außerdem über wichtige neuere Erkenntnisse folgenden Inhalts: Die mittlere Aufenthaltszeit eines CO2-Moleküls in der Atmosphäre bis zu seinem Austausch mit Oberflächenwasser des Ozeans ist zu 7 Jahren zu schätzen. Das Verhältnis C14/C12 in mittleren Ozeantiefen läßt auf Verweilzeiten des Wassers in diesen Tiefen von 300 bis 1000 Jahren schließen, während sich aus dem gleichen Verhältnis die Verweilzeit von Tiefenwasser zwischen etwa 600 und 1500 Jahren ergibt. Die genannten Werte sind von Ozean zu Ozean verschieden. Aus C14-Datierungen läßt sich schließen, daß der letzte große Klimawechsel vor etwa 11000 Jahren stattgefunden hat, während Pa231/Th230-Datierungen in den Ozean-Sedimenten erkennen lassen, daß die letzte Zwischeneiszeit vor etwa 100 000 Jahren begann und etwa vor 65 000 Jahren endigte.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldrich, L. T., G. W. Wetherill, G. R. Tilton and G. L. Davis: Half-life of Rb87. Phys. Rev. 103, 1045–1047 (1956).

    Article  ADS  Google Scholar 

  • Almodovar, I. : Thorium isotope method for dating marine sediments. Thesis, Carnegie Institute of Technology, Dept. of Chemistry I960.

    Google Scholar 

  • Arnold, J. R.: Scintillation counting of natural radiocarbon. Science 119, 155–158 (1954).

    Article  ADS  Google Scholar 

  • Arnold, J. R.: Beryllium-10 produced by cosmic rays. Science 124, 584–585 (1956).

    Article  ADS  Google Scholar 

  • Arnold, J. R., and H. A. Al-Salih: Beryllium-7 produced by cosmic rays. Science 121, 451–453 (1955).

    Article  ADS  Google Scholar 

  • Arnold, J. R. and E. C. Anderson: The distribution of C14 in nature. Tellus 9, 28–32 (1957).

    Article  ADS  Google Scholar 

  • Arrhenius, G.: Sediment cores from the east Pacific. Swedish Deep Sea Exped. 1947–1948. Repts. 5, fasc. I, 227 p. (1952).

    Google Scholar 

  • Arrhenius, G. : Sedimentation on the ocean floor. In: Researches in geochemistry, P. H. ABELSON, ed. , p. 1–24. New York: John Wiley & Sons 1959.

    Google Scholar 

  • Aten, A. H. W.: Radioactivity in marine organisms. In: United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/402, proc., vol. 18, p. 414–418 (1958).

    Google Scholar 

  • Baranov, V. I. , and L. A. Kuzmina: Radiochemical analysis of deep sea sediments in con-nection with the determination of the rate of sediment accumulation. In: Radioisotopes in scientific research. First UNESCO Internat. Conf. , Paris, 1957, Proc. vol. II, Chemistry and Geology, p. 601–618 (1957)-

    Google Scholar 

  • Baranov, V. I., and L. A. Kuzmina: The rate of silt deposition in the Indian Ocean. Geochemistry (English translation of Geokhimiya) No. 2, 131–140 (1958).

    Google Scholar 

  • Barker, A.: Radiocarbon dating; large scale preparation of acetylene from organic material. Nature, Lond. 172, 631–632 (1953).

    Article  ADS  Google Scholar 

  • Barnes, J. W., E. J. Lang and H. A. Potratz: A radiochemical procedure for thorium and its applications to the determination of ionium. U. S. Atomic Energy Commission Report, LA-1845, 19 p (1954).

    Google Scholar 

  • Barnes, J. W., E. J. Lang and H. A. Potratz: Ratio of ionium to uranium in coral limestone. Science 124, 175–176 (1956).

    Article  ADS  Google Scholar 

  • Begemann, F.: New measurements on the world-wide distribution of natural and artificially produced tritium. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/1963, Proc., vol. 18, p. 545–550 (1958).

