Zusammenfassung

Die Methode der Markierung von Verbindungen, welche bei der Aufklärung von Stoffwechselwegen im komplexen System lebender Zellen so große Fortschritte gebracht hat, kann auch sinngemäß auf einzelne Enzymreaktionen angewendet werden, indem man das Substrat an bestimmten Atomen radioaktiv markiert und im Reaktionsprodukt Umfang und Ort der Markierung bestimmt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrams, R., and M. Bentley: Biosynthesis of nucleic acid purines. III. Guanosine 5′-phos-phate formation from xanthosine 5′-phosphate and L-glutamine. Arch. Biochem. Biophys. 79, 91 (1959).CrossRefGoogle Scholar
  2. Aebi, H., W. Buser u. C. Lüthi: Über Isotopieeffekte bei der Oxydation von Formiat mit Permanganat. Helv. chim. Acta 39, 944 (1956).CrossRefGoogle Scholar
  3. E. Frei u. M. Schwendimann: Isotopieeffekte bei der Formiatoxydation durch Formico-dehydrogenase aus Phaseolus. Helv. chim. Acta 39, 1765 (1956).CrossRefGoogle Scholar
  4. Agranoff, B. W., H. Eggerer, U. Henning and F. Lynen: Isopentenol pyrophosphate isomerase. J. Amer. chem. Soc. 81, 1254 (1959).CrossRefGoogle Scholar
  5. Ågren, G., and L. Engström: Isolation of 32P-labeled phosphoserine from a yeast hexokinase preparation, incubated with labeled ATP or glucose-6-phosphate. Acta chem. scand. 10, 489 (1956).CrossRefGoogle Scholar
  6. Alivisatos, S. G. A.: Mechanism of action of diphosphopyridine nucleotidases. Nature (Lond.) 183, 1034 (1959).CrossRefGoogle Scholar
  7. Anderson, L., and G. R. Jollès: A study of the linkage of phosphorus to protein in phospho-glucomutase. Arch. Biochem. Biophys. 70, 121 (1957).PubMedCrossRefGoogle Scholar
  8. A. M. Landel and D. F. Diedrich: The galactose-glucose conversion in isotopic water. Biochim. biophys. Acta 22, 573 (1956).PubMedCrossRefGoogle Scholar
  9. Bachhawat, B. K., and M. J. Coon: The rôle of adenosine triphosphate in the enzymatic activation of carbon dioxide. J. Amer. chem. Soc. 79, 1505 (1957).CrossRefGoogle Scholar
  10. — Enzymatic activation of carbon dioxide. I. Crystalline carbon dioxide-activating enzyme. J. biol. Chem. 231, 625 (1958).PubMedGoogle Scholar
  11. F. P. Kupiecki and M. J. Coon: Role of hydroxylamine in the carbon dioxide-activating enzyme system. Fed. Proc. 16, 148 (1957).Google Scholar
  12. W. G. Robinson and M. J. Coon: Enzymatic carboxylation of β-hydroxyisovaleryl coenzyme A. J. biol. Chem. 219, 539 (1956).PubMedGoogle Scholar
  13. Baddiley, J., and F. C. Neuhaus: The enzymic activation of D-alanine in Lactobacillus arabinosus 17–5. Biochim. biophys. Acta 33, 277 (1959).PubMedCrossRefGoogle Scholar
  14. Bandurski, R. S., L. G. Wilson and C. L. Squires: The mechanism of “active sulfate” formation. J. Amer. chem. Soc. 78, 6408 (1956).CrossRefGoogle Scholar
  15. Barnard, E. A., and W. D. Stein: The roles of imidazole in biological systems. Advanc. in Enzymol. 20, 51 (1958).Google Scholar
  16. Beck, W. S., M. Flavin and S. Ochoa: Metabolism of propionic acid in animal tissues. III. Formation of succinate. J. biol. Chem. 229, 997 (1957).PubMedGoogle Scholar
  17. — and S. Ochoa: Metabolism of propionic acid in animal tissues. IV. Further studies on the enzymatic isomerization of methylmalonyl coenzyme A. J. biol. Chem. 232, 931 (1958).PubMedGoogle Scholar
  18. Bender, M. L.: Oxygen exchange as evidence for the existence of an intermediate in ester hydrolysis. J. Amer. chem. Soc. 73, 1626 (1951).CrossRefGoogle Scholar
  19. R. D. Ginger and K. C. Kemp: Oxygen exchange during the acidic and basic hydrolysis of amides and the enzymatic hydrolysis of esters. J. Amer. chem. Soc. 76, 3350 (1954).CrossRefGoogle Scholar
  20. Bentley, R.: The mechanism of hydrolysis of acetyl dihydrogen phosphate. J. Amer. chem. Soc. 71, 2765 (1949).CrossRefGoogle Scholar
  21. — and D. Rittenberg: Enzyme-catalyzed exchange of oxygen atoms between water and carboxylate ion. J. Amer. chem. Soc. 76, 4883 (1954).CrossRefGoogle Scholar
  22. Berg, P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. chem. Soc. 77, 3163 (1955).CrossRefGoogle Scholar
  23. — Acyl adenylates: An enzymatic mechanism of acetate activation. J. biol. Chem. 222, 991 (1956a).PubMedGoogle Scholar
  24. — Acyl adenylates: The interaction of adenosine triphosphate and L-methionine. J. biol. Chem. 222, 1025 (1956b).PubMedGoogle Scholar
  25. — and W. K. Joklik: Enzymatic phosphorylation of nucleoside diphosphates. J. biol. Chem. 210, 657 (1954).PubMedGoogle Scholar
  26. Bessman, M. J., I. R. Lehman, E. S. Simms and A. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. II. General properties of the reaction. J. biol. Chem. 233, 171 (1958).PubMedGoogle Scholar
  27. Bloom, B., and Y. J. Topper: Mechanism of action of aldolase and phosphotriose isomerase. Science 124, 982 (1956).PubMedCrossRefGoogle Scholar
  28. Borkenhagen, L. F., and E. P. Kennedy: The enzymatic synthesis of cytidine diphosphate choline. J. biol. Chem. 227, 951 (1957).PubMedGoogle Scholar
  29. Borkenhagen, L. F., and E. P. Kennedy: The enzymic equilibration of L-serine with O-phospho-L-serine. Biochim. biophys. Acta 28, 222 (1958).PubMedCrossRefGoogle Scholar
  30. — The enzymatic exchange of L-serine with O-phospho-L-serine catalyzed by a specific phosphatase. J. biol. Chem. 234, 849 (1959).PubMedGoogle Scholar
  31. Boser, H.: Bausteinanalysen von Phosphorylase, Phosphoglucomutase und Hexokinase. Hoppe-Seylers Z. physiol. Chem. 300, 1 (1955).PubMedCrossRefGoogle Scholar