    Google Scholar 

  • Begemann, F. and W. F. Libby: Continental water balance, ground water inventory and storage time, surface ocean mixing rates, and world-wide water circulation patterns from cosmic ray and bomb tritium. Geochim. et Cosmochim. Acta 12, 277–296 (1957).

    Google Scholar 

  • Bien, G. S. , N. W. Rakestraw and H. E. SUESS: Radiocarbon concentration in Pacific Ocean water. Tellus 12, 436–443 (I960).

    Google Scholar 

  • Bolin, B.: On the use of tritium as a tracer for water in nature. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/176, Proc., vol. 18, p. 336–343 (1958).

    Google Scholar 

  • Bolin, B. : On the exchange of carbon dioxide between the atmosphere and the sea. Tellus 12, 274–281 (I960).

    Google Scholar 

  • Bowen, V. T., and T. T. Sugihara: Strontium-90 in North Atlantic surface waters. Proc. Nat. Acad. Sci., Wash. 43, 576–580 (1957).

    Article  ADS  Google Scholar 

  • Bowen, V. T., and T. T. Sugihara: Marine geochemical studies with fallout radioisotopes. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/403, Proc., vol. 18, p. 431–438 (1958).

    Google Scholar 

  • Bowen, V. T. , and T. T. Sugihara: Strontium-90 in the “mixed layer” of the Atlantic Ocean. Nature, Lond. 186, 71–72 (I960).

    Google Scholar 

  • Brannon, R. R., A. C. Daughtry, D. Perry, W. W. Whitaker and M. Williams: Radiocarbon evidence on the dilution of atmospheric oceanic carbon by carbon from fossil fuels. Trans. Amer. Geophys. Un. 38, 643–650 (1957)

    Google Scholar 

  • Broecker, W. S. , M. Ewing and B. C. Heezen: Evidence for an abrupt change in climate close to 11000 years ago. Amer. J. Sei. 258, 429–448 (i960).

    Google Scholar 

  • Broecker, W. S. R. Gerard, M. Ewing and B. C. Heezen: Natural radiocarbon in the Atlantic Ocean. J. Geophys. Res. 65, 2903–2931 (I960).

    Google Scholar 

  • Broecker, W. S., and E. A. Olson: Lamont radiocarbon measurements. VI. Amer. J. Sei. Radiocarbon Suppl. 1, 111–132 (1959).

    Google Scholar 

  • Broecker, W. S. Radiocarbon from nuclear tests, II. Science 32, 712–721 (1960).

    Article  ADS  Google Scholar 

  • C. S. Tucek and E. A. Olson: Radiocarbon analysis of oceanic C02. Appl. Radiation ar. d Isotopes 7, 1–18 (1959).

    Article  Google Scholar 

  • Brown, R. M., and W. E. Grummitt: The determination of tritium in natural waters. Canad. J. Chem. 34, 220–226 (1956).

    Article  Google Scholar 

  • Burke jr., W. H., and W. G. Meinschein: C14 dating with a methane proportional counter. Rev. Sei. Instrum. 26, 1137–1140 (1955).

    Article  ADS  Google Scholar 

  • Buttlar, H. V., and W. F. Libby: Natural distribution of cosmic ray produced tritium. II. J. Inorg. and Nucl. Chem. 1, 75–91 (1955).

    Article  Google Scholar 

  • Cannon jr., R. S., L. R. Stieff and T. W. Stern: Radiogenic lead in nonradioactive minerals. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, P/773, Proc., vol. 2, p. 215–223 (1958).

    Google Scholar 

  • Chow, T. J.: Lead isotopes in sea water and marine sediments. J. Mar. Res. 17, 120–127 (1958).

    Google Scholar 

  • Chow, T. J. and C. R. Mckinney: Mass spectrometric determination of lead in manganese nodules.

    Google Scholar 

  • Chow, T. J. Analyt. Chem. 30, 1499–1503 (1958).

    Article  Google Scholar 

  • Chow, T. J. and C. C. Patterson: Lead isotopes in manganese nodules. Geochim. et Cosmochim. Acta 17, 21–31 (1959).

    Google Scholar 

  • Craig, H.: The geochemistry of the stable carbon isotopes. Geochim. et Cosmochim. Acta 3, 53–92 (1953).

    MathSciNet  Google Scholar 

  • Craig, H.: The natural distribution of radiocarbon and the exchange time of carbon dioxide between the atmosphere and sea. Tellus 9, 1–17 (1957a).

    Article  ADS  Google Scholar 

  • Craig, H.: Distribution, production rate, and possible solar origin of natural tritium. Phys. Rev. 105, 1125–1127 (1957b).

    Article  ADS  Google Scholar 

  • Craig, H.: Study of mixing rates in oceans and air using carbon-14. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/1979, Proc., vol. 18, p. 358–363 (1958).

    Google Scholar 

  • Craig, H. and D. Lal: The production rate of natural tritium. Tellus 13, 85–105 (1961).

    Article  ADS  Google Scholar 

  • Crathorn, A. R.: Use of an acetylene-filled counter for natural radiocarbon. Nature, Lond. 172, 632 - 633 (1953).

    Article  ADS  Google Scholar 

  • Cruikshank, A. J., G. Cowper and W. E. Grummitt: Production of Be7 in the atmosphere. Canad. J. Chem. 34, 214–219 (1956).

    Article  Google Scholar 

  • Currie, L. A., W. F. Libby and R. L. Wolfgang: Tritium production by high energy photons. Phys. Rev. 101, 1557–1563 (1956).

    Article  ADS  Google Scholar 

  • Ehlmann, A. J.: Stages of glauconite formation in modern foraminiferal sediments. Geol. Soc. Amer., annual meeting, Denver, Colo 1960.

    Google Scholar 

  • Emiliani, C.: Pleistocene temperatures. J. Geology 63, 538–578 (1955).

    Article  ADS  Google Scholar 

  • Emiliani, C.: Paleotemperature analysis of core 280 and pleistocene correlations. J. Geology 66, 264–275 (1958).

    Article  ADS  Google Scholar 

  • Ericson, D. B., W. S. Broecker, J. L. Kulp and G. Wollin: Late-pleistocene climates and deep-sea sediments. Science 124, 385–389 (1956).

    Article  ADS  Google Scholar 

  • Faltings, V. v., u. P. Harteck: Der Tritiumgehalt der Atmosphäre. Z. Naturforsch. 5a, 438–439 (1950).

    ADS  Google Scholar 

  • Fergusson, G. J.: Reduction of atmospheric radiocarbon concentration by fossil fuel carbon dioxide and the mean life of carbon dioxide in the atmosphere. Proc. Roy. Soc. Lond. A 243, 561–564 (1958).

    Article  ADS  Google Scholar 

  • Flynn, K. F., and L. E. Glendenin: Half-life and beta spectrum of Rb87. Phys. Rev. 116, 744–748 (1959).

    Article  ADS  Google Scholar 

  • Foyn, E., B. Karlik, H. Pettersson and E. Rona: The radioactivity of sea water. Göteborgs Kgl. Vetenskaps-Vitterhets-Samhäll Handl., Ser. B 6, No. 12, 44 p., also, Nature, Lond. 143, 275–276 (1939).

    Article  Google Scholar 

  • Fonselius, S., and G. Östlund: Natural radiocarbon measurements on surface water from the North Atlantic and Arctic Sea. Tellus 11, 77–82 (1959).

    Article  ADS  Google Scholar 

  • Giletti, B. F., F. Bazan and J. L. Kulp: The geochemistry of tritium. Trans. Amer. Geophys. Un. 39. 807–818 (1958).

    Google Scholar 

  • Goel, P. S., S. Jha, D. Lal, P. Radhakrishna and Rama: Cosmic ray produced beryllium isotopes in rain water. Nuclear Phys. 1, 196–201 (1956).