  32. Boyer, P. D., and W. H. Harrison: On the mechanism of enzymic transfer of phosphate and other groups. The Mechanism of Enzyme Action, ed. by W. D. Mcelroy u. B. Glass, S. 658. Baltimore: Johns Hopkins Press 1954.Google Scholar
  33. O. J. Koeppe and W. W. Luchsinger: Direct oxygen transfer in enzymic syntheses coupled to adenosine triphosphate degradation. J. Amer. chem. Soc. 78, 356 (1956).CrossRefGoogle Scholar
  34. Breslow, R.: On the mechanism of thiamine action. IV. Evidence from studies on model systems. J. Amer. chem. Soc. 80, 3719 (1958).CrossRefGoogle Scholar
  35. Brummond, D. O., M. Staehelin and S. Ochoa: Enzymatic synthesis of polynucleotides. II. Distribution of polynucleotide Phosphorylase. J. biol. Chem. 225, 835 (1957).PubMedGoogle Scholar
  36. Cantoni, G. L.: S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. biol. Chem. 204, 403 (1953).Google Scholar
  37. — and J. Durell: Activation of methionine for transmethylation. II. The methionine-activating enzyme: Studies on the mechanism of the reaction. J. biol. Chem. 225, 1033 (1957).PubMedGoogle Scholar
  38. Cohen, J. A., R. A. Oosterbaan, M. G. P. J. Warringa and H. S. Jansz: The chemical structure of the reactive group of esterases. Disc. Faraday Soc. 20, 114 (1955).CrossRefGoogle Scholar
  39. Cohn, Melvin: Contributions of studies on the β-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bact. Rev. 21, 140 (1957).PubMedGoogle Scholar
  40. Cohn, Mildred: Mechanisms of cleavage of glucose-1-phosphate. J. biol. Chem. 180, 771 (1949).PubMedGoogle Scholar
  41. — Some mechanisms of cleavage of adenosine triphosphate and 1,3-diphosphoglyceric acid. Biochim. biophys. Acta 20, 92 (1956)PubMedCrossRefGoogle Scholar
  42. — and G. T. Cori: On the mechanism of action of muscle and potato Phosphorylase. J. biol. Chem. 175, 89 (1948).PubMedGoogle Scholar
  43. — and G. A. Meek: The mechanism of hydrolysis of adenosine di-and triphosphate catalysed by potato apyrase. Biochem. J. 66, 128 (1957).PubMedGoogle Scholar
  44. Coon, M. J.: Enzymatic synthesis of branched chain acids from amino acids. Fed. Proc. 14, 762 (1955).PubMedGoogle Scholar
  45. F. P. Kupiecki, E. E. Dekker, M. J. Schlesinger and A. Del Campillo: The enzymic synthesis of branched-chain acids. Ciba Foundation Symposium on the Biosynthesis of Terpenes and Sterols, ed. by G. E. W. Wolstenholme und M. O’Connor, S. 62. London: J. & A. Churchill Ltd. 1959.Google Scholar
  46. Cormier, M. J., and G. D. Novelli: The carboxyl activation of glycine in extracts of Photobacterium fischeri. Biochim. biophys. Acta 30, 135 (1958).PubMedCrossRefGoogle Scholar
  47. Cowdrey, W. A., E. D. Hughes, C. K. Ingold, S. Masterman and A. D. Scott: Reaction kinetics and the Waiden inversion. Part VI. Relation of steric orientation to mechanism in substitutions involving halogen atoms and simple or substituted hydroxyl groups. J. chem. Soc. 1937, 1252.Google Scholar
  48. Cram, D. J.: Studies in stereochemistry. XVI. Ionic intermediates in the decomposition of certain alkyl chlorosulfites. J. Amer. chem. Soc. 75, 332 (1953).CrossRefGoogle Scholar
  49. Cunnigham, L. W.: Proposed mechanism of action of hydrolytic enzymes. Science 125, 1145 (1957).CrossRefGoogle Scholar
  50. Davie, E. W., V. V. Koningsberger and F. Lipmann: The isolation of a tryptophan-activating enzyme from pancreas. Arch. Biochem. Biophys. 65, 21 (1956).PubMedCrossRefGoogle Scholar
  51. DeMoss, J. A., and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP* in microbial extracts. Biochim. biophys. Acta 22, 49 (1956).PubMedCrossRefGoogle Scholar
  52. DeTar, D. F., and F. H. Westheimer: The role of thiamin in carboxylase. J. Amer. chem. Soc. 81, 175 (1959).CrossRefGoogle Scholar
  53. Dixon, G. H., S. Go and H. Neurath: Peptides combined with 14C-diisopropyl phosphoryl following degradation of 14C-DIP-trypsin with α-Chymotrypsin. Biochim. biophys. Acta 19, 193 (1956).PubMedCrossRefGoogle Scholar
  54. D. L. Kauffman and H. Neurath: Amino acid sequence in the region of diisopropyl phosphoryl binding in DIP-trypsin. J. Amer. chem. Soc. 80, 1260 (1958a).CrossRefGoogle Scholar
  55. — Amino acid sequence in the region of diisopropylphosphoryl binding in diisopropyl-phosphoryl-trypsin. J. biol. Chem. 233, 1373 (1958b).PubMedGoogle Scholar
  56. — and H. Neurath: The reaction of DFP with trypsin. Biochim. biophys. Acta 20, 572 (1956).PubMedCrossRefGoogle Scholar
  57. Doherty, D. G., and F. Vaslow: Thermodynamic study of an enzyme-substrate complex of chymotrypsin. J. Amer. chem. Soc. 74, 931 (1952).CrossRefGoogle Scholar
  58. Doudoroff, M., H. A. Barker and W. Z. Hassid: Studies with bacterial sucrose Phosphorylase. I. The mechanism of action of sucrose Phosphorylase as a glucose-transferring enzyme (transglucosidase). J. biol. Chem. 168, 725 (1947).PubMedGoogle Scholar
  59. Drysdale, G. R., and Mildred Cohn: The stereospecificity of enzymic interaction of diphos-phopyridine nucleotide with water. Biochim. biophys. Acta 21, 397 (1956).PubMedCrossRefGoogle Scholar
  60. Eisenberg, F. Jun.: Mechanism of action of β-glucuronidase. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 44.Google Scholar
  61. Eisenberg, M. A.: The acetate-activating mechanism in Rhodospirillum rubrum. Biochim. biophys. Acta 23, 327 (1957).PubMedCrossRefGoogle Scholar
  62. Engström, L., and G. Ägren: On the phosphorus linkage in a muscle Phosphorylase preparation. Acta chem. scand. 10, 877 (1956).Google Scholar