    ADS  Google Scholar 

  • Goel, P. S. , D. P. Kharkar, D. LAL, V. Narasappaya, B. Peters and V. Yatirajam: The beryllium-10 concentration in deep sea sediments. Deep Sea Research 4, 202–210 (1957)-

    Google Scholar 

  • Goel, P. S N. Narasappaya, C. Prabhakara, Rama and P. K. Zutshi: Study of cosmic ray produced short-lived isotopes P32, P33, Be7 and S35 in tropical latitudes. Tellus 11, 91–100 (1959).

    Google Scholar 

  • Goldberg, E. D., and G. Arrhenius: Chemistry of Pacific pelagic sediments. Geochim. et Cosmochim. Acta 13, 153–212 (1958).

    Google Scholar 

  • Goel, P. S, and M. Koide: Ionium-thorium chronology in deep sea sediments of the Pacific. Science 128, 1003 (1958).

    ADS  Google Scholar 

  • Goel, P. S C. C. Patterson and T. J. Chow: Ionium-thorium and lead isotope indicators of oceanic water masses. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, Geneva, 2nd, 1958, P/1980, vol. 18, p. 347–350 (1958).

    Google Scholar 

  • Goel, P. S, and E. Picciotto: Thorium determinations in manganese nodules. Science 121, 613–614 (1955).

    ADS  Google Scholar 

  • Grosse, A. V., W. H. Johnston, R. L. Wolfgang and W. F. Libby: Tritium in nature. Science 113, 1–2 (1951).

    Article  ADS  Google Scholar 

  • Hamer, A. N. , and E. J. Robbins: A search for variations in the natural abundance of uranium- 235. Geochim. et Cosmochim. Acta 19, 143–145 (I960).

    Google Scholar 

  • Haring, A., A. E. Devries and HL. Devries: Radiocarbon dating up to 70000 years by isotopic enrichment. Science 128, 472–473 (1958).

    Article  ADS  Google Scholar 

  • Hecht, R., J. Korkisch, R. Patzak U. A. Thiard: Bestimmung kleinster Uranmengen in Gesteinen und natürlichen Wassern. Mikrochim. Acta (Wien) 7 /8, 1283–1309 (1956).

    Google Scholar 

  • Hernegger, F., U. B. Karlik: Die quantitative Bestimmung sehr kleiner Uranmengen und der Urangehalt des Meerwassers. Sitzungsber. Akad. Wiss. Wien, Math. -naturw. Kl., Abt. IIa 144, 21 (1934).

    Google Scholar 

  • Herr, W., u. Merz: Zur Bestimmung der Halbwertszeit des 187Re. Weitere Datierungen nach de Re/os Methode. Z. Naturforsch. 13a, 231–233 (1958).

    ADS  Google Scholar 

  • Heydegger, H. R. , and P. K. Kuroda: Natural occurrence of the short-lived barium and strontium isotopes. J. Inorg. and Nucl. Chem. 12, 12–17 (1959)•

    Google Scholar 

  • Higano, R. : Radiochemical analysis of the equatorial Pacific surface water. Internat. Oceanographic Congr. , New York 1959, Preprints, p. 815–816.

    Google Scholar 

  • Hurley, P. M. , and others: Studies of the age of JF-phases in deep ocean sediments, in, variations in isotopic abundances of strontium, calcium and argon and related topics. U. S. Atomic Energy Commission Rept. , NYO-3941, p. 267–272 (I960).

    Google Scholar 

  • Isaac, N., and E. Picciotto: Ionium determination in deep sea sediments. Nature, Lond. 171, 742–743 (1953).

    Article  ADS  Google Scholar 

  • Jentoft, R. E., and R. J. Robinson: The potassium-chlorinity ratio of ocean water. J. Mar. Res. 15, 170–180 (1956).

    Google Scholar 

  • Jones, W. M.: Half-life of tritium. Phys. Rev. 100, 124–125 (1955).

    Article  ADS  Google Scholar 

  • Kaufman, S., and W. F. Libby: The natural distribution of tritium. Phys. Rev. 93, 1337–1344 (1954).