  63. Fischer, E. H., D. J. Graves, E. R. S. Crittenden and E. G. Krebs: Structure of the site phosphorylated in the Phosphorylase b to a reaction. J. biol. Chem. 234, 1698 (1959).PubMedGoogle Scholar
  64. Fisher, H. F., E. E. Conn, B. Vennesland and F. H. Westheimer: The enzymatic transfer of hydrogen. I. The reaction catalyzed by alcohol dehydrogenase. J. biol. Chem. 202, 687 (1953).PubMedGoogle Scholar
  65. Fitting, C., and M. Doudoroff: Phosphorolysis of maltose by enzyme preparations from Neisseria meningitides. J. biol. Chem. 199, 153 (1952).PubMedGoogle Scholar
  66. Flavin, M., H. Castro-Mendoza and S. Ochoa: Bicarbonate-dependent enzymic phosphorylation of fluoride by adenosine triphosphate. Biochim. biophys. Acta 20, 591 (1956).PubMedCrossRefGoogle Scholar
  67. — Metabolism of propionic acid in animal tissues. II. Propionyl coenzyme A carb-oxylation system. J. biol. Chem. 229, 981 (1957).PubMedGoogle Scholar
  68. — and S. Ochoa: Metabolism of propionic acid in animal tissues. I. Enzymatic conversion of propionate to succinate. J. biol. Chem. 229, 965 (1957).PubMedGoogle Scholar
  69. Formica, J. V., and R. O. Brady: The enzymatic carboxylation of acetyl coenzyme A. J. Amer. chem. Soc. 81, 752 (1959).CrossRefGoogle Scholar
  70. Franzen, V.: Basische Thiole als Katalysatoren der intramolekularen Cannizzaro-Reaktion. Ber. dtsch. chem. Ges. 88, 1361 (1955).Google Scholar
  71. — Wirkungsmechanismus der Glyoxalase I. Ber. dtsch. chem. Ges. 89, 1020 (1956).Google Scholar
  72. Fredenhagen, H., u. K. F. Bonhoeffer: Untersuchungen über die Cannizzarosche Reaktion in schwerem Wasser. Z. physik. Chem., Abt. A, 181, 379 (1938).Google Scholar
  73. Frei, E., u. H. Aebi: Isotopie-Effekte bei der peroxydatischen Formiatoxydation durch Leber-katalase. Helv. chim. Acta 41, 241 (1958).CrossRefGoogle Scholar
  74. Friedberg, F., J. Adler and H. A. Lardy: The carboxylation of propionic acid by liver mitochondria. J. biol. Chem. 219, 943 (1956).PubMedGoogle Scholar
  75. Frieden, C.: Kinetic studies on the diphosphopyridine nucleotide cytochrome c reductase from heart. Biochim. biophys. Acta 24, 241 (1957).PubMedCrossRefGoogle Scholar
  76. Friedkin, M., and Dewayne Roberts: The enzymatic synthesis of nucleosides. I. Thymidine Phosphorylase in mammalian tissues. J. biol. Chem. 207, 245 (1954).PubMedGoogle Scholar
  77. Fry, K., L. L. Ingraham and F. H. Westheimer: The thiamin-pyruvate reaction. J. Amer. chem. Soc. 79, 5225 (1957).CrossRefGoogle Scholar
  78. Gibson, D. M., E. B. Titchener und S. J. Wakil: Studies on the mechanism of fatty acid synthesis. V. Bicarbonate requirement for the synthesis of long-chain fatty acids. Biochim. biophys. Acta 30, 376 (1958).PubMedCrossRefGoogle Scholar
  79. Gibson, K. D.: The mechanism of enzyme action studied with isotopes. Ann. Rep. Chem. Soc. London 54, 306 (1957).Google Scholar
  80. Gladner, J. A., and K. Laki: The active site of thrombin. J. Amer. chem. Soc. 80, 1263 (1958).CrossRefGoogle Scholar
  81. Glaser, L., and D. H. Brown: The enzymatic synthesis in vitro of hyaluronic acid chains. Proc. Nat. Acad. Sci. (Wash.) 41, 253 (1955).CrossRefGoogle Scholar
  82. Green, A. L., and J. D. Nicholls: The reactivation of phosphorylated chymotrypsin. Biochem. J. 72, 70 (1959).PubMedGoogle Scholar
  83. Grossman, L., and N. O. Kaplan: Nicotinamide riboside Phosphorylase from human erythrocytes. II. Nicotinamide sensitivity. J. biol. Chem. 231, 727 (1958).PubMedGoogle Scholar
  84. Grunberg-Manago, M., P. J. Ortiz and S. Ochoa: Enzymic synthesis of polynucleotides. I. Polynucleotide Phosphorylase of Azotobacter vinelandii. Biochim. biophys. Acta 20, 269 (1956).PubMedCrossRefGoogle Scholar
  85. Gutfreund, H., and J. M. Sturtevant: The mechanism of the reaction of chymotrypsin with p-nitrophenyl acetate. Biochem. J. 63, 656 (1956).PubMedGoogle Scholar
  86. — The mechanism of chymotrypsin-catalyzed reactions. Proc. Nat. Acad. Sci. (Wash.) 42, 719 (1956).CrossRefGoogle Scholar
  87. Harrison, W. H., P. D. Boyer and A. B. Falcone: The mechanism of enzymic phosphate transfer reactions. J. biol. Chem. 215, 303 (1955).PubMedGoogle Scholar
  88. Harting, J., and S. Velick: Reaktions of acetyl phosphate catalyzed by 3-phosphoglycer-aldehyde dehydrogenase. Fed. Proc. 11, 226 (1952).Google Scholar
  89. Hartley, E. S., M. A. Naughton and F. Sanger: The amino acid sequence around the reactive serine of elastase. Biochim. biophys. Acta 34, 243 (1959).PubMedCrossRefGoogle Scholar
  90. Hass, L. F., and W. L. Byrne: Mechanism of glucose-6-phosphatase. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 39.Google Scholar
  91. Hilz, H., J. Knappe, E. Ringelmann u. F. Lynen: Methylglutaconase, eine neue Hydratase, die am Stoffwechsel verzweigter Carbonsäuren beteiligt ist. Biochem. Z. 329, 476 (1958).PubMedGoogle Scholar
  92. — and F. Lipmann: The enzymatic activation of sulfate. Proc. Nat. Acad. Sci. (Wash.) 41, 880 (1955).CrossRefGoogle Scholar
  93. Hine, J.: Physical Organic Chemistry. S. 252ff. New York-Toronto-London: McGraw-Hill Book Comp. 1956.Google Scholar
  94. Hoagland, M. B.: Enzymatic reactions between amino acids and ribonucleic acids as intermediate steps in protein synthesis. IV. Internationaler Kongreß für Biochemie, Wien 1958. Symposium VIII: Proteins, ed. by H. Neurath u. H. Tuppy, S. 199. London-New York-Paris-Los Angeles: Pergamon Press 1960.Google Scholar
  95. E. B. Keller and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. biol. Chem. 218, 345 (1956).PubMedGoogle Scholar
  96. P. C. Zamecnik, N. Sharon, F. Lipmann, M. P. Stulberg and P. D. Boyer: Oxygen transfer to AMP in the enzymic synthesis of the hydroxamate of tryptophan. Biochim. biophys. Acta 26, 215 (1957).PubMedCrossRefGoogle Scholar
  97. Holzer, H., u. K. Beaucamp: Nachweis und Charakterisierung von Zwischenprodukten der Decarboxylierung und Oxydation von Pyruvat: „aktiviertes Pyruvat” und „aktivierter Acetaldehyd”. Angew. Chemie 71, 776 (1959).CrossRefGoogle Scholar
  98. Hughes, T. R., and I. M. Klotz: Analysis of metal-protein complexes in Methods of Biochemical Analysis, ed. by D. Glick, Vol. III, S. 265. New York-London: Interscience Publ. 1956.CrossRefGoogle Scholar
  99. Ingold, C. K.: Structure and Mechanism in Organic Chemistry. London: G. Bell and Sons, Ltd. 1953.Google Scholar
  100. Jaenicke, L.: Über den Mechanismus der Tetrahydrofolat-Formylase. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 47.Google Scholar
  101. Jagannathan, V., and J. M. Luck: Phosphoglucomutase. II. Mechanism of action. J. biol. Chem. 179, 569 (1949).PubMedGoogle Scholar
  102. Jandorf, B. J., H. O. Michel, N. K. Schaffer, R. Egan and W. H. Summerson: The mechanism of reaction between esterases and phosphorus-containing anti-esterases. Disc. Faraday Soc. 20, 134 (1955).CrossRefGoogle Scholar
  103. Jansz, H. S., D. Brons and M. G. P. J. Warringa: Chemical nature of the DFP-binding site of pseudoCholinesterase. Biochim. biophys. Acta 34, 573 (1959).PubMedCrossRefGoogle Scholar
  104. C. H. Posthumus and J. A. Cohen: On the active site of horse-liver ali esterase. II. Amino acid sequence in the DFP-binding site of the enzyme. Biochim. biophys. Acta 33, 396 (1959).PubMedCrossRefGoogle Scholar
  105. Jencks, W. P., and F. Lipmann: Studies on the initial step of fatty acid activation. J. biol. Chem. 225, 207 (1957).PubMedGoogle Scholar
  106. Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transamidation reactions by proteolytic enzymes. J. biol. Chem. 185, 629 (1950a).PubMedGoogle Scholar
  107. — Catalysis of transpeptidation reactions by chymotrypsin. J. biol. Chem. 187, 205 (1950b).PubMedGoogle Scholar
  108. Kalckar, H. M.: The role of phosphoglycosyl compounds in the biosynthesis of nucleosides and nucleotides. Biochim. biophys. Acta 12, 250 (1953).PubMedCrossRefGoogle Scholar
  109. — Uridinediphospho galactose: Metabolism, enzymology and biology. Advanc. in Enzymol. 20, 111 (1958).Google Scholar
  110. — and E. S. Maxwell: Some considerations concerning the nature of the enzymic galactose-glucose conversion. Biochim. biophys. Acta 22, 588 (1956).PubMedCrossRefGoogle Scholar
  111. Kaplan, N. O., S. P. Colowick, L. J. Zatman and M. M. Ciotti: Pyridine nucleotide trans-hydrogenase. V. Exchange reactions studied with C14. J. biol. Chem. 205, 31 (1953).PubMedGoogle Scholar
  112. Kaufman, S.: Studies on the mechanism of the reaction catalyzed by the phosphorylating enzyme. J. biol. Chem. 216, 153 (1955).PubMedGoogle Scholar
  113. C. Gilvarg, O. Cori and S. Ochoa: Enzymatic oxidation of α-ketoglutarate and coupled phosphorylation. J. biol. Chem. 203, 869 (1953).PubMedGoogle Scholar
  114. Kennedy, E. P., and D. E. Koshland: Properties of the phosphorylated active site of phosphoglucomutase. J. biol. Chem. 228, 419 (1957).PubMedGoogle Scholar
  115. — and S. B. Weiss: The function of cytidine coenzymes in the biosynthesis of phospholipides. J. biol. Chem. 222, 193 (1956).PubMedGoogle Scholar
  116. Kent, A. B., E. G. Krebs and E. H. Fischer: Properties of crystalline Phosphorylase b. J. biol. Chem. 232, 549 (1958).PubMedGoogle Scholar
  117. Knappe, J., u. F. Lynen: Enzymatische Carboxylierung von β-Methyl-crotonyl-Coenzym A. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 49.Google Scholar
  118. Kornberg, A.: Pyrophosphorylases and phosphorylases in biosynthetic reactions. Advanc. in Enzymol. 18, 191 (1957).Google Scholar
  119. I. Lieberman and E. S. Simms: Enzymatic synthesis and properties of 5-phospho-ribosylpyrophosphate. J. biol. Chem. 215, 389 (1955).PubMedGoogle Scholar
  120. — and W. E. Pricer: Enzymatic cleavage of diphosphopyridine nucleotide with radioactive pyrophosphate. J. biol. Chem. 191, 535 (1951).PubMedGoogle Scholar
  121. Koshland, D. E.: Group transfer as an enzymatic substitution mechanism. The Mechanism of Enzyme Action, ed. by W. D. Mcelroy u. B. Glass, S. 608. Baltimore: The Johns Hopkins Press 1954.Google Scholar
  122. — Isotopic exchange criteria for enzyme mechanisms. Disc. Faraday Soc. 20, 142 (1955 a).CrossRefGoogle Scholar
  123. — Kinetics of isotopic exchange reactions. Fed. Proc. 14, 239 (1955 b).Google Scholar
  124. — Molecular geometry in enzyme action, J. cell. comp. Physiol. 47, Suppl. 1, 217 (1956).CrossRefGoogle Scholar
  125. Koshland, D. E., Z. Budenstein and A. Kowalsky: Mechanism of hydrolysis of adenosin-triphosphate catalyzed by purified muscle proteins. J. biol. Chem. 211, 279 (1954).PubMedGoogle Scholar
  126. — and M. J. Erwin: Enzyme catalysis and enzyme specificity-combination of amino acids at the active site of phosphoglucomutase. J. Amer. chem. Soc. 79, 2657 (1957).CrossRefGoogle Scholar
  127. — and E. B. Herr: The role of water in enzymatic hydrolysis: General method and its application to myosin. J. biol. Chem. 228, 1021 (1957).PubMedGoogle Scholar