    Article  ADS  Google Scholar 

  • Ketchum, B. H., and V. T. Bowen: Biological factors determining the distribution of radioisotopes in the sea. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2d, Geneva, 1958, P/402, Proc., vol. 18, p. 429–433 (1958).

    Google Scholar 

  • Koczy, F. F.: Natural radium as a tracer in the ocean. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2d, Geneva, 1958, P/2370, vol. 18, p. 351–357 (1958).

    Google Scholar 

  • Koczy, F. F., E. Picciotto, G. Poulaert et S. Wilgain: Mesure des isotopes du thorium dans l’eau de mer. Geochim. et Cosmochim. Acta 11, 103–129 (1957).

    Google Scholar 

  • Koczy, F. F. and H. Titze: Radium content of carbonate shells. J. Mar. Res. 17, 302–311 (1958).

    Google Scholar 

  • Koczy, F. F., E. Tomic U. T. Hecht: Zur Geochemie des Urans im Ostseebecken. Geochim. et Cosmochim. Acta 11, 86–102 (1957).

    Article  ADS  Google Scholar 

  • Korkisch, J. , U. P. Antal: Zur Bestimmung von Mikrogrammengen Thorium in Silicat- gesteinen, Sedimenten und anderen Materialien nach vorangehender Anreicherung des Thoriums mittels Ionenaustausches. Z. Anal. Chem. 173, 126–138 (I960).

    Google Scholar 

  • Kröll, V.: The distribution of radium in deep sea cores. Swedish Deep Sea Exped., 1947 to 1948, Repts. 10, fasc. I, 32 p. (1955).

    Google Scholar 

  • Lal, D. , J. R. Arnold and M. Honda: Cosmic ray production rates of Be7 in oxygen and P32, P33, S35 in argon at mountain latitudes. Phys. Rev. 118, 1626–1632 (I960).

    Google Scholar 

  • Lal, D. , E. D. Goldberg and M. Koide: Cosmic ray produced silicon-32 in nature. Science 132, 332–337 (I960).

    Google Scholar 

  • Lal, D., P. K. Malhotra and B. Peters: On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology. J. Atmosph. Terr. Phys. 12, 306–328 (1958).

    Google Scholar 

  • Lal, D. , Rama and P. K. Zutshi: Radioisotopes P32, Be7 and S35 in the atmosphere. J. Geophys. Res. 65, 669–674 (I960).

    Google Scholar 

  • Libby, W. F.: Atmospheric helium three and radiocarbon from cosmic radiation. Phys. Rev. 69, 671–672 (1946).

    Article  ADS  Google Scholar 

  • Libby,W. F.: Radiocarbon dating, 2nd ed., 1955, p-175-Chicago: Chicago University Press 1952.

    Google Scholar 

  • Libby,W. F.: Radioactive strontium fallout. Proc. Nat. Acad. Sei., Wash. 42, 365–390 (1956).

    Article  ADS  Google Scholar 

  • Merrill, J. R., M. Honda and J. R. Arnold: Beryllium geochemistry and beryllium-10 age determinations. United Nations Internat. Conf. Peaceful Uses Atomic Energy, 2d, Geneva, 1958, P/412, Proc., vol. 2, p. 251–254 (1958).

    Google Scholar 

  • Libby, W. F. E. F. X. Lyden, M. Honda and J. R. Arnold: The sedimentary geochemistry of the beryllium isotopes. Geochim. et Cosmochim. Acta 18, 108–129 (i960).

    Google Scholar 

  • Münnich, K. O.: Heidelberg natural radiocarbon measurements. I. Science 126, 194–199 (1957).

    ADS  Google Scholar 

  • Libby, W. U. and J. C. Vogel: Durch Atomexplosionen erzeugter Radiokohlenstoff in der Atmosphäre. Naturwissenschaften 45, 327–329 (1958).

    Article  ADS  Google Scholar 

  • Nakai, Z. , S. Hattori, K. Honjo, T. Okutani and T. Kidachi: The present radioactive states of marine organisms in the sea adjacent to Japan. Internat. Cosmographic Congr. New York 1959. Preprints, p. 973–974.

    Google Scholar 

  • Nakanishi, M.: Fluorimetric mecrodetermination of uranium. V. The uranium content of sea water. Bull. Chem. Soc. Japan 24, 36–39 (1951).

    Google Scholar 

  • NBS (National Bur. of Standards): Redetermination of the half-life of carbon-14. U. S. Natl. Bur. of Standards Tech. News Bull. 45, p. 21 (1961).

    Google Scholar 

  • Nelepo, B. A. : Direct determination of radioactivity in the water of the Pacific Antarctic. Internat. Oceanographic Congr. , New York 1959. Preprints, p. 820.

    Google Scholar 

  • Nier, A. O.: The isotopic constitution of uranium and the half-lives of the uranium isotopes. Phys. Rev. 55, 150–153 (1939).

    Article  ADS  Google Scholar 

  • Nier, A. O.: The isotopic constitution of radiogenic leads and the measurement of geologic time. II. Phys. Rev. 55, 153–163 (1939b).

    Article  ADS  MATH  Google Scholar 

  • Nier, A. O.: A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77, 789–793 (1950).

    Article  ADS  Google Scholar 

  • Patterson, C. C.: Age of meteorites and the earth. Geochim. et Cosmochim. Acta 10, 230–237 (1956).

    Google Scholar 

  • Nier, A. O.:, E. D. Goldberg and M. G. Inghram: Isotopic compositions of Quaternary leads from the Pacific Ocean. Bull. Geol. Soc. Amer. 64, 1387–1388 (1953).

    Article  Google Scholar 

  • Peters, B.: Radioactive beryllium in the atmosphere and on the earth. Proc. Ind. Acad. Sei. 41, 67–71 (1955).

    ADS  Google Scholar 

  • Peters, B.:Über die Anwendbarkeit der Be~10-Methode für Messung kosmischer Strahlungsintensität und der Ablagerungsgeschwindigkeit von Tiefseesedimenten vor einigen Millionen Jahren. Z. Physik 148, 93–111 (1957).

    Article  ADS  Google Scholar 

  • Peters, B.:Cosmic ray produced radioactive isotopes as tracers for studying large-scale atmospheric circulation. J. Atmosph. Terr. Phys. 13, 351–370 (1959).

    Article  Google Scholar 

  • Pettersson, H. : Das Verhältnis Thorium zu Uran in den Gesteinen und im Meer. Ann. Akad. Wiss. Wien, math. -naturw. Kl. 127–128 (1937)-

    Google Scholar 

  • Pettersson, H.:Radioactive elements in ocean waters and sediments. In: Nuclear geology, H. Faul, ed., p. 115–120. New York: John Wiley & Sons; London: Chapman & Hall Ltd. 1954.

    Google Scholar 

  • Picciotto, E., and S. Wilgain: Thorium determination in deep sea sediments. Nature, Lond. 173, 623–633 (1954).

    Article  ADS  Google Scholar 

  • Piggot, C. S. : The radium content of ocean bottom sediments. Amer. J. Sei. 25, 229–238 (l933)-

    Google Scholar 

  • Piggot, C. S.: Radium content of ocean bottom sediments. Carnegie Inst. Wash. Publ. 556, Oceanography II, pt. 2, 183–193 (1944).

    Google Scholar 

  • Piggot, C. S. and W. D. Urry: The radium content of an ocean bottom core. J. Wash. Acad. Sei. 29, 405–415 (1939).

    Google Scholar 

  • Rafter, T. A. , and G. J. Fergusson: “Atom bomb effect” —recent increase of carbon-14 content of the atmosphere and biosphere. Science 126, 557–558 (1957)-

    Google Scholar 

  • Rafter, T. A., and G. J. Fergusson: Atmospheric radiocarbon as a tracer in geophysical circulation problems. United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2d, Geneva 1958, P/2128, Proc., vol. 18, p. 526–532 (1958).