  128. — and S. S. Springhorn: Mechanism of action of 5′-nucleotidase. J. biol. Chem. 221, 469 (1956).PubMedGoogle Scholar
  129. — and S. S. Stein: Correlation of bond breaking with enzyme specificity. Cleavage point of invertase. J. biol. Chem. 208, 139 (1954).PubMedGoogle Scholar
  130. Kowalsky, A., and D. E. Koshland: The mechanism on the galactose-glucose interconversion in Lactobacillus bulgaricus. Biochem. biophys. Acta 22, 575 (1956).PubMedCrossRefGoogle Scholar
  131. C. Wyttenbach, L. Langer and D. E. Koshland: Transfer of oxygen in the glutamine synthetase reaction. J. biol. Chem. 219, 719 (1956).PubMedGoogle Scholar
  132. Krebs, E. G., A. B. Kent and E. H. Fischer: The muscle Phosphorylase b kinase reaction. J. biol. Chem. 231, 73 (1958).PubMedGoogle Scholar
  133. Krimsky, I.: Isolation of an acyl-enzyme complex from a mixture of acetyl phosphate and glyceraldehyde-3-phosphate dehydrogenase. Fed. Proc. 14, 239 (1955).Google Scholar
  134. Kupiecki, F. P., and M. J. Coon: Bicarbonate-and hydroxylamine-dependent degradation of adenosine triphosphate. J. biol. Chem. 234, 2428 (1959).PubMedGoogle Scholar
  135. Lardy, H. A., and J. Adler: Synthesis of succinate from propionate and bicarbonate by soluble enzymes from liver mitochondria. J. biol. Chem. 219, 933 (1956).PubMedGoogle Scholar
  136. Lehman, I. R., M. J. Bessman, E. S. Simms and A. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. biol. Chem. 233, 163 (1958).PubMedGoogle Scholar
  137. Leloir, L. F.: The metabolism of hexosephosphates. Phosphorus Metabolism, Vol. I, S. 67, ed. by W. D. Mcelroy u. B. Glass. Baltimore: Johns Hopkins Press 1951.Google Scholar
  138. R. E. Trucco, C. E. Cardini, A. Paladini and R. Caputto: The coenzyme of phosphoglucomutase. Arch. Biochem. 19, 339 (1948).PubMedGoogle Scholar
  139. Levy, H. R., and B. Vennesland: The stereospecificity of enzymatic hydrogen transfer from diphosphopyridine nucleotide. J. biol. Chem. 228, 85 (1957).PubMedGoogle Scholar
  140. Lewis, E. S., and C. E. Boozer: The kinetics and stereochemistry of the decomposition of secondary alkyl chlorosulfites. J. Amer. chem. Soc. 74, 308 (1952).CrossRefGoogle Scholar
  141. Lieberman, I.: Inorganic triphosphate synthesis by muscle adenylate kinase. J. biol. Chem. 219, 307 (1956).PubMedGoogle Scholar
  142. Littauer, U. Z., and A. Kornberg: Reversible synthesis of polyribonucleotides with an enzyme from Escherichia coli. J. biol. Chem. 226, 1077 (1957).PubMedGoogle Scholar
  143. Lynen, F.: Verzweigte Carbonsäuren als Baustoffe der Polyisoprenoide. Proc. Int. Symp. Enzyme Chemistry, Tokyo und Kyoto 1957, I. U. B. Symposium Series, Vol. 2, S. 57. Tokyo: Maruzen 1958.Google Scholar
  144. — Persönliche Mitteilung (1959).Google Scholar
  145. B. W. Agranoff, H. Eggerer, U. Henning u. E. M. Möslein: γ, γ-Dimethyl-allyl-pyrophosphat und Geranyl-pyrophosphat, biologische Vorstufen des Squalens. Zur Biosynthese der Terpene, VI: Angew. Chem. 71, 657 (1959).Google Scholar
  146. H. Eggerer, U. Henning u. I. Kessel: Farnesyl-pyrophosphat und 3-Methyl-Δ3-butenyl-1-pyrophosphat, die biologischen Vorstufen des Squalens. Zur Biosynthese der Terpene, III: Angew. Chem. 70, 738 (1958).Google Scholar
  147. J. Knappe, I. Kessel u. E. Ringelmann: New aspects of acetate incorporation into isoprenoid precursors. Ciba Foundation Symposium on the Biosynthesis of Terpenes and Sterols, ed. by G. E. W. Wolstenholme u. M. O’Connor, S. 95. London: J. & A. Churchill Ltd. 1959.Google Scholar
  148. Lynen, F., J. Knappe, E. Lorch, G. Jütting u. E. Ringelmann: Die biochemische Funktion des Biotins. Angew. Chem. 71, 481 (1959).CrossRefGoogle Scholar
  149. Madsen, N. B., and C. F. Cori: The inhibition of muscle Phosphorylase by p-chloromercuri-benzoate. Biochim. biophys. Acta 18, 156 (1955).PubMedCrossRefGoogle Scholar
  150. — The interaction of muscle Phosphorylase with p-chloromercuribenzoate. I. Inhibition of activity and effect on the molecular weight. J. biol. Chem. 223, 1055 (1956).PubMedGoogle Scholar
  151. Mahler, H. R., and J. Douglas: Mechanisms of enzyme-catalyzed oxidation-reduction reactions. I. An investigation of the yeast alcohol dehydrogenase reaction by means of the isotope rate effect. J. Amer. chem. Soc. 79, 1159 (1957).CrossRefGoogle Scholar
  152. Marcus, A., B. Vennesland and J. R. Stern: The enzymatic transfer of hydrogen, VII. The reaction catalyzed by β-hydroxybutyryl dehydrogenase. J. biol. Chem. 233, 722 (1958).PubMedGoogle Scholar
  153. Martius, C., u. G. Schorre: Der enzymatische Abbau der isomeren α,α-Di-deuterocitronen-säuren. Liebigs Ann. Chem. 570, 143 (1950).CrossRefGoogle Scholar
  154. Maxwell, E. S.: Diphosphopyridine nucleotide, a cofactor for galacto-waldenase. J. Amer. chem. Soc. 78, 1074 (1956).CrossRefGoogle Scholar
  155. — The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose. J. biol. Chem. 229, 139 (1957).PubMedGoogle Scholar
  156. H. de Robichon-Szulmajster and H. M. Kalckar: Yeast uridine diphosphogalactose-4-epimerase, correlation between activity and fluorescence. Arch. Biochem. Biophys. 78, 407 (1958).CrossRefGoogle Scholar
  157. Mayer, F. C., and J. Larner: Substrate cleavage point of the α-and β-amylases. J. Amer. chem. Soc. 81, 188 (1959).CrossRefGoogle Scholar
  158. Meio, R. H. De, and M. Wizerkaniuk: On the “active sulfate” intermediate. Biochim. biophys. Acta 20, 428 (1956).CrossRefGoogle Scholar
  159. Metzger, J.: Über metallorganische Verbindungen des Thiazol-Kernes. Angew. Chem. 71, 248 (1959).CrossRefGoogle Scholar
  160. Meyerhof, O.: Aldolase and Isomerase in The Enzymes, ed. by J. B. Sumner u. K. Myrbäck. Vol. II, Part 1, S. 162. New York: Academic Press 1951.Google Scholar
  161. P. Ohlmeyer, W. Gentner u. H. Maier-Leibnitz: Studium der Zwischenreaktionen der Glykolyse mit Hilfe von radioaktivem Phosphor. Biochem. Z. 298, 396 (1938).Google Scholar
  162. Mizuhara, S., and P. Handler: Mechanism of thiamine-catalyzed reactions. J. Amer. chem. Soc. 76, 571 (1954).CrossRefGoogle Scholar
  163. Monod, J.: An outline of enzyme induction. Rec. Trav. chim. Pays-Bas 77, 569 (1958).CrossRefGoogle Scholar
  164. Müller, E.: Neuere Anschauungen der organischen Chemie. 2. Aufl., S. 222ff.. Berlin-Göttingen-Heidelberg: Springer-Verlag 1957.CrossRefGoogle Scholar
  165. Munch-Petersen, A.: Enzymatic synthesis and pyrophosphorolysis of guanosine diphosphate mannose. Arch. Biochem. Biophys. 55, 592 (1955 a).CrossRefGoogle Scholar
  166. — Investigations of the properties and mechanism of the UDPG pyrophosphorylase reaction. Acta chem. scand. 9, 1523 (1955b).CrossRefGoogle Scholar
  167. — Reversible enzymatic synthesis of guanosine diphosphate mannose from guanosine tri-phosphate and mannose-1-phosphate. Acta chem. scand. 10, 928 (1956).CrossRefGoogle Scholar
  168. H. M. Kalckar, E. Cutulo and E. E. B. Smith: Uridyl transferases and the formation of uridine triphosphate. Nature (Lond.) 172, 1036 (1953).CrossRefGoogle Scholar
  169. Najjar, V. A.: Mechanism of Enzyme Action, ed. by W. D. Mcelroy u. B. Glass, S. 731. Baltimore: Johns Hopkins Press 1954.Google Scholar
  170. — and M. E. Pullman: The occurrence of a group transfer involving enzyme (phospho-glucomutase) and substrate. Science 119, 631 (1954).PubMedCrossRefGoogle Scholar
  171. Neufeld, E. F., V. Ginsburg, E. W. Putman, D. Fanshier and W. Z. Hassid: Formation and interconversion of sugar nucleotides by plant extracts. Arch. Biochem. Biophys. 69, 602 (1957).PubMedCrossRefGoogle Scholar
  172. Neuhaus, F. C., and W. L. Byrne: Metabolism of phosphoserine. I. Exchange of L-serine with phosphoserine. J. biol. Chem. 234, 109 (1959a).PubMedGoogle Scholar
  173. — Metabolism of phosphoserine. II. Purification and properties of O-phosphoserinc phosphatase. J. biol. Chem. 234, 113 (1959b).PubMedGoogle Scholar
  174. — 0-Phosphoserine phosphatase. Biochim. biophys. Acta 28, 223 (1958).PubMedCrossRefGoogle Scholar
  175. Neurath, H., G. H. Dixon and J. F. Pechère: Certain aspects of the structure and active sites of α-chymotrypsin and trypsin. IV. Internationaler Kongreß für Biochemie. Wien 1958. Symposium VIII: Proteins, ed. by H. Neurath u. H. Tuppy, S. 63. London-New York-Paris-Los Angeles: Pergamon Press 1960.Google Scholar
  176. Nismann, B., F. H. Bergmann and P. Berg: Observations on amino acid-dependent exchanges of inorganic pyrophosphate and ATP. Biochim. biophys. Acta 26, 639 (1957).PubMedCrossRefGoogle Scholar
  177. Oesper, P.: The mechanism of action of glyceraldehyde-3-phosphate dehydrogenase. J. biol. Chem. 207, 421 (1954).PubMedGoogle Scholar
  178. Ogston, A. G.: Interpretation of experiments on metabolic processes, using isotopie tracer-lements. Nature (Lond.) 162, 963 (1948).CrossRefGoogle Scholar
  179. Oosterbaan, R. A., and M. E. Van Adrichem: Isolation of acetyl peptides from acetyl-chymotrypsin. Biochim. biophys. Acta 27, 423 (1958).PubMedCrossRefGoogle Scholar
  180. H. S. Jansz and J. A. Cohen: The chemical structure of the reactive group of esterases. Biochim. biophys. Acta 20, 402 (1956).PubMedCrossRefGoogle Scholar
  181. P. Kunst, J. Van Rotterdam and J. A. Cohen: The reaction of chymotrypsin and diiso-propylphosphorofluoridate. I. Isolation and analysis of diisopropylphosphoryl-peptides. Biochim. biophys. Acta 27, 549 (1958).PubMedCrossRefGoogle Scholar
  182. M. G. P. J. Warringa, H. S. Jansz, F. Berends and J. A. Cohen: The reaction of pseudocholinesterase with diisopropyl-phosphoro-fluoridate (DFP). IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 38.Google Scholar
  183. Pechère, J. F., G. H. Dixon, R. H. Maybury and H. Neurath: Cleavage of disulfide bonds in trypsinogen and α-chymotrypsinogen. J. biol. Chem. 233, 1364 (1958).PubMedGoogle Scholar
  184. Porter, G. R., H. N. Rydon and J. A. Schofield: Nature of the reactive serine residue in enzymes inhibited by organo-phosphorus compounds. Nature (Lond.) 182, 927 (1958).CrossRefGoogle Scholar
  185. Racker, E.: The mechanism of action of glyoxalase. J. biol. Chem. 190, 685 (1951).PubMedGoogle Scholar
  186. — Formation of acyl and carbonyl complexes associated with electron-transport and group-transfer reactions. The Mechanism of Enzyme Action, ed. by W. D. Mcelroy u. B. Glass, S. 464. Baltimore: Johns Hopkins Press 1954.Google Scholar
  187. — and I. Krimsky: The mechanism of oxidation of aldehydes by glyceraldehyde-3-phosphate dehydrogenase. J. biol. Chem. 198, 731 (1952).PubMedGoogle Scholar
  188. — and E. A. R. Schroeder: The reductive pentose phosphate cycle. II. Specific C-1 phosphatases for fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate. Arch. Biochem. Biophys. 74, 326 (1958).PubMedCrossRefGoogle Scholar
  189. Racusen, D.W., and S. Aronoff: The origin of asymmetrically labeled molecules from symmetrical precursors. Arch. Biochem. Biophys. 34, 218 (1951).PubMedCrossRefGoogle Scholar
  190. Rall, T. W., E. W. Sutherland and W. D. Wosilait: The relationship of epinephrine and glucagon to liver Phosphorylase. III. Reactivation of liver Phosphorylase in slices and in extracts. J. biol. Chem. 218, 483 (1956).PubMedGoogle Scholar
  191. Ratner, S., and O. Rochovansky: Biosynthesis of guanidinoacetic acid. II. Mechanism of amidine group transfer. Arch. Biochem. Biophys. 63, 296 (1956).PubMedCrossRefGoogle Scholar
  192. Reichard, P.: The enzymic synthesis of pyrimidines. Advanc. in Enzymol. 21, 263 (1959).Google Scholar
  193. — Some aspects of pyrimidine biosynthesis. IV. Int. Kongress f. Biochemie, Wien 1958, Vol. XIII: Colloquia, ed. by H. Chantrenne, O. Hayaishi, E. E. Snell, G. Toennies, K. S. Dodgson, H. A. Krebs, P. K. Stumpf u. O. F. Schwarz, S. 119. London-New York-Paris-Los Angeles: Pergamon Press 1959.Google Scholar
  194. — and G. Hanshoff: Aspartate carbamyl transferase from Escherichia coli. Acta chem. scand. 10, 548 (1956).CrossRefGoogle Scholar
  195. Rieder, S. V., and I. A. Rose: The mechanism of the triosephosphate isomerase reaction. J. biol. Chem. 234, 1007 (1959).PubMedGoogle Scholar
  196. Robbins, P. W., and F. Lipmann: Isolation and identification of active sulfate. J. biol. Chem. 229, 837 (1957).PubMedGoogle Scholar
  197. — Separation of the two enzymatic phases in active sulfate synthesis. J. biol. Chem. 233, 681 (1958).PubMedGoogle Scholar
  198. Rose, I. A.: Mechanism of the action of glyoxalase I. Biochim. biophys. Acta 25, 214 (1957).PubMedCrossRefGoogle Scholar
  199. — The mechanism of action of aldolase and the asymmetric labeling of hexose. Proc. Nat. Acad. Sci. (Wash.) 44, 10 (1958).CrossRefGoogle Scholar
  200. M. Grunberg-Manago, S. R. Korey and S. Ochoa: Enzymatic phosphorylation of acetate. J. biol. Chem. 211, 737 (1954).PubMedGoogle Scholar
  201. — and S. V. Rieder: The mechanism of action of muscle aldolase. J. Amer. chem. Soc. 77, 5764 (1955).Google Scholar
  202. — Studies on the mechanism of the aldolase reaction. Isotope exchange reactions of muscle and yeast aldolase. J. biol. Chem. 231, 315 (1958).PubMedGoogle Scholar
  203. Rutter, W. J., and K. H. Ling: The mechanism of action of fructose diphosphate aldolase. Biochim. biophys. Acta 30, 71 (1958).PubMedCrossRefGoogle Scholar
  204. Rydon, H. N.: A possible mechanism of action of esterases inhibitable by organo-phosphorus compounds. Nature (Lond.) 182, 928 (1958).CrossRefGoogle Scholar
  205. Sanadi, D. R., M. Langley and F. White: α-Ketoglutaric dehydrogenase. VII. The role of thioctic acid. J. biol. Chem. 234, 183 (1959).PubMedGoogle Scholar
  206. San Pietro, A., N. O. Kaplan and S. P. Colowick: Pyridine nucleotide transhydrogenase. VI. Mechanism and stereospecificity of the reaction in Pseudomonas fluorescens. J. biol. Chem. 212, 941 (1955).PubMedGoogle Scholar
  207. Schaffer, N. K., R. P. Lang, L. Simet and R. W. Drisko: Phosphopeptides from acid-hydrolyzed P32-labeled isopropyl methylphosphonofluoridate-inactivated trypsin. J. biol. Chem. 230, 185 (1958).PubMedGoogle Scholar
  208. Schaffer. N. K., S. C. May and W. H. Summerson: Serine phosphoric acid from diisopro-pylphosphoryl derivative of eel Cholinesterase. J. biol. Chem. 206, 201 (1954).PubMedGoogle Scholar
  209. L. Simet, S. Harshman, R. R. Engle and R. W. Drisko: Phosphopeptides from acid-hydrolyzed P32-labeled diisopropylphosphoryl chymotrypsin. J. biol. Chem. 225, 197 (1957).PubMedGoogle Scholar
  210. Schlamowitz, M., and D.M. Greenberg: On the mechanism of enzymatic conversion of glucose-1-phosphate to glucose-6-phosphate. J. biol. Chem. 171, 293 (1947).Google Scholar
  211. Schweet, R. S., and E. H. Allen: Purification and properties of tyrosine-activating enzyme of hog pancreas. J. biol. Chem. 233, 1104 (1958).PubMedGoogle Scholar
  212. Smith, E. E. B., and G. T. Mills: Uridine nucleotide compounds of liver. Biochim. biophys. Acta 13, 386 (1954).PubMedCrossRefGoogle Scholar
  213. Snoke, J. E.: On the mechanism of the enzymatic synthesis of glutathione. J. Amer. chem. Soc. 75, 4872 (1953).CrossRefGoogle Scholar
  214. — and K. Bloch: Studies on the mechanism of action of glutathione synthetase. J. biol. Chem. 213, 825 (1955).PubMedGoogle Scholar
  215. Spencer, T., and J. M. Sturtevant: The mechanism of chymotrypsin-catalyzed reactions. III. J. Amer. chem. Soc. 81, 1874 (1959).CrossRefGoogle Scholar
  216. Sprinson, D. B. and D. Rittenberg: Nature of the activation process in enzymatic reactions. Nature (Lond.) 167, 484 (1951).CrossRefGoogle Scholar
  217. Stein, S. S., and D. E. Koshland: Mechanism of action of alkaline phosphatase. Arch. Biochem. Biophys. 39, 229 (1952).CrossRefGoogle Scholar
  218. — and D. E. Koshland: Mechanism of hydrolysis of acetylcholine catalyzed by acetylcholinesterase and by hydroxide ion. Arch. Biochem. Biophys. 45, 467 (1953).PubMedCrossRefGoogle Scholar
  219. Stern, J. R., B. Shapiro, E. R. Stadtman and S. Ochoa: Enzymatic synthesis of citric acid. III. Reversibility and mechanism. J. biol. Chem. 193, 703 (1951).PubMedGoogle Scholar
  220. Strecker, H. J., and S. Ochoa: Pyruvate oxidation system and acetoin formation. J. biol. Chem. 209, 313 (1954).PubMedGoogle Scholar
  221. Sutherland, E. W., T. Z. Posternak and C. F. Cori: The mechanism of action of phospho-glucomutase and phosphoglyceric acid mutase. J. biol. Chem. 179, 501 (1949).PubMedGoogle Scholar
  222. — Mechanism of the phosphoglyceric mutase reaction. J. biol. Chem. 181, 153 (1949).PubMedGoogle Scholar
  223. Swan, J. M.: Thiols, disulphides and thiosulphates: Some new reactions and possibilities in peptide and protein chemistry. Nature (Lond.) 180, 643 (1957).CrossRefGoogle Scholar
  224. Tietz, A., and S. Ochoa: “Fluorokinase” and pyruvic kinase. Arch. Biochem. Biophys. 78, 477 (1958).PubMedCrossRefGoogle Scholar
  225. — Metabolism of propionic acid in animal tissues. V. Purification and properties of propionyl carboxylase. J. biol. Chem. 234, 1394 (1959).PubMedGoogle Scholar
  226. Topper, Y. J.: On the mechanism of action of phosphoglucose isomerase and phosphomannose isomerase. J. biol. Chem. 225, 419 (1957).PubMedGoogle Scholar
  227. Turba, F., u. G. Gundlach: Aminosäure-Sequenz in der Umgebung des reaktiven Serinrestes im Chymotrypsin-Molekül. Biochem. Z. 327, 186 (1955).PubMedGoogle Scholar
  228. Turnbull, J. H., and W. Lee: Inhibition of chymotrypsin by diphenyl phosphorochloridate: Some structural implications. IV. Internationaler Kongreß für Biochemie, Wien 1958. Zusammenfassungen S. 43.Google Scholar
  229. Utter, M. F., and K. Kurahashi: Purification of oxalacetic carboxylase from chicken liver J. biol. Chem. 207, 787 (1954a)PubMedGoogle Scholar
  230. — Mechanism of action of oxalacetic carboxylase. J. biol. Chem. 207, 821 (1954b).PubMedGoogle Scholar
  231. — and I. A. Rose: Some properties of oxalacetic carboxylase. J. biol. Chem. 207, 803 (1954).PubMedGoogle Scholar
  232. Velick, S. F., and J. E. Hayes: Phosphate binding and the glyceraldehyde-3-phosphate dehydrogenase reaction. J. biol. Chem. 203, 545 (1953).PubMedGoogle Scholar
  233. — and J. Harting: The binding of diphosphopyridine nucleotide by glyceraldehyde-3-phosphate dehydrogenase. J. biol. Chem. 203, 527 (1953).PubMedGoogle Scholar
  234. Ven, A. M. Van de, V. V. Koningsberger and J. T. G. Overbeek: Isolation of a tyrosine-activating enzyme from baker’s yeast. Biochim. biophys. Acta 28, 134 (1958).CrossRefGoogle Scholar
  235. Vennesland, B., and F. H. Westheimer: Hydrogen transport and steric specificity in reactions catalyzed by pyridine nucleotide dehydrogenases. The Mechanism of Enzyme Action, ed. by W. D. Mcelroy u. B. Glass, S. 357. Baltimore: Johns Hopkins Press 1954.Google Scholar
  236. Wakil, S. J.: A malonic acid derivative as an intermediate in fatty acid synthesis. J. Amer. chem. Soc. 80, 6465 (1958).CrossRefGoogle Scholar
  237. E. B. Titchener and D. M. Gibson: Evidence for the participation of biotin in the enzymic synthesis of fatty acids. Biochim. biophys. Acta 29, 225 (1958).PubMedCrossRefGoogle Scholar
  238. Walker, J. B.: Studies on the mechanism of action of kidney transamidinase. J. biol. Chem. 224, 57 (1957).PubMedGoogle Scholar
  239. — Further studies on the mechanism of transamidinase action: Transamidination in Streptomyces griseus. J. biol. Chem. 231, 1 (1958).PubMedGoogle Scholar
  240. Wallenfels, K.: The mechanism of hydrogen transfer with pyridine nucleotides in Steric Course of Microbiological Reactions. Ciba Foundation Study Group No. 2, ed. by G. E. W. Wolstenholme u. C. M. O’Connor, S. 10. London: J. & A. Churchill, Ltd. 1959.Google Scholar
  241. — u. M. Gellrich: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden XVII. Modelluntersuchungen zur chemischen Natur des,, Aktivierten Wasserstoffs”. Ber. dtsch. chem. Ges. 92, 1406 (1959).Google Scholar
  242. — u. H. Sund: Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden. V. Das DPN+-Bindungsvermögen von ADH und Zink-ADH. Biochem. Z. 329, 59 (1957).PubMedGoogle Scholar
  243. Westheimer, F. H.: Hypothesis for the mechanism of action of chymotrypsin. Proc. Nat. Acad. Sci. (Wash.) 43, 969 (1957).CrossRefGoogle Scholar
  244. Westheimer, F. H., H. F. Fisher, E. E. Conn and B. Vennesland: The enzymatic transfer of hydrogen from alcohol to DPN. J. Amer. chem. Soc. 73, 2403 (1951).CrossRefGoogle Scholar
  245. — and N. Nicolaides: The kinetics of the oxidation of 2-deuteropropanol-2 by chromic acid. J. Amer. chem. Soc. 71, 25 (1949).CrossRefGoogle Scholar
  246. Wiberg, K. B.: The deuterium isotope effect. Chem. Rev. 55, 713 (1955).CrossRefGoogle Scholar
  247. Wieland, T., u. G. Pfleiderer: Aktivierung von Aminosäuren. Advanc. in Enzymol. 19, 235 (1957).Google Scholar
  248. — u. B. Sandmann: Zum Wirkungsmechanismus der Glutamin-Synthetase aus Erbsen. Biochem. Z. 330, 198 (1958).PubMedGoogle Scholar
  249. Woessner, J. F., B. K. Bachhawat and M. J. Coon: Enzymatic activation of carbon dioxide II. Role of biotin in the carboxylation of β-hydroxyisovaleryl coenzyme A. J. biol. Chem. 233, 520 (1958).PubMedGoogle Scholar
  250. Wolochow, H., E. W. Putnam, M. Doudoroff, W. Z. Hassid and H. A. Barker: Preparation of sucrose labeled with C14 in the glucose or fructose component. J. biol. Chem. 180, 1237 (1949).PubMedGoogle Scholar
  251. Zachau, H. G., G. Acs and F. Lipmann: Isolation of adenosine amino acid esters from a ribonuclease digest of soluble liver ribonucleic acid. Proc. Nat. Acad. Sci. (Wash.) 44, 885 (1958).CrossRefGoogle Scholar
  252. Zatman, L. J., N. O. Kaplan and S. P. Colowick: Inhibition of spleen diphosphopyridine nucleotidase by nicotinamide, an exchange reaction. J. biol. Chem. 200, 197 (1953).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1961

Authors and Affiliations

  • Kurt Wallenfels
  • Horst Sund

There are no affiliations available

Personalised recommendations