    Google Scholar 

  • Rama: Investigations of the radioisotopes Be7, P32, and S35 in rain water. J. Geophys. Res. 65, 3773–3776 (I960).

    Google Scholar 

  • M. Koide, and E. D. Goldberg: Lead-210 in natural waters. Science 134, 98–99 (1961).

    Article  ADS  Google Scholar 

  • M. Koide, and P. K. Zutshi: Annual deposition of cosmic ray produced Be7 at equatorial latitudes. Tellus 10, 99–103 (1958).

    Article  ADS  Google Scholar 

  • Rona, E., L. O. Gilpatrick and L. M. Jeffrey: Uranium determination in sea water. Trans. Amer. Geophys. Un. 37, 697–701 (1956)

    Google Scholar 

  • Rosholt, J. N. : Quantitative radiochemical determination for the sources of natural radioactivity. Analyt. Chem. 29, 1398–1408 (1957)-

    Google Scholar 

  • Rosholt, J. N.: Radioactive disequilibrium studies as an aid in understanding the natural migration of uranium and its decay products. In: United Nations Internat. Conf. Peaceful Uses of Atomic Energy, 2nd, Geneva, 1958, P/772, proc., vol. 2, p. 230–236 (1958).

    Google Scholar 

  • Rosholt, J. N., C. Emiliani, J. Geiss, F. F. Koczy and P. J. Wangersky: Absolute dating of deep-sea sediments by the Pa231/Th230 method. J. Geology 69, 162 - 185 (1961).

    Google Scholar 

  • Rubin, M.: U. S. Geological Survey radiocarbon dates. III. Science 123, 442–448 (1956).

    Article  ADS  Google Scholar 

  • Rubin, M. and H. E. Suess: U. S. Geological survey radiocarbon dates. II. Science 121, 481–488 (1955).

    Article  ADS  Google Scholar 

  • Russell, R. D. , and R. M. Farquhar: Lead isotopes in geology. 243 pp. New York: Inter- science Publishers I960.

    Google Scholar 

  • Sackett, W. M. : The protactinium-231 content of ocean water and sediments. Science 132, 1761–1762 (I960).

    Google Scholar 

  • Sackett, W. M.:H. Potratz and E. D. Goldberg: Thorium content of ocean water. Science 128, 204–205 (1958).

    Google Scholar 

  • Schaeffer, O. A. , S. O. Thompson and N. L. Lark: Chlorine-36 radioactivity in rain. J. Geophys. Res. 65, 4013–4016 (I960).

    Google Scholar 

  • Senftle, F. E., L. R. Stieff, F. Cuttitta and P. K. Kuroda: Comparison of the isotopic abundance of U235 and U238 and radium activity ratios in Colorado Plateau uranium ores. Geochim. et Cosmochim. Acta 11, 189–193 (1957).

    Google Scholar 

  • Smales, A. A., and L. Salmon: Determination by radioactivation of small amounts of rubidium and caesium in sea water and related materials of geochemical interest. Analyst 80, 37–50 (1955).

    Article  ADS  Google Scholar 

  • Smales, A. A. and R. K. Webster: The determination of rubidium in sea water by stable isotope dilution method. Geochim. et Cosmochim. Acta 11, 139 (1957).

    Google Scholar 

  • Smith, A. P., and F. S. Grimaldi: The fluorimetric determination of uranium in nonsaline and saline waters. In F. S. Grimaldi Et Al., Compilers, Collected papers on methods for uranium and thorium. U. S. Geol. Survey Bull. 1006, p. 12–131 (1954).

    Google Scholar 

  • Starik, I. E., Y. V. Kuznetsov, S. M. Grashchenko and M. S. Frenklikh: The ionium method of determination of age of marine sediments. Geochemistry (English translation of Geokhimiya) No. 1, 1–15 (1958).

    Google Scholar 

  • Stewart, D. C., and W. C. Bentley: Analysis of uranium in sea water. Science 120, 50–52 (1954).

    Article  ADS  Google Scholar 

  • Strom, K.: A concentration of uranium in black muds. Nature, Lond. 162, 922 (1948).

    Article  ADS  Google Scholar 

  • Strominger, D., J. M. Hollander and G. T. Seaborg: Table of isotopes. Rev. Mod. Phys. 30, 585–904 (1958).

    Article  ADS  Google Scholar 

  • Suess, H. E.: Natural radiocarbon measurements by acetylene counting. Science 120, 5–7 (1954).

    Article  ADS  Google Scholar 

  • Suess, H. E.: Radiocarbon concentration in modern wood. Science 122, 415–417 (1955).

    Article  ADS  Google Scholar 

  • Suess, H. E. and R. Revelle: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric C02 during the past decade. Tellus 9, 18–27 (1957).

    Article  ADS  Google Scholar 

  • Sugihara, T. T., H. I. James, E. J. Troianello and V. T. Bowen: Radiochemical separation of fission products from large volumes of sea water, strontium, cesium, cerium, prome- thium. Analyt. Chem. 31, 44–49 (1959).

    Article  Google Scholar 

  • Sverdrup, H. U., M. W. Johnson and R. H. Fleming: The oceans, their physics, chemistry, and general biology. New York: Prentice-Hall, Inc. 1942, 1087 P

    Google Scholar 

  • Tilton, G. R., and G. L. Davis: Geochronology. In: Researches in Geochemistry, P. H. Abelson, ed., p. 190–213- New York: John Wiley & Sons 1959.

    Google Scholar 

  • Tomic, E., I. M. Ladenbauer U. M. Pollack: Beitrag zur Trennung des Uran von Thorium mittels Ionenaustausches und zur fluorimetrischen Uranbestimmung. Z. analyt. Chem. 161, 28–38 (1958).

    Google Scholar 

  • Urry, W. D.: Radioactivity in ocean sediments. VII. Rate of deposition of deep sea sediments. J. Marine Res. 7, 618–634 (1950).

    Google Scholar 

  • Vries, H. DE: Variation in concentration of radiocarbon with time and location on earth. Proc. Kon. Ned. Acad. Wet., Ser. B 61 (1958).

    Google Scholar 

  • Vries, H. DE: Atomic bomb effect, the natural activity of radiocarbon in plants, shells, and snails in the past 4 years. Science 128, 250–251 (1958).

    Article  ADS  Google Scholar 

  • Vries, H. DE: Measurement and use of natural radiocarbon. In: Researches in geochemistry, P. H. Abelson, ed. , p. 169–189. New York: John Wiley & Sons 1959.

    Google Scholar 

  • Vries, H. DE and G. W. Barendsen: A new technique for radiocarbon dating by a proportional counter filled with carbon dioxide. Physica, Haag 19, 987–1003 (1953).

    Article  ADS  Google Scholar 

  • Volchok, H. L., and J. E. Kulp: The ionium method of age determination. Geochim. et Cosmochim. Acta 11, 219–246 (1957).

    Google Scholar 

  • Wasserburg, G. L., R. J. Hayden and K. J. Jensen: A4–K40 dating of igneous rocks and sediments. Geochim. et Cosmochim. Acta 10, 153–165 (1956).

    Google Scholar 

  • Wetherill, G. W.: Radioactivity of potassium and geologic time. Science 126, 545–549 (1957).

    Article  ADS  Google Scholar 

  • Wilson, A. T. , and G. J. Fergusson: Origin of terrestrial tritium. Geochim. et Cosmochim. Acta 18, 273–277 (I960).

    Google Scholar 

  • Yamagata, N. , and S. Matsuda: Cerium-137 in the coastal waters of Japan. Internat. Cosmo- graphic Congr. , New York 1959, Preprints, p. 825–827.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer- Verlag OHG / Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Koczy, F.F., Rosholt, J.N. (1962). Radioactivity in Oceanography. In: Israël, H., Krebs, A. (eds) Nuclear Radiation in Geophysics / Kernstrahlung in der Geophysik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-92837-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-92837-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49046-0

  • Online ISBN: 978-3-642-92837-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics