Advertisement

Metabolism of Amino Acids and Protein

A. Metabolism of Amino Acids B. Metabolism of Protein
  • H. Tarver
  • M. Rothstein
  • H. Tarver

Abstract

It is apparent, even from a cursory examination of the literature, that there has been a tremendous application of isotopic methods to various problems concerned with amino acid and protein metabolism. In this chapter an attempt will be made to review the chief aspects of amino acid biosynthesis and catabolism which have been approached by using radioactive isotopes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdou, I. A., and H. Tarver: Plasma protein I. Loss from circulation and catabolism to carbon dioxide. J. biol. Chem. 190, 769 (1951a).PubMedGoogle Scholar
  2. — Plasma protein II. Relationship between circulating and tissue protein. J. biol. Chem. 190, 781 (1951b).PubMedGoogle Scholar
  3. W. O. Reinhardt and H. Tarver: Plasma protein III. The equilibrium between blood and lymph protein. J. biol. Chem. 194, 15 (1952).PubMedGoogle Scholar
  4. Abelson, P. H.: Amino acid biosynthesis in Escherichia coli: Isotopic competition with C14-glucose. J. biol. Chem. 206, 335 (1954).PubMedGoogle Scholar
  5. E. T. Bolton and E. Aldous: Utilization of carbon dioxide in the synthesis of proteins by Escherichia coli I. J. biol. Chem. 198, 165 (1952a).PubMedGoogle Scholar
  6. — Utilization of carbon dioxide in the synthesis of proteins by Escherichia coli II. J. biol. Chem. 198, 173 (1952b).PubMedGoogle Scholar
  7. R. Britten, D. B. Cowie, and R. B. Roberts: Synthesis of aspartic and glutamic families of amino acids in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 39, 1020 (1953).CrossRefGoogle Scholar
  8. Abrams, A., and H. Borsook: The conversion of L-histidine to glutamic acid by liver enzymes. J. biol. Chem. 198, 205 (1952).PubMedGoogle Scholar
  9. Abrams, R., E. Hammarsten, and D. Shemin: Glycine a precursor of purines in yeast. J. biol. Chem. 173, 429 (1948).PubMedGoogle Scholar
  10. Adams, E.: L-Histidinal, a biosynthetic precursor of histidine. J. biol. Chem. 217, 325 (1955).PubMedGoogle Scholar
  11. R. Friedman and A. Goldstone,: Animal metabolism of hydroxyproline: Isolation and enzymic reactions of γ-hydroxyglutamic semialdehyde. Biochim. biophys. Acta 30, 212 (1958).PubMedCrossRefGoogle Scholar
  12. Adelberg, E. A.: The biosynthesis of isoleucine and valine II. Independence of the biosynthetic pathways in Neurospora. J. biol. Chem. 216, 431 (1955).PubMedGoogle Scholar
  13. D. M. Bonner, and E. L. Tatum: A precursor of isoleucine obtained from a mutant strain of Neurospora crassa. J. biol. Chem. 190, 837 (1951).PubMedGoogle Scholar
  14. Albert, P. W., B. T. Scheer, and H. J. Deuel, Jr.: The effect of 3-hydroxyanthranilic acid on the excretion of niacin by the rat. J. biol. Chem. 175, 479 (1948).PubMedGoogle Scholar
  15. Alexander, N., and D. M. Greenberg: Studies on the biosynthesis of serine. J. biol. Chem. 214, 821 (1955).PubMedGoogle Scholar
  16. Allfrey, V., M. M. Daly, and A. E. Mirsky: Synthesis of protein in the pancreas II. The role of ribonucleoprotein. J. gen. Physiol. 37, 157 (1953).PubMedCrossRefGoogle Scholar
  17. Allfrey, V. G., A. E. Mirsky, and S. Osawa: Protein synthesis in isolated cell nuclei. J. gen. Physiol. 40, 451 (1957).PubMedCrossRefGoogle Scholar
  18. Altman, K. I., G. W. Casarett, R. E. Masters, T. R. Noonan, and K. Salomon: Hemoglobin synthesis from glycine labeled with radioactive carbon on its α-carbon atom. J. biol. Chem. 176, 319 (1948).PubMedGoogle Scholar
  19. K. Salomon, and T. R. Noonan: Hemin synthesis in rabbit bone marrow homogenates. J. biol. Chem. 177, 489 (1949).PubMedGoogle Scholar
  20. L. L. Miller, and J. E. Richmond: The role of the carbon skeleton of lysine in the biosynthesis of hemoglobin. Arch. Biochem. 36, 399 (1952).PubMedCrossRefGoogle Scholar
  21. Ames, B. N.: In McElroy and Glass, Amino Acid Metabolism, Baltimore. The Johns Hopkins Press, p. 365, 1955.Google Scholar
  22. Anderson, E. I., and W. A. Mosher: Incorporation of S35 from DL-cystine into glutathione and protein in the rat. J. biol. Chem. 188, 717 (1951).PubMedGoogle Scholar
  23. Andersson-Kottö, I., G. Ehrensvärd, G. Högström, E. Reio, and E. Saluste: Amino acid formation and utilization in Neurospora. J. biol. Chem. 210, 455 (1954).PubMedGoogle Scholar
  24. Anfinsen, C. B., and D. Steinberg: Studies on the biosynthesis of ovalbumin. J. biol. Chem. 189, 739 (1951).PubMedGoogle Scholar
  25. Armstrong, M. D., F-C. Chao, V. J. Parker, and P. E. Wall: Endogenous formation of hippuric acid. Proc. Soc. exp. Biol. (N. Y.) 90, 675 (1955).CrossRefGoogle Scholar
  26. A. Mcmillan, and K. N. F. Shaw: 3-Methoxy-4-hydroxy-D-mandelic acid, a urinary metabolite of norepinephrine. Biochim. biophys. Acta 25, 422 (1958).CrossRefGoogle Scholar
  27. K. N. F. Shaw, and P. E. Wall: The phenolic acids of human urine. Paper chromatography of phenolic acids. J. biol. Chem. 218, 293 (1956).PubMedGoogle Scholar
  28. Armstrong, S. H., Jr., J. Kukral, J. Hershman, K. Mcleod, J. Wolter, and D. Bronsky: The persistence in the blood of the radioactive label of albumins, gamma globulins and globulins of intermediate mobility II. Comparison of gamma globulins labeled with S35 and I131 in the same subjects. J. Lab. clin Med. 45, 51 (1955).PubMedGoogle Scholar
  29. K. Mcleod, J. Wolter, and J. Kukral: The persistence in the blood of the radioactive label of albumin, gamma globulins, globulins of intermediate mobility studied with S35 and paper electrophoresis: Methods and preliminary results. J. Lab. clin. Med. 43, 918 (1954).PubMedGoogle Scholar
  30. Arnstein, H. R. V.: The biosynthesis of choline methyl groups by the rat. Biochem. J. 48, 27 (1951).PubMedGoogle Scholar
  31. — and J. C. Crawhall: The metabolism of DL-[β-14C] and DL-[35S] cystine by the rat. Biochem. J. 55, 280 (1953).PubMedGoogle Scholar
  32. — and D. Keglevic: A comparison of alanine and glucose as precursors of serine and glycine. Biochem. J. 62, 199 (1956).PubMedGoogle Scholar
  33. — and A. Neuberger: Hippuric acid synthesis in the rat. Biochem. J. 50, 154 (1951).PubMedGoogle Scholar
  34. — The synthesis of glycine and serine by the rat. Biochem. J. 55, 271 (1953).PubMedGoogle Scholar
  35. — The effect of cobalamin on the quantitative utilization of serine, glycine and formate for the synthesis of choline and methyl groups of methionine. Biochem. J. 55, 259 (1953).PubMedGoogle Scholar
  36. — and V. Stankovic: The effect of certain vitamin deficiencies on glycine biosynthesis. Biochem. J. 62, 190 (1956).PubMedGoogle Scholar
  37. Awapara, J.: Absorption of injected taurine-S35 by rat organs. J. biol. Chem. 225, 877 (1957).PubMedGoogle Scholar
  38. — and V. M. Doctor: Enzymatic oxidation of cysteine-S35 to cysteine sulfinic acid. Arch. Biochem. 58, 506 (1955).PubMedCrossRefGoogle Scholar
  39. — and W. J. Wingo: On the mechanism of taurine formation from cysteine in the rat. J. biol. Chem. 203, 189 (1953).PubMedGoogle Scholar
  40. Axelrod, J.: O-methylation of epinephrine and other catechols in vitro and in vivo. Science 126, 400 (1957).PubMedCrossRefGoogle Scholar
  41. J. K. Inscoe, S. Senoh, and B. Witkop: O-methylation, the principal pathway for the metabolism of epinephrine and norepinephrine in the rat. Biochim. biophys. Acta 27, 210 (1958).PubMedCrossRefGoogle Scholar
  42. Babson, A. L.: The rate of loss of labeled plasma proteins from the circulation of tumor bearing rats. Biochim. biophys. Acta 20, 418 (1956).PubMedCrossRefGoogle Scholar
  43. Bachhawat, B. K., and M. J. Coon: Enzymatic activation of carbon dioxide I. Crystalline carbon dioxide activating enzyme. J. biol. Chem. 231, 625 (1958).PubMedGoogle Scholar
  44. W. G. Robinson, and M. J. Coon: Enzymatic carboxylation of ß-hydroxyisovaleryl coenzyme A. J. biol. Chem. 219, 539 (1956).PubMedGoogle Scholar
  45. Baddiley, J., G. Ehrensvärd, R. Johansson, L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis I. The cultivation of Torulopsis yeast on C13H3C14OOH as a single carbon source. J. biol. Chem. 183, 771 (1950).Google Scholar
  46. E. Klein, L. Reio, and E. Saluste: Acetic acid metabolism in Torulopsis utilis II. Metabolic connection between acetic acid and tyrosine and a method of degradation of the phenolic ring structure of tyrosine. J. biol. Chem. 183, 777 (1950).Google Scholar
  47. Baker, R. S., J. E. Johnson, and S. W. Fox: Incorporation of p-fluorophenylalanine into proteins of Lactobacillus arabinosus. Biochim. biophys. Acta 28, 318 (1958).PubMedCrossRefGoogle Scholar
  48. Baldrige, R. C., and C. D. Tourtellotte: The metabolism of histidine III. Urinary metabolites. J. biol. Chem. 233, 125 (1958).Google Scholar
  49. Barker, H. A.: On the fermentation of glutamic acid. Enzymologia 2, 175 (1937).Google Scholar
  50. — In Gunsalus and Stanier, The Bacteria, Vol. 2. New York: Academic Press 1959.Google Scholar
  51. R. D. Smyth, E. J. Wawszkiewicz, M. N. Lee, and R. M. Wilson: Enzymic preparation and characterization of an α-L-β-methylaspartic acid. Arch. Biochem. 78, 468 (1958).PubMedCrossRefGoogle Scholar
  52. H. Weissbach, and R. D. Smyth: A coenzyme containing pseudo vitamin B12. Proc. nat. Acad. Sci. (Wash.) 44, 1093 (1958).CrossRefGoogle Scholar
  53. Barry, J. M.: The use of glutamine and glutamic acid by the mammary gland for casein biosynthesis. Biochem. J. 63, 669 (1956).PubMedGoogle Scholar
  54. — and B. F. Sansom: The use of asparagine and glutamine for the biosynthesis of casein and plasma proteins. Biochem. J. 68, 487 (1958).PubMedGoogle Scholar
  55. Bauer, F. K., W. H. Blahd, M. Fields, and G. Getchell: Ascitic fluid and plasma protein exchange in cirrhosis of liver; studies with radioiodinated human serum albumin and gamma globulin. Metabolism 3, 289 (1954).PubMedGoogle Scholar
  56. M. Tubis, and H. B. Thomas: Accumulation of homologous radioiodinated albumin in experimental tumors. Proc. Soc. exp. Biol. (N. Y.) 90, 140 (1955).CrossRefGoogle Scholar
  57. Baugham, D. R., and R. J. Terry: The absorption of 131I-labelled homologous and heterologous serum proteins fed orally to young rats. Biochem. J. 66, 579 (1957).Google Scholar
  58. Beljanski, M., and S. Ochoa: Protein biosynthesis by a cell-free bacterial system. Proc. nat. Acad. Sci. (Wash.) 44, 494 (1958).CrossRefGoogle Scholar
  59. Benedict, J. D., H. J. Kalinsky, L. A. Scarrone, A. R. Wertheim, and De W. Stetten, Jr.: The origin of urinary creatine in progressive muscular distrophy. J. clin. Invest. 34, 141 (1955).PubMedCrossRefGoogle Scholar
  60. Berg, P.: Synthesis of labile methyl groups by guinea pig tissue in vitro. J. biol. Chem. 190 31 (1951).PubMedGoogle Scholar
  61. — A study of formate utilization in pigeon liver extract. J. biol. Chem. 205, 145 (1953).PubMedGoogle Scholar
  62. — Acyl adenylates: The interaction of adenosine triphosphate and L-methionine. J. biol. Chem. 222, 1025 (1956).PubMedGoogle Scholar
  63. — Studies on the enzymatic utilization of amino acid adenylates: the formation of adenosine triphosphate. J. biol. Chem. 233, 601 (1958).PubMedGoogle Scholar
  64. — and E. J. Ofengard: An enzymatic mechanism for linking amino acids to RNA. Proc. nat. Acad. Sci. (Wash.) 44, 78 (1958).CrossRefGoogle Scholar
  65. Berlin, N. I., C. Hewitt, and C. Lotz: Hippuric acid synthesis in man after the administration of glycine-α-C14. Biochem. J. 58, 498 (1954).PubMedGoogle Scholar
  66. — and B. M. Tolbert: Metabolism of glycine-2-C14 in man: V. Further considerations of pulmonary excretion of C14O2. Proc. Soc. exp. Biol. (N. Y.) 88, 386 (1955).CrossRefGoogle Scholar
  67. — and J. H. Lawrence: Studies on glycine-2-C14 metabolism in man. I. The pulmonary excretion of C14O2. J. clin. Invest. 30, 73 (1951).PubMedCrossRefGoogle Scholar
  68. Bernlohr, R. W., and G. C. Webster: Transfer of oxygen-18 during amino acid activation. Arch. Biochem. 73, 276 (1958).PubMedCrossRefGoogle Scholar
  69. Berson, S. A., and R. S. Yalow: The distribution of I131 labeled human serum albumin introduced into ascitic fluid: analysis of the kinetics of a three compartment catenary transfer system in man and speculations on possible sites of degradation. J. clin. Invest. 33, 377 (1954).PubMedCrossRefGoogle Scholar
  70. S. S. Schreiber, and J. Post: Tracer experiments with I131 labeled human serum albumin: Distribution and degradation studies. J. clin. Invest. 32, 746 (1953).PubMedCrossRefGoogle Scholar
  71. Bidinost, L. E.: Rate of formation of myosin in the muscle of the rat. J. biol. Chem. 190, 423 (1951).PubMedGoogle Scholar
  72. Black, A. L., and M. Kleiber: The recovery of norleucine from casein after administration of norleucine-3-C14 to intact cows. J. Amer. chem. Soc. 77, 6082 (1955).CrossRefGoogle Scholar
  73. — and C. F. Baxter: Glucose as a precursor of amino acids in the intact dairy cow. Biochim. biophys. Acta 17, 346 (1955).PubMedCrossRefGoogle Scholar
  74. — and A. H. Smith: Carbonate and fatty acids as precursors of amino acids in casein. J. biol. Chem. 197, 365 (1952).PubMedGoogle Scholar
  75. — and D. N. Stewart: Acetate as a precursor of amino acids of casein in the intact dairy cow. Biochim. biophys. Acta 23, 54 (1957).PubMedCrossRefGoogle Scholar
  76. Blakley, R. L.: The interconversion of serine and glycine: Participation of pyridoxal phosphate. Biochem. J. 61, 315 (1955).PubMedGoogle Scholar
  77. Blaschko, H., P. Holton, and G. H. S. Stanley: The formation of noradrenaline from dihydroxy phenyl serine. Brit. J. Pharmacol. 5, 431 (1950).PubMedGoogle Scholar
  78. Bloch, K.: Some aspects of the metabolism of leucine and valine. J. biol. Chem. 155, 255 (1944).Google Scholar
  79. — Metabolism of 1(+)-arginine in the rat. J. biol. Chem. 165, 469 (1946a).PubMedGoogle Scholar
  80. — Metabolism of 1(+)-arginine and synthesis of creatine in the pigeon. J. biol. Chem. 165, 477 (1946b).PubMedGoogle Scholar
  81. — The synthesis of glutathione in isolated liver. J. biol. Chem. 179, 1245 (1949).PubMedGoogle Scholar
  82. — and R. Schoenheimer: The biological precursors of creatine. J. biol. Chem. 138, 167 (1941).Google Scholar
  83. Block, R. J., and J. A. Sterol: Synthesis of sulfur amino acids from inorganic sulfate by ruminants. Proc. Soc. exp. Biol. (N. Y.) 73, 391 (1950).CrossRefGoogle Scholar
  84. Borek, E., L. Ponticorvo, and D. Rittenberg: Protein turnover in microorganisms. Proc. nat. Acad. Sci. (Wash.) 44, 369 (1958).CrossRefGoogle Scholar
  85. Borsook, H.: A rate governing reaction of protein synthesis. Nature (Lond.) 182, 1006 (1958).CrossRefGoogle Scholar
  86. C. L. Deasy, A. J. Haagen-Smit, G. Keighley, and P. H. Lowy: The degradation of L-lysine in guinea pig liver homogenate: Formation of α-aminoadipic acid. J. biol. Chem. 176, 1383 (1948).PubMedGoogle Scholar
  87. — The degradation of α-aminoadipic acid in guinea pig liver homogenate. J. biol. Chem. 176, 1395 (1948).PubMedGoogle Scholar
  88. — The uptake in vitro of C14-labeled glycine, L-leucine, and L-lysine by different components of guinea pig liver homogenate. J. biol. Chem. 184, 529 (1950).Google Scholar
  89. — Incorporation in vitro of labeled amino acids into proteins of rabbit reticulocytes. J. biol. Chem. 196, 669 (1952).PubMedGoogle Scholar
  90. — and G. L. Keighley: The “continuing” metabolism of nitrogen in animals. Proc. roy. Soc. Lond. 118 B, 488 (1935).Google Scholar
  91. Boström, H., and B. Mansson: On the enzymatic exchange of the sulfate group of chondroitin sulfate in slices of cartilage. J. biol. Chem. 196, 483 (1953).Google Scholar
  92. Boulanger, P., and R. Osteux: Action de la L-aminoacid-deshydrogenase du foie de dindon sur les acides amines basiques. Biochim. biophys. Acta 21, 552 (1956).PubMedCrossRefGoogle Scholar
  93. Bouthillier, L. P., and M. Goldner: The metabolism of histamine-β-C14. Arch. Biochem. 44, 251 (1953).PubMedCrossRefGoogle Scholar
  94. Boyer, P. D., O. J. Koeppe, and W. W. Luchsinger: Direct oxygen transfer in enzymatic syntheses coupled to adenosine triphosphate degradation. J. Amer. chem. Soc. 78, 365 (1956).Google Scholar
  95. Braunstein, A. E., and G. Y. Vilenkina: Enzymatic formation of glycine from serine, threonine and other hydroxyamino acids in animal tissues. Doklady Akad. Nauk S.S.S.R. 66, 243 (1949).Google Scholar
  96. Bregoff, H. M., and C. C. Delwiche: The formation of choline and betaine in leaf discs of Beta vulgaris. J. biol Chem. 217, 819 (1955).PubMedGoogle Scholar
  97. Bremer, J.: Species differences in the conjugation of free bile acids with taurine and glycine. Biochem. J. 63, 507 (1956a).PubMedGoogle Scholar
  98. — Cholyl-S-CoA as an intermediate in the conjugation of cholic acid with taurine by rat liver microsomes. Acta chem. scand. 10, 56 (1956b).CrossRefGoogle Scholar
  99. — and U. Gloor: Studies on the conjugation of cholic acid with taurine in cell subfractions. Bile acids and steroids 23. Acta chem. scand. 9, 689 (1955).CrossRefGoogle Scholar
  100. Britten, R. J., R. B. Roberts, and E. F. French: Amino acid adsorption and protein synthesis in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 41, 863 (1955).CrossRefGoogle Scholar
  101. Brown, D. D., and M. W. Kies: Hydantoin-5-propionic acid: A new urinary metabolite of urocanic acid. J. Amer. chem. Soc. 80, 6147 (1958).CrossRefGoogle Scholar
  102. Brown, R. R., and J. M. Price: Quantitative studies on metabolites of tryptophan in the urine of the dog, cat, rat, and man. J. biol. Chem. 219, 985 (1956).PubMedGoogle Scholar
  103. Brown, S. A., and R. V. Byerrum: The origin of the methyl carbon of nicotine formed by Nicotiana rustica L. J. Amer. chem. Soc. 74, 1523 (1952).CrossRefGoogle Scholar
  104. Buchanan, J. M., J. C. Sonne, and A. M. Delluva: II. The role of lactate, glycine, and carbon dioxide as precursors of the carbon chain and nitrogen atom 7 of uric acid. J. biol. Chem. 173, 81 (1948).PubMedGoogle Scholar
  105. Burke, K. A., R. F. Nystrom, and B. C. Johnson: The role of methionine as a methyl donor for choline synthesis in the chick. J. biol. Chem. 188, 723 (1951).PubMedGoogle Scholar
  106. Byerrum, R. U., J. H. Flokstra, L. J. Dewey, and C. D. Ball: Incorporation of formate and the methyl group of methionine into methoxyl groups of lignin. J. biol. Chem. 210, 633 (1954).PubMedGoogle Scholar
  107. R. L. Hamill, and C. D. Ball: The incoporartion of glycine into nicotine in tobacco plant metabolism. J. biol. Chem. 210, 645 (1954).PubMedGoogle Scholar
  108. Calvin, M.: The path of carbon in photosynthesis. Harvey Lect. Ser. 46, 218 (1950–1951).Google Scholar
  109. Campbell, L. L., Jr.: The oxidative degradation of glycine by a Pseudomonas. J. biol. Chem. 217, 669 (1955).PubMedGoogle Scholar
  110. Campbell, R. M., D. F. Cuthbertson, C. M. Matthews, and A. S. Mcfarlane: Behaviour of 14C-and 131I-labelled plasma proteins in the rat. J. appl. rad. Isotopes 1, 66 (1956).CrossRefGoogle Scholar
  111. Canellakis, E. S., and H. Tarver: Studies on protein synthesis in vitro IV. Concerning the apparent uptake of methionine by particulate preparations from liver. Arch. Biochem. 42, 387 (1953).PubMedCrossRefGoogle Scholar
  112. — The metabolism of methylmercaptan in the intact animal. Arch. Biochem. 42, 446 (1953).PubMedCrossRefGoogle Scholar
  113. Cantoni, G. L.: Methylation of nicotinamide with a soluble enzyme system from rat liver. J. biol. Chem. 189, 203 (1951a).PubMedGoogle Scholar
  114. — Activation of methionine for transmethylation. J. biol. Chem. 189, 745 (1951b).PubMedGoogle Scholar
  115. Cantoni, G. L., and J. Durell: Activation of methionine for transmethylation 2. The methionine activating enzyme: studies on the mechanism of the reaction. J. biol. Chem. 225, 1033 (1957).PubMedGoogle Scholar
  116. — and P. L. Vignos, Jr.: Enzymatic mechanism of creatine synthesis. J. biol. Chem. 209, 647 (1954).PubMedGoogle Scholar
  117. De Castro, F. T., R. R. Brown, and J. M. Price: The intermediary metabolism of tryptophan by cat and rat tissue preparations. J. biol. Chem. 228, 777 (1957).PubMedGoogle Scholar
  118. Challenger, F.: Methyl mercaptan in relation to Foetor Hepaticus. Biochem. J. 59, 372 (1955).PubMedGoogle Scholar
  119. Chang, M. L. W., and B. C. Johnson: Nicotinic acid metabolism 3. C14-carboxyl labeled nicotinamide and nicotinic acid in the chick. J. biol. Chem. 226, 799 (1956).Google Scholar
  120. Chao, F-C., C. C. Delwiche, and D. M. Greenberg: Biological precursors of glycine. Biochim. biophys. Acta 10, 103 (1953).PubMedCrossRefGoogle Scholar
  121. — and H. Tarver: Breakdown of urea in the rat. Proc. Soc. exp. Biol. (N. Y.) 84, 406 (1953).CrossRefGoogle Scholar
  122. Chapeville, F., et P. Fromageot: La formation enzymatique de l’acide cystéine sulfinique à partir de sulfite. Biochim. biophys. Acta 14, 415 (1954).PubMedCrossRefGoogle Scholar
  123. — Formation de sulfite, d’acide cystéique et de taurine à partir de sulfate par l’oeuf embryonne. Biochim. biophys. Acta 26, 538 (1957).PubMedCrossRefGoogle Scholar
  124. A. Brigelhuber, et M. Henry: Utilization des sulfites par l’animal supérieur. Biochim. biophys. Acta 20, 351 (1956).PubMedCrossRefGoogle Scholar
  125. Christensen, H. N.: In McElroy and Glass, Amino Acid Metabolism. Baltimore: Johns Hopkins Press 1955.Google Scholar
  126. — Active transport, with special reference to the amino acids. Perspectives Biol. Med. 2, 228 (1959).Google Scholar
  127. H. M. Parker, and T. R. Riggs: Nonexchange of carboxyl oxygen in mammalian amino acid transport. J. biol. Chem. 233, 1485 (1958).PubMedGoogle Scholar
  128. D. H. Thompson, S. Markle, and M. Sidky: Decreasing “Amino acid hunger” of human muscle with age. Proc. Soc. exp. Biol. (N. Y.) 99, 780 (1958).CrossRefGoogle Scholar
  129. Clark, C. T., H. Weissbach, and S. Udenfriend: 5-Hydroxytryptophan decarboxylase: Preparation and properties. J. biol. Chem. 210, 139 (1954).PubMedGoogle Scholar
  130. Clark, I., and D. Rittenberg: The metabolic activity of the α-hydrogen atom of lysine. J. biol. Chem. 189, 521 (1951).PubMedGoogle Scholar
  131. Clark, J. M., Jr.: Amino acid activation in plant tissues. J. biol. Chem. 233, 421 (1958).PubMedGoogle Scholar
  132. Cohen, G. N., et D. B. Cowie: Remplacement total de la methionine par la selenomethionine dans les protéines d’Escherichia coli. C. R. Acad. Sci. (Paris) 244, 680 (1957).Google Scholar
  133. H. O. Halvorson, and S. Spiegelman: Effects of p-fluorophenylalanine on the growth and physiology of yeast. Wash. Acad. Sci. Symp. 1, 100 (1958).Google Scholar
  134. — et V. Rickenberg: Concentration spécifique reversible des amino acides chez Escherichia coli. Ann. Inst. Pasteur 91, 693 (1956).Google Scholar
  135. Cohen, S.: Plasma protein distribution and turnover in the female baboon. Biochem. J. 64, 286 (1956).PubMedGoogle Scholar
  136. — and A. H. Gordon: Catabolism of plasma albumin by the perfused rat liver. Biochem. J. 70, 544 (1958).PubMedGoogle Scholar
  137. R. C. Holloway, C. Matthews, and A. S. Mcfarlane: Distribution and elimination of 131I-and 14C-labelled plasma proteins in the rabbit. Biochem. J. 62, 143 (1956).PubMedGoogle Scholar
  138. Coon, M. J.: The metabolic fate of the isopropyl group of leucine. J. biol. Chem. 187, 71 (1950).PubMedGoogle Scholar
  139. — and N. S. B. Abrahamsen: The relation of α-methylbutyrate to isoleucine metabolism I. Acetoacetate formation. J. biol. Chem. 195, 805 (1952a).PubMedGoogle Scholar
  140. — and G. S. Greene: The relation of α-methylbutyrate to isoleucine metabolism. J. biol. Chem. 199, 75 (1952b).PubMedGoogle Scholar
  141. — and S. Gurin: Studies on the conversion of radioactive leucine to acetoacetate. J. biol. Chem. 180, 1159 (1949).PubMedGoogle Scholar
  142. Cornelius, C. E., A. L. Black, and M. Kleiber: The use of glycine-1-C14 in the measurement of serum protein turnover rates in dairy cows. Amer. J. vet. Res. 20, 44 (1959).PubMedGoogle Scholar
  143. Cowgill, R. W., and B. Freeburg: The metabolism of methylhistidine compounds in animals. Arch. Biochem. 71, 466 (1957).PubMedCrossRefGoogle Scholar
  144. Cowie, D. B., E. T. Bolton, and M. K. Sands: Sulfur metabolism in Escherichia coli 2. Competitive utilization of labeled and non labeled sulfur Compounds. J. Bact. 62, 63 (1951).PubMedGoogle Scholar
  145. — and G. N. Cohen: Biosynthesis in Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. biophys. Acta 26, 252 (1957).PubMedCrossRefGoogle Scholar
  146. — and B. P. Walton: Kinetics of formation and utilization of metabolic pools in the biosynthesis of protein and nucleic acids. Biochim. biophys. Acta 21, 211 (1956).PubMedCrossRefGoogle Scholar
  147. Cunningham, L. W., and B. J. Nuenke: Physical and chemical studies of a limited reaction of iodine with proteins. J. biol. Chem. 234, 1447 (1959).PubMedGoogle Scholar
  148. Cutinelli, C., G. Ehrensvärd, L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Escherichia coli 1. General features, and the metabolic connection between acetate and glutamic acid aspartic acid, glycine, alanine, valine, serine and threonine. Acta chem. scand. 5, 353 (1951).CrossRefGoogle Scholar
  149. D’Addabbo, Von A., and E. Kallee: 131I-Serumproteine und Schilddrüse. Z. Naturforsch. 14b, 240 (1959).Google Scholar
  150. Dalgliesch, C. E., and H. Tabechian: Comparison of the metabolism of 14C-labelled L-phenylalanine, L-tyrosine and L-tryptophan in the rat. Biochem. J. 62, 625 (1956).Google Scholar
  151. Davie, E. W., V. V. Koningsberger, and F. Lipmann: The isolation of a tryptophan-activat-ing enzyme from pancreas. Arch. Biochem. 65, 21 (1956).PubMedCrossRefGoogle Scholar
  152. Davis, B. D.: Aromatic biosynthesis I. The role of shikimic acid. J. biol. Chem. 191, 315 (1951).PubMedGoogle Scholar
  153. — Intermediates in amino acid biosynthesis. Advanc. Enzymol. 16, 247 (1955).Google Scholar
  154. Davis, J. W., and G. D. Novelli: The activation of amino acids in extracts of pea seedlings. Arch. Biochem. 75, 299 (1958).PubMedCrossRefGoogle Scholar
  155. Delluva, A. M., and D. W. Wilson: A study with isotopic carbon of the assimilation of carbon dioxide in the rat. J. biol. Chem. 166, 739 (1946).PubMedGoogle Scholar
  156. Dewey, L. J., R. U. Byerrum, and C. D. Ball: The origin of the methyl group of nicotine through transmethylation. J. Amer. chem. Soc. 76, 3997 (1954).CrossRefGoogle Scholar
  157. Dewey, D. L., and E. Work: Diaminopimelic acid and lysine. Nature (Lond.) 169, 533 (1952).CrossRefGoogle Scholar
  158. Dimant, E., E. Landsberg, and I. M. London: The metabolic behavior of reduced glutathione in human and avian erythrocytes. J. biol. Chem. 213, 769 (1955).PubMedGoogle Scholar
  159. Dintzis, R. Z., and A. B. Hastings: The effect of antibiotics on urea breakdown in mice. Proc. nat. Acad. Sci. (Wash.) 39, 571 (1953).CrossRefGoogle Scholar
  160. Dische, R., and D. Rittenberg: The metabolism of phenylalanine-4-C14. J. biol. Chem. 211, 199 (1954).PubMedGoogle Scholar
  161. Dixon, F. J., P. H. Maurer, and M. P. Deichmiller: Half-lives of homologous serum albumins in several species. Proc. Soc. exp. Biol. (N. Y.) 83, 287 (1953).CrossRefGoogle Scholar
  162. D. W. Talmage, P. H. Maurer, and M. P. Deichmiller: The half-life of homologous gamma globulin (antibody) in several species. J. exp. Med. 96, 313 (1952).CrossRefGoogle Scholar
  163. Doctor, V. M., and J. Awapara: The incorporation of serine-3-C14 into citrovorum factor. J. biol. Chem. 220, 161 (1956).PubMedGoogle Scholar
  164. T. L. Patton, and J. Awapara: Incorporation of serine-3-C14 and formaldehyde-C14 into methionine in vitro 1. Role of folic acid. Arch. Biochem. 67, 404 (1957).PubMedCrossRefGoogle Scholar
  165. Downey, P. F., and S. Black: A new naturally occurring isomer ofβmethyl lanthionine. J. biol. Chem. 228, 171 (1957).PubMedGoogle Scholar
  166. Dreyfus, J-C., G. Shapira, et J. Kruh: Sur la durée de vie des protéines musculaires. C. R. Soc. Biol. (Paris) 150, 1145 (1956).Google Scholar
  167. Drinker, C. K.: Extravascular protein and the lymphatic system. Ann. N. Y. Acad. Sci. 46, 807 (1946).CrossRefGoogle Scholar
  168. Dubeck, M., and S. Kirkwood: The origin of the O-and N-methyl groups of the alkaloid ricinine. J. biol. Chem. 199, 307 (1952).PubMedGoogle Scholar
  169. Durell, J., D. G. Anderson, and G. L. Cantoni: The synthesis of methionine by enzymic transmethylation 1. Purification and properties of homocysteine methylpherase. Biochim. biophys. Acta 26, 270 (1957a).PubMedCrossRefGoogle Scholar
  170. — and J. M. Sturtevant: The synthesis of methionine by enzymic transmethylation 2. Enthalpy change in the methyl-transfer from dimethylacetothetin. Biochim. biophys. Acta 26, 282 (1957b).PubMedCrossRefGoogle Scholar
  171. Du Vigneaud, V.: Migration of the methyl group in the body. Proc. Amer. Philos. Soc. 92, 127 (1948).Google Scholar
  172. J. P. Chandler, M. Cohn, and G. B. Brown: The transfer of the methyl group from methionine to choline and creatine. J. biol. Chem. 134, 787 (1940).Google Scholar
  173. — and A. W. Moyer: The inablility of creatine and creatinine to enter into transmethylation in vivo. J. biol. Chem. 139, 917 (1941).Google Scholar
  174. — and M. Cohn: The utilization of the methyl groups of choline in the biological synthesis of methionine. J. biol. Chem. 149, 519 (1943).Google Scholar
  175. S. Simmonds, A. W. Moyer, and M. Cohn: The role of dimethyl-and monomethyl-aminoethanol in transmethylation reactions in vivo. J. biol. Chem. 164, 603 (1946).Google Scholar
  176. M. Cohn, J. P. Chandler, J. R. Schenck, and S. Simmonds: The utilization of the methyl group of methionine in the biological synthesis of choline and creatine. J. biol. Chem. 140, 625 (1941).Google Scholar
  177. J. R. Rachele, and A. M. White: A crucial test of transmethylation in vivo by intramolecular isotopic labeling. J. Amer. chem. Soc. 78, 5131 (1936).CrossRefGoogle Scholar
  178. C. Ressler, and J. R. Rachele: The biological synthesis of “labile methyl groups”. Science 112, 267 (1950c).PubMedCrossRefGoogle Scholar
  179. Du Vigneaud, V., S. Simmonds, J. P. Chandler, and M. Cohn: Synthesis of labile methly groups in the white rat. J. biol. Chem. 159, 755 (1945).Google Scholar
  180. — A further investigation of the role of betaine in transmethylation reactions. J. biol. Chem. 165, 639 (1946).PubMedGoogle Scholar
  181. Du Vigneaud, V., S. Simmonds, and M. Cohn: A further investigation of the ability of sarcosine to serve as a labile methyl donor. J. biol. Chem. 166, 47 (1946).PubMedGoogle Scholar
  182. — and W. G. Verly: Incorporation in vivo of C14 from labeled methanol into the methyl groups of choline. J. Amer. chem. Soc. 72, 1049 (1950a).CrossRefGoogle Scholar
  183. — and J. E. Wilson: Incorporation of the carbon of formaldehyde and formate into the methyl groups of choline. J. Amer. chem. Soc. 72, 2819 (1950b).CrossRefGoogle Scholar
  184. Dziewiatkowski, D.D.: Conversion of sulfide sulfur to cystine sulfur in the rat, with use of radioactive sulfur. J. biol. Chem. 164, 165 (1946).PubMedGoogle Scholar
  185. — Utilization of sulfate sulfur in rat for the synthesis of cystine. J. biol. Chem. 207, 181 (1954).PubMedGoogle Scholar
  186. — Some aspects of the metabolism of chondroitin sulfate-S35 in the rat. J. biol. Chem. 223, 239 (1956).PubMedGoogle Scholar
  187. Edlbacher, S.: Histidase und Urocaninase. Ergebn. Enzymforsch. 9, 131 (1943).Google Scholar
  188. De Eds, F., A. N. Booth, and F. T. Jones: Methylation and dehydroxylation of phenolic compounds by rats and rabbits. J. biol. Chem. 225, 615 (1957).Google Scholar
  189. Ehrensvärd, G.: Amino acid metabolism in Torulopsis utilis. Cold Spr. Harb. Symp. quant. Biol. 13, 81 (1948).CrossRefGoogle Scholar
  190. — Metabolism of amino acids and proteins. Ann. Rev. Biochem. 24, 275 (1955).PubMedCrossRefGoogle Scholar
  191. — Biosynthesis of aromatic ring systems from C3 and C4 fragments. Chem. Soc. Symp. p. 17 (1958).Google Scholar
  192. — The formation of tyrosine in Escherichia coli and Neurospora crassa, grown on isotope-labeled acetate as the sole source of carbon. Ark. Kemi. 5, 229 (1953).Google Scholar
  193. L. Reio, and E. Saluste: On the origin of the basic amino acids. Acta chem. scand. 3, 645 (1949).CrossRefGoogle Scholar
  194. — and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis III. Metabolic connection between acetic acid and various amino acids. J. biol. Chem. 189, 93 (1951).PubMedGoogle Scholar
  195. Elder, N. A., and R. A. Mortensen: The incorporation of labeled glycine into erythrocyte glutathione. J. biol. Chem. 218, 261 (1956).PubMedGoogle Scholar
  196. Eljarn, L.: The conversion of cystinamine to taurine in rat, rabbit, and man. J. biol. Chem. 206, 483 (1954).Google Scholar
  197. — and J. Bremer: The conjugation of 2-aminoethane sulfinic acid (hypotaurine) with cholic acid by rat liver microsomes. Acta chem. scand. 10, 1046 (1956).CrossRefGoogle Scholar
  198. A. Phil, and A. Sverdrup: The synthesis of S35 labeled hypotaurine and its metabolism in rats and mice. J. biol. Chem. 223, 353 (1956).Google Scholar
  199. Elliott, D. F., and A. Neuberger: The irreversibility of the deamination of threonine in the rabbit and rat. Biochem. J. 46, 207 (1950).PubMedGoogle Scholar
  200. Elwyn, D., and D. B. Sprinson: The relation of folic acid to the metabolism of serine. J. biol. Chem. 184, 475 (1950).PubMedGoogle Scholar
  201. A. Weissbach, S. S. Henry, and D. B. Sprinson: The biosynthesis of choline from serine and related compounds. J. biol. Chem. 213, 281 (1955).PubMedGoogle Scholar
  202. Ericson, L. E., J. N. Williams, Jr., and C. A. Elvehjem: Studies on partially purified betaine-homocysteine transmethylase of liver. J. biol. Chem. 212, 537 (1955).PubMedGoogle Scholar
  203. Evans, E. A., and L. Slotin: The role of carbon dioxide in the synthesis of urea in rat liver slices. J. biol. Chem. 136, 805 (1940).Google Scholar
  204. Feinberg, R. H., and D. M. Greenberg: Studies of urocanic acid. Nature (Lond.) 181, 897 (1958).CrossRefGoogle Scholar
  205. Fellman, J. H., and M. K. Devlin: Concentration and hydroxylation of free phenylalanine in adrenal glands. Biochim. biophys. Acta, 28, 328 (1958).PubMedCrossRefGoogle Scholar
  206. Fine, J., and A. M. Seligman: Traumatic shock IV. A study of the problem of the lost plasma in hemorrhagic shock by the use of radioactive plasma proteins. J. clin. Invest. 22, 285 (1943).PubMedCrossRefGoogle Scholar
  207. Fink, R. M., T. Enns, C. P. Kimball, H. E. Silberstein, W. F. Ball, S. G. Madden, G. H. Whipple: Plasma protein metabolism-Normal and associated with shock. Observations using protein labeled by heavy nitrogen in lysine. J. exp. Med. 80, 455 (1944).PubMedCrossRefGoogle Scholar
  208. Flavin, M., and C. B. Anfinsen: The isolation and characterization of cysteic acid peptides in studies on ovalbumin synthesis. J. biol. Chem. 211, 375 (1954).PubMedGoogle Scholar
  209. Fones, W. S., T. P. Waalkes, and J. White: Conversion of L-valine to glucose and glycogen in the rat. Arch. Biochem. 32, 89 (1951).PubMedCrossRefGoogle Scholar
  210. Forker, L. L., I. L. Chaikoff, and W. O. Reinhardt: Circulation of plasma proteins: Their transport to lymph. J. biol. Chem. 197, 625 (1952).PubMedGoogle Scholar
  211. Forssberg, A., and L. Revesz: A study on the metabolic state of proteins in the cells of two ascitic tumors. Biochim. biophys. Acta 25, 165 (1957).PubMedCrossRefGoogle Scholar
  212. Fournier, J. P., and L. P. Bouthillier: Additional evidence on the enzymatic transformation of histidine to glutamic acid. J. Amer. chem. Soc. 74, 5210 (1952).CrossRefGoogle Scholar
  213. Franz, I. D., Jr., R. B. Loftfield, and W. W. Miller: Incorporation of C14 from carboxyl-labeled DL-alanine into the proteins of liver slices. Science 106, 544 (1947).CrossRefGoogle Scholar
  214. Freeman, T., A. H. Gordon, and J. H. Humphrey: Distinction between catabolism of native and denatured proteins by the isolated perfused liver after carbon loading. Brit. J. exp. Path. 39, 459 (1958).PubMedGoogle Scholar
  215. C. M. E. Matthews, A. S. Mcfarlane, H. Bennhold, and E. Kaller: Albumin labeled with iodine-131 in an analbuminaemic subject. Nature (Lond.) 183, 606 (1959).CrossRefGoogle Scholar
  216. Friedberg, F., H. Tarver, and D. M. Greenberg: The distribution pattern of sulfur-labeled methionine in the protein and the free amino acid fraction of tissues after intravenous administration. J. biol. Chem. 173, 355 (1948).PubMedGoogle Scholar
  217. Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria 18. The incorporation of glutamic acid into the protein fraction of Staphyloccocus aureus. Biochem. J. 55, 721 (1953).PubMedGoogle Scholar
  218. C. J. Shepherd, and J. P. Folkes: Incorporation of amino acids by disrupted Staphylococcal cells. Nature (Lond.) 182, 592 (1958).CrossRefGoogle Scholar
  219. Gehrmann, G., K. Lauenstein, and K. I. Altman: Evidence for non-uniform labeling of glycine residues in rat collagen. Arch. Biochem. 62, 509 (1956).PubMedCrossRefGoogle Scholar
  220. Gerdes, K., u. W. Maurer: Messung zur Lebensdauer von Fibrinogen beim Menschen und beim Kaninchen. Biochem. Z. 328, 522 (1957).PubMedGoogle Scholar
  221. Gholson, R. K., and L. M. Henderson: The formation of acetate from the benzene ring of tryptophan. Biochim. biophys. Acta 30, 424 (1958).PubMedCrossRefGoogle Scholar
  222. G. A. Mourkides, R. J. Hill, and R. E. Koeppe: The metabolism of DL-tryptophan-α-C14 by the rat. J. biol. Chem. 234, 96 (1959).PubMedGoogle Scholar
  223. D. R. Rao, L. M. Henderson, R. J. Hill, and R. E. Koeppe: The metabolism of DL-tryptophan-7α-C14 by the rat. J. biol. Chem. 230, 179 (1958).PubMedGoogle Scholar
  224. Giatonde, M. K., and D. Richter: The uptake of 35S into rat tissues after injection of [35S] methionine. Biochem. J. 59, 690 (1950).Google Scholar
  225. Gilvarg, C.: The enzymatic synthesis of diaminopimelic acid. J. biol. Chem. 233, 1501 (1958).PubMedGoogle Scholar
  226. — and K. Bloch: The utilization of acetic acid for amino acid synthesis in yeast. J. biol. Chem. 193, 339 (1951).PubMedGoogle Scholar
  227. — Utilization of glucose-1-C14 for the synthesis of phenylalanine and tyrosine. J. biol. Chem. 199, 689 (1952).PubMedGoogle Scholar
  228. Gitlin, D.: Distribution dynamics of circulating and extravascular-I131 plasma proteins. Ann. N. Y. Acad. Sci. 70, 122 (1957).PubMedCrossRefGoogle Scholar
  229. D. G. Cornwell, D. Nakasato, J. L. Oncley, W. L. Hughes, Jr., and C. A. Janeway: Studies on the metabolism of plasma proteins in the nephrotic syndrome II. The lipoproteins. J. clin. Invest. 37, 171 (1958).Google Scholar
  230. — and C. A. Janeway: The dynamic equilibrium between circulating and extra vascular plasma proteins. Science 118, 301 (1953).PubMedCrossRefGoogle Scholar
  231. Goldstein, M., A. J. Friedhoff, and C. Simmons: Metabolic pathways of 3-hydroxytyramine. Biochim. biophys. Acta 33, 572 (1959).PubMedCrossRefGoogle Scholar
  232. Goldsworthy, P. D., and W. Volwiler: Comparative metabolic fate of chemically (I131) and biosynthetically (C14 or S35-) labeled proteins. Ann. N. Y. Acad. Sci. 70, 26 (1957).PubMedCrossRefGoogle Scholar
  233. — Mechanism of protein turnover studied with cystine-S35, lysine-C14 doubly labeled plasma proteins of the dog. J. biol. Chem. 230, 817 (1958).PubMedGoogle Scholar
  234. T. Winnick, and D. M. Greenberg: Distribution of C14 in glycine and serine of liver protein following the administration of labeled glycine. J. biol. Chem. 180, 341 (1949).PubMedGoogle Scholar
  235. Goodwin, L. D., and J. M. Kinney: Studies on one-carbon metabolism in man. J. biol. Chem. 230, 487 (1958).PubMedGoogle Scholar
  236. Gordon, A. H.: The use of the isolated perfused liver to detect alterations to plasma proteins, Biochem. J. 66, 255 (1957).PubMedGoogle Scholar
  237. Grau, C. R., and R. Steele: Phenylalanine and tyrosine utilization in normal and phenylalanine deficient young mice. J. Nutr. 53, 59 (1954).PubMedGoogle Scholar
  238. Green, H., and H. S. Anker: Kinetics of amino acid incorporation into serum proteins. J. gen. Physiol. 38, 283 (1955).PubMedCrossRefGoogle Scholar
  239. Greenberg, D. M.: Chemical pathways of metabolism vol. 2. New York: Academic Press 1954.Google Scholar
  240. — and E. N. Sassenrath: Non conversion of arabinose and ribose to glycine. Biochim. biophys. Acta 15, 150 (1954).PubMedCrossRefGoogle Scholar
  241. Greenberg, G. R., L. Jaenicke, and M. Silverman: Occurrence of N10-formyl tetrahydro-folic acid and its general involvement in transformylation. Biochim. biophys. Acta 17, 588 (1955).CrossRefGoogle Scholar
  242. Grinstein, M., M. D. Kamen, and C. V. Moore: Observations on the utilization of glycine in the biosynthesis of hemoglobin. J. biol. Chem. 174, 767 (1948).PubMedGoogle Scholar
  243. Grisolia, S., R. H. Burris, and P. P. Cohen: Carbon dioxide and ammonia fixation in the biosynthesis of citrulline. J. biol. Chem. 191, 203 (1951).PubMedGoogle Scholar
  244. Grisolia, S., and P. P. Cohen: Study of carbon dioxide fixation in the synthesis of citrulline. J. biol. Chem. 176, 929 (1948).PubMedGoogle Scholar
  245. — Catalytic role of glutamate derivatives in citrulline biosynthesis. J. biol. Chem. 204, 753 (1953).PubMedGoogle Scholar
  246. Grobbelaar, N., and F. C. Steward: Pipecolic acid in Phaseolus vulgaris: Evidence on its derivation from lysine. J. Amer. chem. Soc. 75, 4341 (1953).CrossRefGoogle Scholar
  247. Gross, D., and H. Tarver: Studies on ethionine IV. The incorporation of ethionine into the proteins of tetrahymena. J. biol. Chem. 217, 169 (1955).PubMedGoogle Scholar
  248. Gross, S. R.: The enzymatic conversion of 5-dehydroshikimic acid to protocatechuic acid. J. biol. Chem. 233, 1146 (1958).PubMedGoogle Scholar
  249. Grossman, C. M., R. J. Winzler, and J. D. Hauschildt: The conversion of glycine to serine by human liver tissue. Science 118, 330 (1953).PubMedCrossRefGoogle Scholar
  250. Grossowicz, N., and Y. S. Halpern: Enzymatic transfer and hydrolysis involving glutamine and asparagine. J. biol. Chem. 228, 643 (1957).PubMedGoogle Scholar
  251. Gurin, S., and A. M. Delluva: The biological synthesis of radioactive adrenalin from phenylalanine. J. biol. Chem. 170, 545 (1947).Google Scholar
  252. Gutmann, H. R., and J. L. Wood: A note on the acetylation of sulfur amino acids by liver and kidney. J. biol. Chem. 189, 473 (1951).PubMedGoogle Scholar
  253. Halvorson, H.: Intracellular protein and nucleic acid turnover in resting yeast cells. Biochim. biophys. Acta 27, 255 (1958).PubMedCrossRefGoogle Scholar
  254. — Studies on protein and nucleic acid turnover in growing cultures of yeast. Biochim. biophys. Acta 27, 267 (1958).PubMedCrossRefGoogle Scholar
  255. Halvorson, H. O., et G. N. Cohen: Incorporation des amino-acides endogènes et exogènes dans les protéines de la levure. Ann. Inst. Pasteur 95, 73 (1958).Google Scholar
  256. Hancock, R., and J. T. Park: Cell-wall synthesis by Staphylococcus aureus in the presence of chloramphenicol. Nature (Lond.) 181, 1050 (1958).CrossRefGoogle Scholar
  257. Hankes, L. V., and L. M. Henderson: The metabolism of carboxyl-labeled 3-hydroxy-anthranilic acid in the rat. J. biol. Chem. 225, 349 (1957).PubMedGoogle Scholar
  258. — and I. H. Segel: Synthesis and metabolism of tritium-labeled DL-kynurenine. Proc. Soc. exp. Biol. (N. Y.) 97, 568 (1958).CrossRefGoogle Scholar
  259. — Synthesis and metabolism of quinolinic acid ring labeled with tritium. Proc. Soc. exp. Biol. (N. Y.) 94, 447 (1957).CrossRefGoogle Scholar
  260. — and M. Urivetsky: Mammalian conversion of C14 carboxyl labeled 3-hydroxyanthranilic acid into N’-methyl nicotinamide. Arch. Biochem. 52, 484 (1954).PubMedCrossRefGoogle Scholar
  261. Harmon, D. H., M. R. Kirk, and B. M. Tolbert: The effect of cancer and fasting on oxidation of labeled acetate, glucose and glycine to C14O2. Amer. J. Physiol. 196, 265 (1959).PubMedGoogle Scholar
  262. Harms, W. S., and T. Winnick: Further studies of the biosynthesis of carnosine and anserine in vertebrates. Biochim. biophys. Acta 15, 480 (1954).PubMedCrossRefGoogle Scholar
  263. Hayaishi, O., S. Rothberg, A. H. Mehler, and Y. Saito: Studies on oxygenases. Enzymatic formation of kynurenine from tryptophan. J. biol. Chem. 229, 889 (1957).PubMedGoogle Scholar
  264. — and R. Y. Stanier: The bacterial oxidation of tryptophan III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J. Bact. 62, 691 (1951).PubMedGoogle Scholar
  265. H. Tabor, and T. Hayaishi: Enzymatic formation of formylaspartic acid from imidazole acetic acid. J. Amer. chem. Soc. 76, 5570 (1954).CrossRefGoogle Scholar
  266. — N-Formimino-L-aspartic acid as an intermediate in the enzymatic conversion of imidazole acetic acid to formyl aspartic acid. J. biol. Chem. 227, 161 (1957).PubMedGoogle Scholar
  267. Hecht, L. L, M. L. Stephenson, and P. C. Zamecnik: Dependence of amino acid binding to soluble ribonucleic acid on cytidine triphosphate. Biochim. biophys. Acta 29, 460 (1958).PubMedCrossRefGoogle Scholar
  268. Heidelberger, C., E. P. Abraham, and S. Lepkovsky: Tryptophan metabolism 2. Concerning the mechanism of the mammalian conversion of tryptophan into nicotinic acid. J. biol. Chem. 179, 151 (1949b).PubMedGoogle Scholar
  269. M. E. Gullberg, A. F. Morgan, and S. Lepkovsky: Tryptophan metabolism 1. Concerning the mechanism of the mammalian conversion of tryptophan into kynurenine, kynurenic acid, and nicotinic acid. J. biol. Chem. 179, 143 (1949a).PubMedGoogle Scholar
  270. Heimberg, M., and S. F. Velick: The synthesis of aldolase and Phosphorylase in rabbits. J. biol. Chem. 208, 725 (1954).PubMedGoogle Scholar
  271. Heinz, E.: Kinetic studies on the “influx” of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. 211, 781 (1954).PubMedGoogle Scholar
  272. — The exchange ability of glycine accumulated by carcinoma cell. J. biol. Chem. 225, 305 (1957).PubMedGoogle Scholar
  273. — and H. A. Mariani: Concentration work and energy dissipation in active transport of glycine into carcinoma cells. J. biol. Chem. 228, 97 (1957).PubMedGoogle Scholar
  274. — and P. M. Walsh: Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells. J. biol. Chem. 233. 1488 (1958).PubMedGoogle Scholar
  275. Henderson, L. M., and L. V. Hankes: The metabolism of DL-tryptophan-3a, 7a, 7-C14 and DL-tryptophan-α-C14 in the rat. J. biol. Chem. 222, 1069 (1956).PubMedGoogle Scholar
  276. Hendler, R. W.: Possible involvement of lipids in protein synthesis. Science 128, 143 (1958).PubMedCrossRefGoogle Scholar
  277. — and C. B. Anfinsen: The incorporation of carbon dioxide into both carboxyl groups of glutamic acid. J. biol. Chem. 209, 55 (1954).PubMedGoogle Scholar
  278. Henriques, O. B., S. B. Hgho, and A. Neuberger: Quantitative aspects of glycine metabolism in the rabbit. Biochem. J. 60, 409 (1955).PubMedGoogle Scholar
  279. Hevesy, G.: Radioactive indicators, New York, Interscience, p. 303, 1948.Google Scholar
  280. Hoagland, M. B.: An enzymatic mechanism for amino acid activation in animal tissues. Biochim. biophys. Acta 16, 288 (1955).PubMedCrossRefGoogle Scholar
  281. — Enzymatic reactions between amino acids and ribonucleic acids as intermediate steps in protein synthesis, IV. Internat. Congr. Biochem. (Vienna). Symp. VIII (2), 1958.Google Scholar
  282. E. B. Keller, and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. biol. Chem. 218, 345 (1956).PubMedGoogle Scholar
  283. P. C. Zamecnik, N. Sharon, F. Lipmann, M. P. Stulberg, and P. D. Boyer: Oxygen transfer to AMP in the enzymatic synthesis of the hydroxamate of tryptophan. Biochim. biophys. Acta 26, 215 (1957).PubMedCrossRefGoogle Scholar
  284. — and M. L. Stephenson: Intermediate reactions in protein biosynthesis. Biochim. biophys. Acta 24, 215 (1957).PubMedCrossRefGoogle Scholar
  285. Hobbs, D. C., and R. E. Koeppe: The metabolism of glutaric acid-3-C14 by the intact rat. J. biol. Chem. 230, 655 (1958).PubMedGoogle Scholar
  286. Hogness, D. S., M. Cohn, and J. Monod: Studies on the induced synthesis of ß-galactosidase in Escherichia coli: The kinetics and mechanism of sulfur incorporation. Biochim. biophys. Acta 16, 99 (1955).PubMedCrossRefGoogle Scholar
  287. Högström, G.: Isotope distribution in amino acids from regenerating rat liver after administration of labeled acetate. Acta chem. scand. 7, 45 (1951).CrossRefGoogle Scholar
  288. Holley, R. W.: An alanine dependent, ribonuclease-inhibited conversion of AMP to ATP, and its possible relation to protein synthesis. J. Amer. chem. Soc. 79, 658 (1957).CrossRefGoogle Scholar
  289. Horner, W. H., and C. G. Mackenzie: The biological formation of sarcosine. J. biol. Chem. 187, 15 (1950).PubMedGoogle Scholar
  290. I. Siegel, and J. Bruton: The synthesis of arginine from guanidino acetic acid. J. biol. Chem. 220, 861 (1956).PubMedGoogle Scholar
  291. Hughes, W. L.: The chemistry of iodination. Ann. N. Y. Acad. Sci. 70, 3 (1957).PubMedCrossRefGoogle Scholar
  292. Hultin, T., and G. Beskow: The incorporation of C14-leucine into rat liver protein in vitro visualized as a two step reaction. Exp. cell. Res. 11, 665 (1956).Google Scholar
  293. Humphrey, J. H., A. Neuberger, and D. J. Perkins: Observations on the presence of plasma proteins in skin and tendon. Biochem. J. 66, 390 (1957).PubMedGoogle Scholar
  294. Hunnekens, F.M., M. J. Osborn, and H.R. Whiteley: Folic acid coenzymes. Metabolic reactions involving “active formate” and “active formaldehyde” are surveyed. Science 128, 120 (1958).CrossRefGoogle Scholar
  295. Iber, F. L., K. Nassau, I. C. Plough, F. M. Berger, W. H. Meroney and K. Fremont-Smith: The use of radioiodinated albumin in metabolic studies. Effects of level of dietary protein and L-triiodothyronine on the catabolism of radioiodinated human serum albumin. J. clin. Invest. 37, 1442 (1958).PubMedCrossRefGoogle Scholar
  296. Ichihara, A., and D. M. Greenberg: Pathway of serine formation from carbohydrate in rat liver. Proc. nat. Acad. Sci. (Wash.) 41, 605 (1955).CrossRefGoogle Scholar
  297. — Further studies on the pathway of serine formation from carbohydrate. J. biol. Chem. 224, 331 (1957).PubMedGoogle Scholar
  298. Johnston, R. B., and K. Bloch: The synthesis of glutathione in cell free pigeon liver extracts. J. biol. Chem. 179, 493 (1949).PubMedGoogle Scholar
  299. — Enzymatic synthesis of glutathione. J. biol. Chem. 188, 221 (1951).PubMedGoogle Scholar
  300. Jones, M. E., L. Spector, and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. chem. Soc. 77, 819 (1955).CrossRefGoogle Scholar
  301. Jonsson, S., and W. A. Mosher: The in vitro synthesis of labile methyl groups. J. Amer. chem. Soc. 72, 3316 (1950).CrossRefGoogle Scholar
  302. Kao, K. Y. T., and R. J. Boucek: Incorporation and conversion of lysine-2-C14 in rat biopsy connective tissue. Proc. Soc. exp. Biol. (N. Y.) 98, 526 (1958).CrossRefGoogle Scholar
  303. Karjala, S. A., B. Turnquest, 3rd and R. W. Schayer: Urinary metabolites of radioactive histamine. J. biol. Chem. 219, 9 (1956).PubMedGoogle Scholar
  304. Katz, J., and coworkers: Personal communication.Google Scholar
  305. Keller, E. B., R. A. Boissonnas, and V. Du Vigneaud: The origin of the methyl group of epinephrine. J. biol. Chem. 183, 627 (1950).Google Scholar
  306. J. R. Rachele, and V. Du Vigneaud: A study of transmethylation with methionine containing deuterium and C14 in the methyl group. J. biol. Chem. 177, 733 (1949).PubMedGoogle Scholar
  307. J. L. Wood, and V. Du Vigneaud: An investigation of transmethylation from N’-methyl-nicotinamide. Proc. Soc. exp. Biol. (N. Y.) 67, 182 (1948).CrossRefGoogle Scholar
  308. Kikuchi, G., A. Kumar, P. Talmage, and D. Shemin: The enzymatic synthesis of δ-amino-levulinic acid. J. biol. Chem. 233, 1214 (1958).PubMedGoogle Scholar
  309. Kikuchi, G., D. Shemin, and B. J. Buchmann: The enzymatic synthesis of δ-aminole-vulinic acid. Biochim. biophys. Acta 28, 219 (1958).PubMedCrossRefGoogle Scholar
  310. Kingdon, N. S., L. T. Webster, Jr., and E. W. Davie: Enzymatic formation of adenyl tryptophan: isolation and identification. Proc. nat. Acad. Sci. (Wash.) 44, 757 (1958).CrossRefGoogle Scholar
  311. Kinnory, D. S., Y. Takeda, and D. M. Greenberg: Isotope studies on the metabolism of valine. J. biol. Chem. 212, 385 (1955).PubMedGoogle Scholar
  312. Kipnis, D. M., and M. W. Noall: Stimulation of amino acid transport by insulin in the isolated rat diaphragm. Biochim. biophys. Acta 28, 226 (1958).PubMedCrossRefGoogle Scholar
  313. Kirk, M. R., S. Lepkovsky, and B. M. Tolbert: Effect of feeding on C14O2 respiration of labeled metabolites in rats, Metabolism, in press (1959).Google Scholar
  314. Kirkwood, S., and L. Marion: The biogenesis of alkaloids 2. Origin of the methyl groups of hordenine and choline. Canadian J. Chem. 29, 30 (1951).CrossRefGoogle Scholar
  315. Kirshner, N.: Pathway of noradrenaline formation from DOPA. J. biol. Chem. 226, 821 (1957).PubMedGoogle Scholar
  316. McC. Goodall, and L. Rosen: Metabolism of DL-adrenaline-2-C14 in the human. Proc. Soc. exp. Biol. (N. Y.) 98, 627 (1958).CrossRefGoogle Scholar
  317. Kisliuk, R. L., and W. Sakami: The stimulation of serine biosynthesis in pigeon liver extracts by tetrahydrofolic acid. J. Amer. chem. Soc. 76, 1456 (1954).CrossRefGoogle Scholar
  318. — A study of the mechanism of serine biosynthesis. J. biol. Chem. 214, 47 (1955).PubMedGoogle Scholar
  319. — and M. V. Patwardhan: The metabolism of the methionine carbon chain in the intact rat. J. biol. Chem. 221, 885 (1956).PubMedGoogle Scholar
  320. Kit, S., and D. M. Greenberg: Tracer studies on the metabolism of the Gardner lymphosarcoma II. Energy yielding reactions and amino acid uptake into protein of the tumor cell. Cancer Res. 11, 495 (1951).PubMedGoogle Scholar
  321. Kleiber, M., A. H. Smith, A. L. Black, M. A. Brown, and B. M. Tolbert: Acetate as a precursor of milk constituents in the intact dairy cow. J. biol. Chem. 197, 371 (1952).PubMedGoogle Scholar
  322. Knox, W. E., and A. H. Mehler: The conversion of tryptophan to kynurenine in liver. J. biol. Chem. 187, 419 (1950).PubMedGoogle Scholar
  323. Kock A. L., and H. R. Levy: Protein turnover in growing cultures of Escherichia coli. J. biol. Chem. 217, 947 (1955).Google Scholar
  324. Koeppe, R. E., and R. J. Hill: The incorporation of carboxyl and biocarbonate carbon into glutamic acid by the rat. J. biol. Chem. 216, 813 (1955).PubMedGoogle Scholar
  325. M. L. Minthorn, Jr. and R. J. Hill: Formation of serine from glycerol-1,3-C14. Arch. Biochem. 68, 355 (1957).PubMedCrossRefGoogle Scholar
  326. Koessler, K. K., and M. T. Hanke: Studies on proteinogenous amines IV. The production of histamine from histidine by Bacillus coli communis. J. biol. Chem. 39, 539 (1919).Google Scholar
  327. Koppelman, R., S. Mandeles, and M. E. Hanke: Use of enzymes and radiocarbon in estimation of the equilibrium constants for the decarboxylation of lysine and glutamate. J. biol. Chem. 230, 73 (1958).PubMedGoogle Scholar
  328. Kornberg, H. L., R. E. Davies, and D. R. Wood: The activity and function of gastric urease in the rat. Biochem. J. 56, 363 (1954).PubMedGoogle Scholar
  329. Korzenovsky, M.: In McElroy and Glass, Amino Acid Metabolism, p. 309. Baltimore: Johns Hopkins Press 1955.Google Scholar
  330. Kowalsky, A., C. Wyttenbach, L. Langer, and D. E. Koshland, Jr.: Transfer of oxygen in the glutamine synthetase reaction. J. biol. Chem. 219, 719 (1956).PubMedGoogle Scholar
  331. Kraml, M., and L. P. Bouthillier: The conversion of urocanic acid to glutamic acid in the intact rat. Canad. J. Biochem. 33, 590 (1955).PubMedCrossRefGoogle Scholar
  332. Krebs, H. A., L. V. Eggleston, and V. A. Knivett: Arsenolysis and phosphorolysis of citrulline in mammalian liver. Biochem. J. 59, 185 (1955).PubMedGoogle Scholar
  333. S. Gurin, and L. V. Eggleston: The pathway of oxidation of acetate in baker’s yeast. Biochem. J. 51, 614 (1952).Google Scholar
  334. Krehl, W. A., P. S. Sarma, L. J. Teply, and C. A. Elvehjem: Factors affecting the dietary niacin and tryptophan requirement of the growing rat. J. Nature 31, 85 (1946).Google Scholar
  335. Kruh, J., J-C. Dreyfus, G. Schapira, and P. Padieu: Non-uniform incorporation of glycine-2-C14 with rabbit hemoglobin in vivo and in vitro. J. biol. Chem. 228, 113 (1957).PubMedGoogle Scholar
  336. G. Schapira, and J-C. Dreyfus: Evolution differente dans le temps de la radioactivité du glycocolle libre du muscle et du foie. C. R. Soc. Biol. (Paris) 150, 1356 (1956).Google Scholar
  337. Kushner, D. S., D. Bronsky, A. Dubin, B. P. Maduros, and S. H. Armstrong, Jr.: The persistence in the blood of the radioactive label of albumins, gamma globulins, and globulins of intermediate mobility IV. Specific activity ratios between plasma and edema fluid of I131-albumin injected intravenously in nutritional and nephrotic hypoproteinemia. J. Lab. clin. Med. 49, 440 (1957).PubMedGoogle Scholar
  338. Lardy, H. A., R. L. Potter, and R. H. Burris: I. The role of biotin in bicarbonate utilization by Lactobacillus arabinosus studied with C14. J. biol. Chem. 179, 721 (1949).PubMedGoogle Scholar
  339. Lascelles, J., and D. D. Woods: The synthesis of serine and Leuconostoc citrovorum factor by cell suspensions of Streptococcus faecalis. R. Biochem. J. 58, 486 (1954).Google Scholar
  340. Leblond, C. P., N. B. Everett, and B. Simmons: Sites of protein synthesis as shown by radioautography after administration of S35-labelled methionine. Amer. J. Anat. 101, 225 (1957).PubMedCrossRefGoogle Scholar
  341. Leifer, E., W. H. Langham, J. F. Nyc, and H. K. Mitchell: The use of isotopie nitrogen in a study of the conversion of 3-hydroxyanthranilic acid to nicotinic acid in Nenrospora. J. biol. Chem. 184, 589 (1950).PubMedGoogle Scholar
  342. L. J. Roth, and L. H. Hempelmann: Metabolism of C14-labeled urea. Science 108, 748 (1948).PubMedCrossRefGoogle Scholar
  343. D. S. Hogness, and M. H. Corson: The metabolism of radioactive nicotinic acid and nicotinamide. J. biol. Chem. 190, 595 (1951).PubMedGoogle Scholar
  344. Lerner, A. B.: On the metabolism of phenylalanine and tyrosine. J. biol. Chem. 181, 281 (1949).PubMedGoogle Scholar
  345. Letellier, G., and L. P. Bouthillier: The metabolism of DL-hydroxyproline-2-C14 in the rat. Canad. J. Biochem. 32, 154 (1954).CrossRefGoogle Scholar
  346. Levine, M., and H. Tarver: On the synthesis and some applications of serine-β-C14. J. biol. Chem. 184, 427 (1950).PubMedGoogle Scholar
  347. — Studies on ethionine III. Incorporation of ethionine into rat proteins. J. biol. Chem. 192, 835 (1951).PubMedGoogle Scholar
  348. Levinton, L., H. Eagle, and K. A. Piez: The role of glutamine in protein biosynthesis in tissue culture. J. biol. Chem. 227, 929 (1957).Google Scholar
  349. — and A. Meister: Reversibility of the enzymatic synthesis of glutamine. J. biol. Chem. 209, 265 (1954).Google Scholar
  350. G. H. Hogeboom, and E. L. Kuff: Studies on the relationship between the enzymatic synthesis of glutamine and the glutamyl transfer reaction. J. Amer. chem. Soc. 77, 5304 (1955).CrossRefGoogle Scholar
  351. Levy, L., and M. J. Coon: The role of formate in the biosynthesis of histidine. J. biol. Chem. 192, 807 (1951).PubMedGoogle Scholar
  352. — Biosynthesis of histidine from radioactive acetate and glucose. J. biol. Chem. 208, 691 (1954).PubMedGoogle Scholar
  353. Lewallen, C. G., M. Berman, and J. E. Rall: Studies of iodoalbumin metabolism I. A mathematical approach to the kinetics. J. clin. Invest. 38, 66 (1959).PubMedCrossRefGoogle Scholar
  354. J. E. Rall, and M. Berman: Studies of iodoalbumin metabolism II. The effects of thyroid hormone. J. clin. Invest. 38, 88 (1959).PubMedCrossRefGoogle Scholar
  355. Lewis, K. F., and S. Weinhouse: Studies in valine biosynthesis II. α-acetolactate formation in microorganisms. J. Amer. chem. Soc. 80, 4913 (1958).CrossRefGoogle Scholar
  356. Lien, O. G., Jr., and D. M. Greenberg: Chromatographic studies on the interconversion of amino acids. J. biol. Chem. 195, 637 (1952).PubMedGoogle Scholar
  357. — Identification of α-aminobutyric acid enzymatically formed from threonine. J. biol. Chem. 200, 367 (1953).PubMedGoogle Scholar
  358. Lin, P. H., and B. C. Johnson: Nicotinic acid metabolism II. The metabolism of radioactive nicotinic acid and nicotinamide in the rat. J. Amer. chem. Soc. 75, 2974 (1953).CrossRefGoogle Scholar
  359. Linko, P., and A. I. Virtanen: On the biosynthesis of some recently discovered derivatives of glutamic acid in plants. Acta chem. scand. 12, 68 (1958).CrossRefGoogle Scholar
  360. Lipmann, F.: Symposium on amino acid activation. Chairman’s introduction: some facts and problems. Proc. nat. Acad. Sci. (Wash.) 44, 67 (1958).CrossRefGoogle Scholar
  361. Littlefield, J. W., and E. B. Keller: Incorporation of C14-amino acids into ribonucleoprotein particles from the Ehrlich mouse ascites tumor. J. biol. Chem. 224, 13 (1957).PubMedGoogle Scholar
  362. J. Gross, and P. C. Zamecnik: Studies on cytoplasmic ribonucleoprotein particles from the liver of the rat. J. biol. Chem. 217, 111 (1955).PubMedGoogle Scholar
  363. — The biosynthesis of protein. Prog. Biophys. 8, 347 (1957).Google Scholar
  364. — and E. A. Eigner: The time required for the synthesis of a ferritin molecule in rat liver. J. biol. Chem. 231, 925 (1958).Google Scholar
  365. — and A. Harris: Participation of free amino acids in protein synthesis. J. biol. Chem. 219, 151 (1956).Google Scholar
  366. London, I. M.: In Youmans, J. B., Symposia on Nutrition II. Plasma Proteins. p. 72. Springfield: C. C. Thomas 1950.Google Scholar
  367. Long, C. L., H. N. Hill, I. M. Weinstock, and L. M. Henderson: Studies of the enzymatic transformation of 3-hydroxyanthranilate to quinolate. J. biol. Chem. 211, 405 (1954).PubMedGoogle Scholar
  368. Lowenstein, J. M., and P. P. Cohen: The formation of carbamyl aspartic acid by rat liver preparations. J. Amer. chem. Soc. 76, 5571 (1954).CrossRefGoogle Scholar
  369. — Studies on the mechanism of carbamylaspartic acid synthesis. J. biol. Chem. 213, 689 (1955).PubMedGoogle Scholar
  370. — Studies on the biosynthesis of carbamylaspartic acid. J. biol. Chem. 220, 57 (1956).PubMedGoogle Scholar
  371. Lowy, B. A., G. B. Brown, and J. R. Rachele: A study of formaldehyde-C14, D2 as a one carbon metabolite in the rat. J. biol. Chem. 220, 325 (1956).PubMedGoogle Scholar
  372. Lowy, P. H.: The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch. Biochem. 47, 228 (1953).PubMedCrossRefGoogle Scholar
  373. Machlin, L. J., and P. B. Pearson: Studies on utilization of sulfate sulfur for growth of the chicken. Proc. Soc. exp. Biol. (N. Y.) 93, 204 (1957).CrossRefGoogle Scholar
  374. L. Struglia, and P. B. Pearson: Metabolism of methionine and cysteine sulfur in the developing chick embryo. Arch. Biochem. 59, 326 (1955).PubMedCrossRefGoogle Scholar
  375. Mackenzie, C. G.: Formation of formaldehyde and formate in the biooxidation of the methyl group. J. biol. Chem. 186, 351 (1950).PubMedGoogle Scholar
  376. — In McElroy and Glass, Amino Acid Metabolism, p. 684. Baltimore: Johns Hopkins Press 1955.Google Scholar
  377. — and R. H. Abeles: Production of active formaldehyde in the mitochondrial oxidation of sarcosine-CD3. J. biol. Chem. 222, 145 (1956).PubMedGoogle Scholar
  378. — and V. Du Vigneaud: The source of urea carbon. J. biol. Chem. 172, 353 (1948).PubMedGoogle Scholar
  379. — and W. R. Frisell: The metabolism of dimethylglycine by mitochondria. J. biol. Chem. 232, 417 (1958).PubMedGoogle Scholar
  380. J. M. Johnston, and W. R. Frisell: Isolation of formaldehyde from dimethylethanolamine, dimethylglycine, sarcosine and methanol. J. biol. Chem. 203, 743 (1953).PubMedGoogle Scholar
  381. J. R. Rachele, N. Cross, J. P. Chandler, and V. Du Vigneaud: A study of the rate of oxidation of the methyl group of dietary methionine. J. biol. Chem. 183, 617 (1950).Google Scholar
  382. Macleod, P. R., and H. A. Lardy: Metabolic functions of biotin II. Fixation of carbon dioxide by normal and biotin-deficient rats. J. biol. Chem. 179, 733 (1949).PubMedGoogle Scholar
  383. S. Grisolia, P. P. Cohen, and H.A. Lardy: Metabolic functions of biotin III. The synthesis of citrulline from ornithine in liver tissue of normal and biotin deficient rats. J. biol. Chem. 180, 1003 (1949).PubMedGoogle Scholar
  384. Madden, R. E., and R. G. Gould: Turnover rate of fibrinogen in the dog. J. biol. Chem. 196, 641 (1952).PubMedGoogle Scholar
  385. Magasanik, B.: Guanine as a source of the nitrogen 1-carbon 2 portion of the imidazole ring of histidine. J. Amer. chem. Soc. 78, 5449 (1956).CrossRefGoogle Scholar
  386. Mandeles, S., and K. Bloch: Enzymatic synthesis of γ-glutamylcysteine. J. biol. Chem. 214, 639 (1955).PubMedGoogle Scholar
  387. Mandelstam, J.: Turnover of proteins in growing and non-growing populations of Escherichia coli. Biochem. J. 69, 110 (1958).PubMedGoogle Scholar
  388. — and H. J. Rogers: Chloramphenicol-resistant incorporation of amino acids into Staphylococci and cell wall synthesis. Nature (Lond.) 181, 956 (1958).CrossRefGoogle Scholar
  389. Margen, S., and H. Tarver: Comparative studies on the turnover of serum albumin in normal human subjects. J. clin. Invest. 35, 1161 (1956).PubMedCrossRefGoogle Scholar
  390. — The deiodination of proteins labeled with I131. Ann. N. Y. Acad. Sci. 70, 49 (1957).PubMedCrossRefGoogle Scholar
  391. Marsden, C. M., and L. Young: Biochemical studies of toxic agents 10. Observations on the metabolism of 35S-labelled mercapturic acids. Biochem. J. 69, 257 (1958).PubMedGoogle Scholar
  392. Martignoni, P., and T. Winnick: Biosynthesis of carnosine and anserine in the chick. J. biol. Chem. 208, 251 (1954).PubMedGoogle Scholar
  393. Masouredis, S. P., and M. L. Beeckmans: Comparative behavior of I131 and C14 labelled albumin in plasma of man. Proc. Soc. exp. Biol. (N. Y.) 89, 398 (1955).CrossRefGoogle Scholar
  394. Matsuo, Y., and D. M. Greenberg: Metabolic formation of homoserine and α-aminobutyric acid from methionine. J. biol. Chem. 215, 547 (1955).PubMedGoogle Scholar
  395. M. Rothstein, and D. M. Greenberg: Metabolic pathways of homoserine in the mammal. J. biol. Chem. 221, 679 (1956).PubMedGoogle Scholar
  396. Matsuoka, Z., and S. Yoshimatsu: Über eine neue Substanz, die aus Tryptophan im Tierkörper gebildet wird. Hoppe Seylers Z. physiol Chem. 143, 206 (1925).CrossRefGoogle Scholar
  397. Maurer, W., A. Niklas,: Messung der Umsatzrate von Serumeiweiß und Körpereiweiß beim normalen Kaninchen mit S35-Methionin. Biochem. Z. 326, 28 (1954).PubMedGoogle Scholar
  398. Maw, G. A.: Thetin-homocysteine transmethylase. A preliminary study of the enzyme from rat liver. Biochem. J. 63, 116 (1956).PubMedGoogle Scholar
  399. Mccorquodale, D. J., and G. C. Mueller: Preparation and properties of amino acid-adenylic acid mixed anhydrides. Arch. Biochem. 77, 13 (1958).PubMedCrossRefGoogle Scholar
  400. Mcfarlane, A. S.: Labelling of plasma proteins with radioactiveiodine. Biochem. J. 62, 135 (1956).PubMedGoogle Scholar
  401. — Use of labeled plasma proteins in the study of nutritional problems. Prog. Biophys. 7, 115 (1957a).Google Scholar
  402. — The behavior of I131-labeled plasma proteins in vivo. Ann. N. Y. Acad. Sci. 70, 19 (1957b).PubMedCrossRefGoogle Scholar
  403. Mcisaac, W. M., and I. H. Page: The metabolism of serotonin (5-hvdroxytryptamine). J. biol. Chem. 234, 858 (1959).PubMedGoogle Scholar
  404. Mckee, F. W., W. G. Wilt, Jr., R. E. Hyatt, and G. H. Whipple: The circulation of ascitic fluid. J. exp. Med. 91, 115 (1950).PubMedCrossRefGoogle Scholar
  405. Mclean, J. R., G. L. Cohn, I. K. Brandt, and M. V. Simpson: Incorporation of labeled amino acids into the protein of muscle and liver mitochondria. J. biol. Chem. 233, 657 (1958).PubMedGoogle Scholar
  406. Mcmanus, I. R.: Some metabolic precursors of the N-1-methyl group of anserine in the rat. J. biol. Chem. 225, 325 (1957).PubMedGoogle Scholar
  407. Mcmanus, I. R.: The biosynthesis of valine by Saccharomyces cerevisiae. J. biol. Chem. 208, 639 (1954).PubMedGoogle Scholar
  408. Mehler, A. H., and E. L. May: Studies with carboxyl-labeled 3-hydroxyanthranilic and picolinic acids in vivo and in vitro. J. biol. Chem. 223, 449 (1956).PubMedGoogle Scholar
  409. — and H. Tabor: Deamination of histidine to form urocanic acid in liver. J. biol. Chem. 201, 775 (1953).PubMedGoogle Scholar
  410. — and H. Bauer: The oxidation of histamine to imidazole acetic acid in vivo. J. biol. Chem. 197, 475 (1952).PubMedGoogle Scholar
  411. Meister, A.: The oc-keto analogues of arginine, ornithine and lysine. J. biol. Chem. 206, 577 (1954).PubMedGoogle Scholar
  412. — Enzymatic transamination reactions involving arginine and ornithine. J. biol. Chem. 206, 587 (1954).PubMedGoogle Scholar
  413. — The metabolism of glutamine. Physiol. Rev. 36, 183 (1956).Google Scholar
  414. — Biochemistry of amino acids. New York: Academic Press 1957.Google Scholar
  415. A. N. Radhakrishnan, and S. D. Buckley: Enzymatic synthesis of L-pipecolic acid and L-proline. J. biol. Chem. 229, 789 (1957b).PubMedGoogle Scholar
  416. H. A. Sober, S. V. Tice, and P. E. Fraser: Transamination and associated deamidation of asparagine and glutamine. J. biol. Chem. 197, 319 (1952).PubMedGoogle Scholar
  417. Meltzer, H. L., and D. B. Sprinson: The synthesis of 4-C14, N15-L-threonine and a study of its metabolism. J. biol. Chem. 197, 461 (1952).PubMedGoogle Scholar
  418. Metzenberg, R. L., L. M. Hall, M. Marshall, and P. P. Cohen: Studies on the biosynthesis of carbamyl phosphate. J. biol. Chem. 229, 1019 (1958).Google Scholar
  419. Meyer, E.: Über Alkaptonurie. Dtsch. Arch. klin. Med. 70, 443 (1901).Google Scholar
  420. Miller, D. A., and S. Simmonds: The metabolism of L-threonine and glycine by Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 43, 195 (1957).CrossRefGoogle Scholar
  421. Miller, L. L., and W. F. Bale: The metabolic conversion of the carbon chain of lysine-6-C14 to glutamic acid, aspartic acid and arginine. Arch. Biochem. 48, 361 (1954).PubMedCrossRefGoogle Scholar
  422. C. L. Yuile, R. E. Masters, G. H. Tishkoff, and G. H. Whipple: The use of radioactive lysine in studies of protein metabolism. Synthesis and utilization of plasma proteins. J. exp. Med. 90, 297 (1949).PubMedCrossRefGoogle Scholar
  423. Mills, G. C., and J. L. Wood: Total mercapturic acid synthesis by liver and kidney. J. biol. Chem. 207, 695 (1954).PubMedGoogle Scholar
  424. — Mercapturic acid precursors. J. biol. Chem. 219, 1 (1956).PubMedGoogle Scholar
  425. Mitchell, H. K., and M. B. Houlahan: An intermediate in the biosynthesis of lysine in Neurospora. J. biol. Chem. 174, 883 (1948).PubMedGoogle Scholar
  426. Mitoma, C.: Studies on partially purified phenylalanine hydroxylase. Arch. Biochem. 60, 476 (1956).PubMedCrossRefGoogle Scholar
  427. — and D. M. Greenberg: Studies on the mechanism of the biosynthesis of serine. J. biol. Chem. 196, 599 (1952).PubMedGoogle Scholar
  428. T. E. Smith, F. Friedberg, and C. R. Rayford: Incorporation of hydroxyproline into tissue proteins by chick embryos. J. biol. Chem. 234, 78 (1959).PubMedGoogle Scholar
  429. Miyake, A., A. H. Bokman, and B. S. Schweigert: 3-Hydroxyanthranilic acid metabolism VI. Chemical studies on intermediate. J. biol. Chem. 211, 391 (1954).PubMedGoogle Scholar
  430. Moldave, K.: Effect of vitamin B6 on the in vivo utilization of radioactive phenylalanine. Arch. Biochem. 75, 418 (1958).PubMedCrossRefGoogle Scholar
  431. P. Castelfranco, and A. Meister: The synthesis and some properties of amino acyl adenylates. J. biol. Chem. 234, 841 (1959).PubMedGoogle Scholar
  432. — and A. Meister: Synthesis of phenacetylglutamine by human tissue. J. biol. Chem. 229, 463 (1957).PubMedGoogle Scholar
  433. M. E. Rafelson, Jr., D. Lagerborg, H. E. Pearson, and R. J. Winzler: In vitro conversion of radioglucose to free and protein bound amino acids by virus-infected mouse brain. Arch. Biochem. 50, 383 (1954).PubMedCrossRefGoogle Scholar
  434. R. J. Winzler, and H. E. Pearson: The incorporation in vitro of C14 into amino acids of control and virus-infected mouse brain. J. biol. Chem. 200, 357 (1953).PubMedGoogle Scholar
  435. Moline, S. W., H. C. Walker, and B. S. Schweigert: 3-Hydroxyanthranilic acidmeta-bolism VII. Mechanism of formation of quinolinic acid. J. biol. Chem. 234, 880 (1959).PubMedGoogle Scholar
  436. Moss, A. R., and R. Schoenheimer: The conversion of phenylalanine to tyrosine in normal rats. J. biol. Chem. 135, 415 (1940).Google Scholar
  437. De Moss, J. A., S. M. Genuth, and G. D. Novelli: The enzymatic activation of amino acids via their acyl-adenylate derivatives. Proc. nat. Acad. Sci. (Wash.) 42, 325 (1956).CrossRefGoogle Scholar
  438. — and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim. biophys. Acta 22, 49 (1956).CrossRefGoogle Scholar
  439. Moyed, H. S., and B. Magasanik: The role of purines in histidine biosynthesis. J. Amer. chem. Soc. 79, 4812 (1957).CrossRefGoogle Scholar
  440. Mudd, S. H., and G. L. Cantoni: Selenomethionine in enzymatic transmethylation. Nature (Lond.) 180, 1052 (1957).CrossRefGoogle Scholar
  441. Muir, H. M., and A. Neuberger: The biogenesis of porphyrins. The distribution of N15 in the ring system. Biochem. J. 45, 163 (1949).Google Scholar
  442. Muir, H. M., and A. Neuberger: The biogenesis of porphyrins 2. The origin of the methyne carbon atoms. Biochem. J. 47, 97 (1950).PubMedGoogle Scholar
  443. Munch-Petersen, A., and H. A. Barker: The origin of the methyl group in mesaconate formed from glutamate by extracts of Clostridium tetanomorphum. J. biol. Chem. 230, 649 (1958).PubMedGoogle Scholar
  444. Munier, R. L., and G. N. Cohen: Incorporation of d’analogues structuraux d’amino acides dans les protéines. Biochim. biophys. Acta 21, 592 (1956).PubMedCrossRefGoogle Scholar
  445. Muntz, J. A.: The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. biol. Chem. 182, 489 (1950).Google Scholar
  446. Nakada, H. I., and L. P. Sund: Glyoxylic acid oxidation by rat liver. J. biol. Chem. 233, 8 (1958).PubMedGoogle Scholar
  447. — and S. Weinhouse: Studies of glycine oxidation in rat tissues. Arch. Biochem. 42, 257 (1953).PubMedCrossRefGoogle Scholar
  448. Nakao, A., and D. M. Greenberg: Studies on the incorporation of isotope from formaldehyde C14 and serine-3-C14 into the methyl group of methionine. J. biol. Chem. 230, 603 (1958).PubMedGoogle Scholar
  449. Neidle, A., M. J. Mycek, D. D. Clarke, and H. Waelsch: Enzymatic exchange of protein amide groups. Arch. Biochem. 77, 227 (1958).PubMedCrossRefGoogle Scholar
  450. — and H. Waelsch: Participation of glutamine in the biosynthesis of histidine. J. Amer. chem. Soc. 78, 1767 (1956).CrossRefGoogle Scholar
  451. Nemer, M., and D. Elwyn: Phosphorylation of serine in rat liver. J. Amer. chem. Soc. 79, 6564 (1957).CrossRefGoogle Scholar
  452. Neuberger, A., and H. G. B. Slack: The metabolism of collagen from liver, bone, skin and tendon in the normal rat. Biochem. J. 53, 47 (1953).PubMedGoogle Scholar
  453. Niklas, A.: Über die Neubildungsgeschwindigkeit einzelner, getrennter Serumeiweiß-Fraktionen nach oraler Gabe von S35-Methionin an Ratten. Verh. dtsch. Ges. inn. Med. 58. Kongreß, 378 (1952).Google Scholar
  454. — and K. Hempel: Regeneration einzelner getrennter Serumeiweiß-Fraktionen nach akutem Blutverlust. Z. ges. exp. Med. 122, 399 (1954).PubMedCrossRefGoogle Scholar
  455. — and G. Lehnert: Messung der Neubildungsrate des Serumeiweißes bei Kaninchen mit Masugi-Nephritis. Biochem. Z. 326, 79 (1954).PubMedGoogle Scholar
  456. — and W. Maurer: Messung der Neubildung-und Abbaugeschwindigkeit einzelner Serumeiweiß-Fraktionen nach Gabe von S35-Methionin. Verh. dtsch. Ges. inn. Med. 59. Kongreß, 319 (1953).Google Scholar
  457. — and H. Krause: Messung der biologischen Halbwertszeiten einzelner Serumeiweiß-Fraktionen beim Kaninchen. Biochem. Z. 325, 464 (1954).PubMedGoogle Scholar
  458. — and W. Oehlert: Autoradiographische Untersuchung der Größe des Eiweißstoffwechsels verschiedener Organe, Gewebe und Zellarten. Beitr. path. Anat. 116 (1) 92 (1956).Google Scholar
  459. — an H. Poliwoda: Zur Frage der biologischen Halbwertzeit menschlicher Albumine und Globuline. Biochem. Z. 326, 97 (1954).PubMedGoogle Scholar
  460. E. Quincke, W. Maurer, and H. Neyen: Messung der Neubildungsraten und biologischen Halbwertszeiten des Eiweißes einzelner Organe und Zellgruppen bei der Ratte. Biochem. Z. 330, 1 (1958).PubMedGoogle Scholar
  461. Nisman, B., F. H. Bergmann, and P. Berg: Observations on amino acid-dependent exchanges of inorganic pyrophosphate and ATP. Biochim. biophys. Acta 26, 639 (1957).CrossRefGoogle Scholar
  462. Nisonoff, A., F. W. Barnes, Jr., and T. Enns: Mechanisms of enzymatic transamination. Estimation of velocity of the glutamate-aspartate reaction at equilibrium. J. biol. Chem. 204, 957 (1953).PubMedGoogle Scholar
  463. — and S. Von Schuching: Mechanisms of enzymatic transamination reaction between carbon chains of same length. Bull. Johns Hopk. Hosp. 94, 117 (1954).Google Scholar
  464. Noall, M. W., T. R. Riggs, L. M. Walker, and H. N. Christensen: Endocrine control of amino acid transfer. Science 126, 1002 (1957).PubMedCrossRefGoogle Scholar
  465. Novelli, G. D., and J. A. De Moss: The activation of amino acids and concepts of the mechanism of protein synthesis. J. cell. comp. Physiol. (Suppl.) 50, 173 (1957).CrossRefGoogle Scholar
  466. Nyc, J. F., H. K. Mitchell, E. Liefer, and W. H. Langham: The use of isotopic carbon in a study of the metabolism of anthranilic acid in Neurospora. J. biol. Chem. 179, 783 (1949).PubMedGoogle Scholar
  467. Ogata, K., and H. Nohara: The possible role of the ribonucleic acid (RNA) of the PH 5 enzyme in amino acid activation. Biochim. biophys. Acta 25, 659 (1937).CrossRefGoogle Scholar
  468. Oginsky, E. L.: In McElroy and Glass, Amino Acid Metabolism, p. 300. Baltimore: Johns Hopkins Press 1955.Google Scholar
  469. Ohmura, E., and O. Hayaishi: Enzymatic conversion of formyl aspartic acid to aspartic acid. J. biol. Chem. 227, 181 (1957).PubMedGoogle Scholar
  470. Ottey, L., and E. L. Tatum: The cleavage ofβketoadipic acid by Neurospora crassa. J. biol. Chem. 229, 77 (1957).PubMedGoogle Scholar
  471. Partridge, C. W. H., D. M. Bonner, and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. biol. Chem. 194, 269 (1952).PubMedGoogle Scholar
  472. Pellerin, J., and A. D’iorio: Metabolism of radioactive β-(3,4-dihydroxyphenyl)-alanine-α-C14 in the albino rat. Canad. J. Biochem. 33, 1055 (1955).PubMedGoogle Scholar
  473. Penn, N. W., S. Mandeles, and H. S. Anker: On the kinetics of turnover of serum albumin. Biochem. biophys. Acta 26, 349 (1957).PubMedCrossRefGoogle Scholar
  474. Peters, T., Jr., and C. B. Anfinsen: Net production of serum albumin by liver slices. J. biol. Chem. 186, 805 (1950).PubMedGoogle Scholar
  475. Peterson, E. A., W. A. Fones, and J. White: Evidence for a three-carbon intermediate in the metabolism of valine. Arch. Biochem. 36, 323 (1952).PubMedCrossRefGoogle Scholar
  476. Piez, K. A., and R. C. Likins: The conversion of lysine to hydroxylysine and its relation to the biosynthesis of collagen in several tissues of the rat. J. biol. Chem. 229, 101 (1957).PubMedGoogle Scholar
  477. Plaut, G. W. E., J. J. Betheil, and H. A. Lardy: The relationship of folic acid to formate metabolism in the rat. J. biol. Chem. 184, 795 (1950).PubMedGoogle Scholar
  478. — and H. A. Lardy: Enzymatic incorporation of C14-bicarbonate into acetoacetate in the presence of various substrates. J. biol. Chem. 192, 435 (1951).PubMedGoogle Scholar
  479. Putnam, F. W., F. Meyer, and A. Miyake: Proteins in multiple myeloma V. Synthesis and excretion of Bence-Jones protein. J. biol. Chem. 221, 527 (1956).Google Scholar
  480. — and A. Miyake: Proteins in multiple myeloma VIII. Biosynthesis of abnormal proteins. J. biol. Chem. 231, 671 (1958).PubMedGoogle Scholar
  481. — and F. Meyer: The metabolism of DL-glutamic acid-l-C14 in man. J. biol. Chem. 231, 657 (1958).PubMedGoogle Scholar
  482. Raacke, I. D.: Chemical aspects of recent hypotheses on protein synthesis. Quart. Rev. Biol. 33, 245 (1958).PubMedCrossRefGoogle Scholar
  483. Rabinowitz, J. C., and H. Tabor: The urinary excretion of formic acid and formiminoglutamic acid in folic acid deficiency. J. biol. Chem. 233, 252 (1958).PubMedGoogle Scholar
  484. — and M. Olson: Evidence for a ribonucleoprotein intermediate in the synthesis of globin by reticulocytes. Exp. Cell. Res. 10, 747 (1956).CrossRefGoogle Scholar
  485. — and D. M. Greenberg: Independent antagonism of amino acid incorporation into protein. J. biol. Chem. 210, 837 (1954).Google Scholar
  486. — Role of glutamine in protein synthesis by the Ehrlich ascites carcinoma. J. biol. Chem. 222, 879 (1956).Google Scholar
  487. — Characteristics of the inhibition by ethionine of the incorporation of methionine into proteins of the Ehrlich ascites carcinoma in vitro. J. biol. Chem. 227, 217 (1957).Google Scholar
  488. Rachele, J. R., E. J. Kuchinaskas, F. H. Kratzer, and V. Du Vigneaud: Hydrogen isotope effect in the oxidation in vivo of methionine labeled in the methyl group. J. biol. Chem. 215, 593 (1955).PubMedGoogle Scholar
  489. L. J. Reed, A. R. Kidwai, M. F. Ferger, and V. Du Vigneaud: Conversion of cystathionine labeled with S35 to cystine in vitro. J. biol. Chem. 185, 817 (1950).PubMedGoogle Scholar
  490. Radhakrishnan, A. N., and A. Meister: Conversion of hydroxyproline to pyrrole-2-carboxylic acid. J. biol. Chem. 226, 559 (1957).PubMedGoogle Scholar
  491. Radin, N. S., D. Rittinberg, and D. Shemin: The role of glycine in the biosynthesis of heme. J. biol. Chem. 184, 745 (1950).PubMedGoogle Scholar
  492. Rafelson, M. E., Jr.: Conversion of acetate-1-C14 to tryptophan in Aerobacter aerogenes. J. biol. Chem. 212, 953 (1955a).PubMedGoogle Scholar
  493. — Conversion of radioactive glucose and acetate to tryptophan by Aerobacter aerogenes. J. biol. Chem. 213, 479 (1855).Google Scholar
  494. — The biosynthesis of valine in Aerobacter aerogenes. J. Amer. chem. Soc. 77, 4679 (1955).CrossRefGoogle Scholar
  495. — The biosynthesis of leucine in Aerobacter aerogenes. Arch. Biochem. 72, 376 (1957).PubMedCrossRefGoogle Scholar
  496. — and H. Arnoff: Studies on the metabolism of virus infected tissues I. Free amino acid metabolism in chick chorioallantoic membranes infected with influenza virus. Arch. Biochem. 75, 163 (1958).PubMedCrossRefGoogle Scholar
  497. R. E. Winzler, and H. E. Pearson: The effects of Theiler’s GD VII virus on the incorporation of radioactive carbon from glucose into minced one day-old mouse brain. J. biol. Chem. 181, 595 (1949).PubMedGoogle Scholar
  498. — A virus effect on the uptake of C14 from glucose in vitro by amino acids in mouse brain. J. biol. Chem. 193, 205 (1951).PubMedGoogle Scholar
  499. Ratner, S., V. Nocito, and D. E. Green: Glycine oxidase. J. biol. Chem. 152, 119 (1944).Google Scholar
  500. — and O. Rochovansky: Biosynthesis of guanidinoacetic acid II. Mechanism of amidine group transfer. Arch. Biochem. 63, 296 (1956).PubMedCrossRefGoogle Scholar
  501. Ravdin, R. G., and D. T. Crandall: The enzymatic conversion of homogentisic acid to 4-fumarylacetoacetic acid. J. biol. Chem. 189, 137 (1951).PubMedGoogle Scholar
  502. Reed, D. J., B. E. Christensen, V. H. Cheldelin, and C. H. Wang: Biosynthesis of leucine in baker’s yeast. J. Amer. chem. Soc. 76, 5574 (1954).CrossRefGoogle Scholar
  503. Reed, L. J., D. Cavallini, F. Plum, J. R. Rachele, and V. Du Vigneaud: The conversion of methionine to cystine in the human cystinuric. J. biol. Chem. 180, 783 (1949).PubMedGoogle Scholar
  504. Reichard, P.: Ornithine carbamyl transferase from rat liver. Acta chem. scand. 11, 523 (1957).CrossRefGoogle Scholar
  505. Reichard, P., and G. Hanshoff: Aspartate carbamyl transferase from Escherichia coli. Acta chem. scand. 10, 548 (1956).CrossRefGoogle Scholar
  506. Reiss, O., and K. Bloch: Studies on leucine biosynthesis in yeast. J. biol. Chem. 216, 703 (1955).PubMedGoogle Scholar
  507. Rendina, G., and M. J. Coon: Enzymatic hydrolysis of the coenzyme A thiol ester of β-hydroxypropionic and β-hydroxyisobutyric acids. J. biol. Chem. 225, 523 (1957).PubMedGoogle Scholar
  508. Revel, H. R. B., and B. Magasanik: The enzymatic degradation of urocanic acid. J. biol. Chem. 233, 930 (1958).PubMedGoogle Scholar
  509. Riggs, T. R., and L. M. Walker: Diminished uptake of C14-α-aminoisobutyric acid by tissues of vitamin B6-deficient rats. J. biol. Chem. 233, 132 (1958).PubMedGoogle Scholar
  510. Rittenberg, D., and H. Waelsch: The source of carbon for urea formation. J. biol. Chem. 136, 799 (1940).Google Scholar
  511. Roberts, E., and S. Frankel: Further studies of glutamic acid decarboxylase in brain. J. biol. Chem. 190, 505 (1951).PubMedGoogle Scholar
  512. M. Rothstein, and C. F. Baxter: Some metabolic studies of γ-aminobutyric acid. Proc. Soc. exp. Biol. (N. Y.) 97, 796 (1958).CrossRefGoogle Scholar
  513. Roberts, R. B., D. B. Cowie, R. Britten, E. Bolton, and P. H. Abelson: The role of the tricarboxylic acid cycle in amino acid synthesis in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 39, 1013 (1953).CrossRefGoogle Scholar
  514. P. H. Abelson, E. T. Bolton, and R. J. Britten: Studies of biosynthesis in Escherichia coli. Carnegie Inst. Pub. (Wash.) 607, 1955.Google Scholar
  515. Robertson, W. V. B., J. Hiwett, and C. Herman: The relation of ascorbic acid to the conversion of proline to hydroxyproline in the synthesis of collagen in the Carrageenan granuloma. J. biol. Chem. 234, 105 (1959).Google Scholar
  516. Robinson, W. G., B. K. Bachhawat, and M. J. Coon: Tiglyl coenzyme A and α-methyl-acetoacetyl coenzyme A, intermediates in the enzymatic degradation of isoleucine. J. biol. Chem. 218, 391 (1956).PubMedGoogle Scholar
  517. — and M. J. Coon: The purification and properties of β-hydroxyisobutyric dehydrogenase. J. biol. Chem. 225, 511 (1957).PubMedGoogle Scholar
  518. R. Nagle, B. K. Bachhawat, F. P. Kupiecki, and M. J. Coon: Coenzyme A thiol esters of isobutyric, methacrylic, and β-hydroxyisobutyric acids as intermediates in the enzymatic degradation of valine. J. biol. Chem. 224, 1 (1957).PubMedGoogle Scholar
  519. Roloff, M., S. Ratner, and R. Schoenheimer: The biological conversion of ornithine into proline and glutamic acid. J. biol. Chem. 136, 561 (1940).Google Scholar
  520. Rosenfeld, G., L. C. Leeper, and S. Udenfriend: Biosynthesis of norepinephrine and epinephrine by the isolated perfused calf adrenal. Biochim. biophys. Acta 74, 252 (1958).Google Scholar
  521. Rothschild, S. S., M. O. Schreiber, and H. L. Mcgee: The effects of adrenocortical hormones on albumin metabolism studied with albumin-I131. J. clin. Invest. 37, 1229 (1958).PubMedCrossRefGoogle Scholar
  522. Rothstein, M., C. G. Bly, and L. L. Miller: The metabolism of D-lysine-∈-C14. Arch. Biochem. 50, 252 (1954).PubMedCrossRefGoogle Scholar
  523. — and D. M. Greenberg: Studies on the metabolism of xanthurenic acid-4-C14. Arch. Biochem. 68, 206 (1957).PubMedCrossRefGoogle Scholar
  524. — Evidence for a new oxidative pathway for tryptophan. Biochim. biophys. Acta 34, 598 (1959).PubMedCrossRefGoogle Scholar
  525. — Metabolism of DL-pipecolic acid-2-C14. J. Amer. chem. Soc. 81, 4756 (1959).CrossRefGoogle Scholar
  526. — and L. L. Miller: The metabolism of glutaric acid-1,5-C14 I. In normal and phlorizinized rats. J. biol. Chem. 199, 199 (1952).PubMedGoogle Scholar
  527. — The metabolism of L-lysine-6-C14. J. biol. Chem. 206, 243 (1954a).PubMedGoogle Scholar
  528. — The metabolism of glutaric acid-1,5-C14 2. Conversion to α-ketoglutaric acid in the intact rat. J. biol. Chem. 211, 859 (1954b).PubMedGoogle Scholar
  529. — The conversion of lysine to pipecolic acid in the rat. J. biol. Chem. 211, 851 (1954c).PubMedGoogle Scholar
  530. Rust, J. H., W. J. Visek, and L. J. Roth: Carbon dioxide fixation and urea synthesis in the rat. J. biol. Chem. 223, 671 (1956).PubMedGoogle Scholar
  531. Sagers, R. D., and I. C. Gunsalus: Glycine cleavage and one-carbon transfer reactions in Clostridium acidi-urici and Diplococcus glycinophilus. Bact. Proc. 58, 119 (1958).Google Scholar
  532. Saito, Y., O. Hayaishi, and S. Rothberg: Studies on oxygenases. Enzymatic formation of 3-hydroxy-L-kynurenine from L-kynurenine. J. biol. Chem. 229, 921 (1957).PubMedGoogle Scholar
  533. Sakami, W.: The conversion of formate and glycine to serine and glycogen in the intact rat. J. biol. Chem. 176, 995 (1958).Google Scholar
  534. — Formation of formate and labile methyl groups from acetone in the intact rat. J. biol. Chem. 187, 369 (1950).PubMedGoogle Scholar
  535. — In McElroy, and Glass, Amino Acid Metabolism, p. 658. Baltimore: Johns Hopkins Press 1955.Google Scholar
  536. — and A. D. Welch: Synthesis of labile methyl groups by the rat in vivo and in vitro. J. biol. Chem. 187, 379 (1950).PubMedGoogle Scholar
  537. Salamon, I. I., and B. D. Davis: Aromatic biosynthesis IX. The isolation of a precursor of shikimic acid. J. Amer. chem. Soc. 75, 5567 (1952).CrossRefGoogle Scholar
  538. Samuels, P. J.: The assimilation of amino acids by bacteria 17. Synthesis of glutathione by extracts of E. coli. Biochem. J. 55, 441 (1953).PubMedGoogle Scholar
  539. Sarkar, N. K., D. D. Clarke, and H. Waelsch: An enzymatically catalyzed incorporation of amines into protein. Biochim. biophys. Acta 25, 451 (1957).PubMedCrossRefGoogle Scholar
  540. Sato, C. S., R. U. Byerrum, P. Albersheim, and J. Bonner: Metabolism of methionine and pectin esterification in plant tissue. J. biol. Chem. 233, 128 (1958).PubMedGoogle Scholar
  541. — and C. D. Ball: The biosynthesis of pectinic acid methyl esters through transmethylation from methionine. J. biol. Chem. 224, 717 (1957).PubMedGoogle Scholar
  542. Schayer, R. W.: Metabolism of ring labeled histamine. J. biol. Chem. 196, 469 (1952).PubMedGoogle Scholar
  543. — and L. M. Henderson: The conversion of deutero-N15-tryptophan to quinolinic acid by the rat. J. biol. Chem. 195, 657 (1952).PubMedGoogle Scholar
  544. Schenck, J. R., S. Simmonds, M. Cohen, C. M. Stevens, and V. Du Vigneaud: The relation of transmethylation to anserine. J. biol. Chem. 149, 355 (1943).Google Scholar
  545. Schepartz, B., and S. Gurin: The intermediary metabolism of phenylalanine labeled with radioactive carbon. J. biol. Chem. 180, 663 (1949).PubMedGoogle Scholar
  546. Scher, W. I., Jr., and H. J. Vogel: Occurrence of ornithine-γ-transaminase A. dichotomy. Proc. nat. Acad. Sci. (Wash.) 43, 796 (1957).CrossRefGoogle Scholar
  547. Schiller, S., M. B. Mathews, J. A. Cifonelli, and A. Dorfman: The metabolism of mucopolysaccharides in animals. III. Further studies on skin utilizing C14-glucose, C14-acetate and S35-sodium sulfate. J. biol. Chem. 218, 139 (1956).PubMedGoogle Scholar
  548. Schlenk, F., and R. E. De Palma: The formation of S-adenosylmethionine in yeast. J. biol. Chem. 229, 1037 (1957).PubMedGoogle Scholar
  549. — and R. L. Smith: The mechanism of adenosine thiomethylriboside formation. J. biol. Chem. 204, 27 (1953).PubMedGoogle Scholar
  550. — and J. A. Tilloston: Formation of 5′ ethylthioadenosine from DL-ethionine in yeast. J. biol. Chem. 206, 687 (1954).PubMedGoogle Scholar
  551. Schlossmann, K., and F. Lynen: Biosynthese des Cysteins aus Serin und Schwefelwasserstoff. Biochem. Z. 328, 591 (1957).PubMedGoogle Scholar
  552. Schoenberger, J. A., G. Kroll, E. L. Eckert, and R. M. Kark: Investigation of transfer rates of albumin tagged with I131 in ascites and edema II. Studies in control subjects and in patients with cirrhosis. J. Lab. clin. Med. 47, 227 (1956).PubMedGoogle Scholar
  553. Schoenheimer, R.: The dynamic state of body constituents. Cambridge: Harvard Univ. Press 1942.Google Scholar
  554. Schreier, K., K. I. Altman, and L. H. Hempelmann: Metabolism of benzoic acid in normal and irradiated rats. Proc. Soc. exp. Biol. (N. Y.) 87, 61 (1954).CrossRefGoogle Scholar
  555. Schultze, B.: Biologische Halbwertzeit einzelner Globulin-Fraktionen beim Kaninchen. Biochem. Z. 329, 144 (1957).PubMedGoogle Scholar
  556. — and W. Maurer: Über im Organismus des Kaninchens nach Injektion von S35-β und-γ-Globulinen entstehende S35-Albumine. Biochem. Z. 329, 127 (1957).PubMedGoogle Scholar
  557. Schwartz, M., and B. Thomsen: Idiopathic or hypercatabolic hypoproteinaemia. Brit. med. J. 1, 14 (1957).PubMedCrossRefGoogle Scholar
  558. Schweet, R.: Incorporation of radioactive lysine into protein. Fed. Proc. 15, 350 (1956).Google Scholar
  559. Schweet, R. S., and E. H. Allen: Purification and properties of tyrosine-activating enzyme of hog pancreas, J. biol. Chem. 233, 1104 (1958).PubMedGoogle Scholar
  560. F. C. Bovard, E. Allen, and E. Glassman: The incorporation of amino acids into ribonucleic acid. Proc. nat. Acad. Sci. (Wash.) 44, 173 (1958).CrossRefGoogle Scholar
  561. J. T. Holden, and P. H. Lowy: The metabolism of lysine in Neurospora. J. biol. Chem. 211, 517 (1954).PubMedGoogle Scholar
  562. — In McElroy, and Glass, Amino Acid Metabolism, p. 496. Baltimore: Johns Hopkins Press 1955.Google Scholar
  563. Shapiro, S. K.: Biosynthesis of methionine from homocysteine and S-methyl methionine in bacteria. J. Bact. 72, 730 (1956).PubMedGoogle Scholar
  564. — Adenosyl methionine-homocysteine transmethylase. Biochim. biophys. Acta 29, 405 (1958).PubMedCrossRefGoogle Scholar
  565. — and A. N. Mather: The enzymatic decomposition of S-adenosyl-L-methionine. J. biol. Chem. 233, 631 (1958).PubMedGoogle Scholar
  566. Sharon, N., and F. Lipmann: Reactivity of analogs with pancreatic enzyme. Arch. Biochem. 69, 219 (1957).PubMedCrossRefGoogle Scholar
  567. Shaw, K. N. F., A. Mcmillan, and M. D. Armstrong: The metabolism of 3,4-dihydroxy-phenylalanine. J. biol. Chem. 226, 255 (1957).PubMedGoogle Scholar
  568. Shemin, D.: The biological conversion of 1-serine to glycine. J. biol. Chem. 162, 297 (1946).PubMedGoogle Scholar
  569. — In McElroy, and Glass, Amino Acid Metabolism, p. 727. Baltimore: Johns Hopkins Press 1955.Google Scholar
  570. Shemin, D., and D. Rittenberg: Some interrelationships in general nitrogen metabolism. J. biol. Chem. 153, 401 (1955).Google Scholar
  571. — The utilization of glycine for the synthesis of porphyrin. J. biol. Chem. 159, 547 (1945).Google Scholar
  572. Shemin, D., and D. Rittenberg: The biological utilization of glycine for the synthesis of the protoporphyrin of hemoglobin. J. biol. Chem. 166, 621 (1946).PubMedGoogle Scholar
  573. — The life span of the human red blood cell. J. biol. Chem. 166, 627 (1946).PubMedGoogle Scholar
  574. — On the utilization of glycine for uric acid synthesis in man. J. biol. Chem. 167, 875 (1947).PubMedGoogle Scholar
  575. — and C. S. Russell: ´-Aminolevulinic acid, its role in the biosynthesis of porphyrin and purines. J. Amer. chem. Soc. 75, 4873 (1953).CrossRefGoogle Scholar
  576. — and T. Abramsky: The succinate-glycine cycle I. The mechanism of pyrrole synthesis. J. biol. Chem. 215, 613 (1955).PubMedGoogle Scholar
  577. — and J. Wittenberg: The mechanism of porphyrin formation. The role of the tricarboxylic acid cycle. J. biol. Chem. 192, 315 (1951).PubMedGoogle Scholar
  578. Siegel, I., and J. Lafaye: Formation of the ß-carbon of serine from formaldehyde. Proc. Soc. exp. Biol. (N. Y.) 74, 620 (1950).CrossRefGoogle Scholar
  579. Siekevitz, P.: Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. J. biol. Chem. 195, 549 (1952).PubMedGoogle Scholar
  580. — and D. M. Greenberg: The biological formation of serine from glycine. J. biol. Chem. 180, 845 (1949).PubMedGoogle Scholar
  581. — The biological formation of formate from methyl compounds in liver slices. J. biol. Chem. 186, 275 (1950).PubMedGoogle Scholar
  582. Simkin, J. L., and T. S. Work: Incorporation of radioactive amino acids into proteins of the microsome fraction of guinea-pig liver in a cell free system. Biochem. J. 67, 617 (1957).PubMedGoogle Scholar
  583. Simmonds, S., and V. Du Vigneaud: Transmethylation as a metabolic process in man. J. biol. Chem. 146, 685 (1942).Google Scholar
  584. — A further study of the lability of the methyl groups of creatine. Proc. Soc. exp. Biol. (N.Y.) 59, 293 (1945).CrossRefGoogle Scholar
  585. Simpson, M. V.: Further studies on the biosynthesis of aldolase and glyceraldehyde-3-phos-phate dehydrogenase. J. biol. Chem. 216, 179 (1955).PubMedGoogle Scholar
  586. — and S. F. Velick: The synthesis of aldolase and glyceraldehyde-3-phosphate dehydrogenase in the rabbit. J. biol. Chem. 208, 61 (1954).PubMedGoogle Scholar
  587. Sinex, F. M., and D. D. Van Slyke: The source and state of the hydroxylsine of collagen. J. biol. Chem. 216, 245 (1955).PubMedGoogle Scholar
  588. — and D. R. Christman: The source and state of hydroxylsine of collagen II. J. biol. Chem. 234, 918 (1959).PubMedGoogle Scholar
  589. Siperstein, M. D., and A. W. Murray: Enzymatic synthesis of cholyl CoA and taurocholic acid. Science 123, 377 (1956).PubMedCrossRefGoogle Scholar
  590. Skipper, H. E., L. L. Bennett, Jr., C. E. Bryan, and L. White, Jr.: Carbamates in the chemotherapy of leukemia VIII. Over-all tracer studies on carbonyl-labeled urethan, methylene-labeled urethan, and methylene-labeled ethyl alcohol. Cancer Res. 11, 46 (1951).PubMedGoogle Scholar
  591. Sky-Peck, H. H., H. E. Pearson, and D. W. Visser: Incorporation of glucose-U-C14, glucose-1-C14, and glucose-6-C14 in vitro into the protein-bound amino acids of one day old mouse brain. J. biol. Chem. 223, 1033 (1956).PubMedGoogle Scholar
  592. Slade, H. D.: In McElroy and Glass, Amino Acid Metabolism, p. 321. Baltimore: Johns Hopkins Press 1955.Google Scholar
  593. Smith, L. H., and D. Stetten: Biosynthesis of orotic acid from citrulline. J. Amer. chem. Soc. 76, 3864 (1954).CrossRefGoogle Scholar
  594. Smith, M. E., and D. M. Greenberg: Preparation and properties of partially purified glutamic semialdehyde reductase. J. biol. Chem. 226, 317 (1957).PubMedGoogle Scholar
  595. Smith, R. L., and F. Schlenk: The metabolic relationship between methionine and adenine thiomethyl riboside in yeast. Arch. Biochem. 38, 167 (1952).PubMedCrossRefGoogle Scholar
  596. Smythe, C. V., and D. Halliday: An enzymatic conversion of radioactive sulfide sulfur to cystine sulfur. J. biol. Chem. 144, 237 (1942).Google Scholar
  597. Snoke, J. E.: On the mechanism of the enzymatic synthesis of glutathione. J. Amer. chem. Soc. 75, 4872 (1953).CrossRefGoogle Scholar
  598. — Isolation and properties of yeast glutathione synthetase. J. biol. Chem. 213, 813 (1955).PubMedGoogle Scholar
  599. — and K. Bloch: Formation and utilization of γ-glutamyleysteine in glutathione synthesis. J. biol. Chem. 199, 407 (1952).PubMedGoogle Scholar
  600. — In Colowick, S. P., Glutathione, p. 129. New York: Academic Press 1954.Google Scholar
  601. — Studies on the mechanism of action of glutathione synthetase. J. biol. Chem. 213, 825 (1955).PubMedGoogle Scholar
  602. S. Yanari, and K. Bloch: Synthesis of gluathione from γ-glutamyl cysteine. J. biol. Chem. 201, 573 (1953).PubMedGoogle Scholar
  603. Solomon, G., and H. Tarver: The effect of diet on the rate of loss of labeled amino acid from tissue proteins. J. biol. Chem. 195, 447 (1952).PubMedGoogle Scholar
  604. Soloway, S., and D. W. Stetten, Jr.: The metabolism of choline and its conversion to glycine in the rat. J. biol. Chem. 204, 207 (1953).PubMedGoogle Scholar
  605. Sonne, J. C., J. M. Buchanan, and H. M. Delluva: Biological precursors of uric acid I. The role of lactate, acetate, and formate in the synthesis of the ureide groups of uric acid. J. biol. Chem. 173, 69 (1958).Google Scholar
  606. Sourkes, T., P. Heneage, and Y. Trano: Enzymatic decarboxylation of isomers and derivatives of dihydroxyphenylalanine. Arch. Biochem. 40, 185 (1952).PubMedCrossRefGoogle Scholar
  607. Speck, J. F.: The enzymatic synthesis of glutamine, a reaction utilizing adenosine triphosphate. J. biol. Chem. 179, 1405 (1949).PubMedGoogle Scholar
  608. Spiegelman, S., H. O. Halvorson, and R. Ben-Ishai: In McElroy, and Glass, Amino Acid Metabolism, p. 124. Baltimore: Johns Hopkins Press 1955.Google Scholar
  609. Sprinson, D. B., and D. Rittenberg: The metabolic reactions of carbon atom 2 of L-histidine. J. biol. Chem. 198, 655 (1952).PubMedGoogle Scholar
  610. Srinivasan, P. R., M. Katagiri, and B. D. Davis: The conversion of phosphoenolpyruvic acid and D-erythrose-4-phosphate to 5-dehydroquinic acid. J. biol. Chem. 234, 713 (1959).PubMedGoogle Scholar
  611. H. T. Shigeura, M. Sprecker, D. B. Sprinson, and B. D. Davis: The biosynthesis of shikimic acid from D-glucose. J. biol. Chem. 220, 477 (1956).PubMedGoogle Scholar
  612. — and D. B. Sprinson: 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J. biol. Chem. 234, 716 (1959).PubMedGoogle Scholar
  613. E. B. Kalan, and B. D. Davis: The enzymatic conversion of sedoheptulose-1,7-diphosphate to shikimic acid. J. biol. Chem. 223, 913 (1956).PubMedGoogle Scholar
  614. Stadtman, T. C., and P. Elliott: A new ATP-forming reaction: The reductive deamination of glycine. J. Amer. chem. Soc. 78, 2020 (1956).CrossRefGoogle Scholar
  615. Staehelin, M., and F. Leuthardt: Über den Mechanismus der Glutaminsynthese. Helv. chim. Acta 38, 184 (1955).CrossRefGoogle Scholar
  616. Steele, R.: The formation of amino acids from carbohydrate carbon in the mouse. J. biol. Chem. 198, 237 (1952).PubMedGoogle Scholar
  617. Steinberg, D., and C. B. Anfinsen: Evidence for intermediates in ovalbumin synthesis. J. biol. Chem. 199, 25 (1952).PubMedGoogle Scholar
  618. M. Vaughan, and C. B. Anfinsen: Kinetic aspects of assembly and degradation of proteins. Science 124, 389 (1956).PubMedCrossRefGoogle Scholar
  619. Steinbock, H. L., and H. Tarver: Plasma protein V. The effect of the protein content of the diet on turnover. J. biol. Chem. 209, 127 (1954).PubMedGoogle Scholar
  620. Steinfeld, J. L., R. R. Paton, A. L. Flick, R. A. Milch, F. E. Beach, and D. L. Tabern: Distribution and degradation of human serum albumin labeled with I131 by different techniques. Ann. N. Y. Acad. Sci. 70, 109 (1957).PubMedCrossRefGoogle Scholar
  621. Stekol, J. A.: In McElroy, and Glass, Amino Acid Metabolism, p. 509. Baltimore: Johns Hopkins Press 1955.Google Scholar
  622. E. I. Anderson, and S. Weiss: S-Adenosyl-L-methionine in the synthesis of choline, creatine, and cysteine in vivo and in vitro. J. biol. Chem. 233, 425 (1958).PubMedGoogle Scholar
  623. S. Weiss, E. I. Anderson, P. T. Hsu, and A. Watjen: Vitamin B12 and folic acid in relation to methionine synthesis from betaine in vivo and in vitro. J. biol. Chem. 226, 95 (1957).PubMedGoogle Scholar
  624. — and S. Weiss: On the origin of the carbon chain of cysteine in the rat. J. biol. Chem. 185, 271 (1950).PubMedGoogle Scholar
  625. S. Weiss, and K. W. Weiss: Vitamin B12 and folic acid in the synthesis of choline in the rat. Arch. Biochem. 36, 11 (1952).CrossRefGoogle Scholar
  626. Stephenson, M. L., K. V. Thimann, and P. C. Zamecnik: Incorporation of C14-amino acids into proteins of leaf discs and cell-free fractions of tobacco leaves. Arch. Biochem. 56, 194 (1956).CrossRefGoogle Scholar
  627. Sterling, K.: The turnover rate of serum albumin in man as measured by I131-tagged albumin. J. clin. Invest. 30, 1228 (1951).PubMedCrossRefGoogle Scholar
  628. — Serum albumin turnover in Laennec’s cirrhosis as measured by I131-tagged albumin. J. clin. Invest. 30, 1238 (1951).PubMedCrossRefGoogle Scholar
  629. Stetten, D., Jr.: Biological relationships of choline, ethanolamine, and related compounds. J. biol. Chem. 140, 143 (1941).Google Scholar
  630. — The fate of dietary serine in the body of the rat. J. biol. Chem. 144, 501 (1942).Google Scholar
  631. — and B. Bloom: The metabolism of the amidine group of arginine in the intact rat. J. biol. Chem. 220, 723 (1956).PubMedGoogle Scholar
  632. Stetten, M. R.: Some aspects of the metabolism of hydroxyproline studied with the aid of isotopic nitrogen. J. biol. Chem. 181, 31 (1949).PubMedGoogle Scholar
  633. Stetten, M. R.: Mechanism of the conversion of ornithine into proline and glutamic acid in vivo. J. biol. Chem. 189, 499 (1951).PubMedGoogle Scholar
  634. — and R. Schoenheimer: The metabolism of l(-)proline studied with the aid of deuterium and isotopie nitrogen. J. biol. Chem. 153, 113 (1944).Google Scholar
  635. Strassman, M., L. A. Locke, A. J. Thomas, and S. Weinhouse: A study of leucine biosynthesis in Torulopsis utilis. Science 121, 303 (1955).PubMedCrossRefGoogle Scholar
  636. — A study of leucine biosynthesis in Torulopsis utilis. J. Amer. chem. Soc. 78, 1599 (1956).CrossRefGoogle Scholar
  637. J. B. Shatton, M. E. Corsey, and S. Weinhouse: Enzyme studies on the biosynthesis of valine in yeast. J. Amer. chem. Soc. 80, 1771 (1958).CrossRefGoogle Scholar
  638. A. J. Thomas, L. A. Locke, and S. Weinhouse: The biosynthesis of isoleucine. J. Amer. chem. Soc. 78, 228 (1956).CrossRefGoogle Scholar
  639. — and S. Weinhouse: The biosynthesis of valine. J. Amer. chem. Soc. 77, 1261 (1955).CrossRefGoogle Scholar
  640. — and S. Weinhouse: The biosynthesis of arginine by Torulopsis utilis. J. Amer. chem. Soc. 74, 1726 (1952).CrossRefGoogle Scholar
  641. — Biosynthetic pathways III. The biosynthesis of lysine by Torulopsis utilis. J. Amer. chem. Soc. 75, 1680 (1953).CrossRefGoogle Scholar
  642. Strecker, H. J.: The interconversion of glutamic acid and proline I. The formation of Δ ‘-pyrro-line-5-carboxylc acid from glutiamic acid in Escherichia coli. J. biol. Chem. 225, 825 (1957).PubMedGoogle Scholar
  643. Suhadolnik, R. J., C. O. Stevens, R. H. Decker, L. M. Henderson, and L. V. Hankes: Species variation in the metabolism of 3-hydroxyanthranilate to pyridinecarboxylic acids. J. biol. Chem. 228, 973 (1957).PubMedGoogle Scholar
  644. Swick, R. W.: Measurement of protein turnover in rat liver. J. biol. Chem. 231, 751 (1958).PubMedGoogle Scholar
  645. D. L. Buchanan, and A. Nakao: The normal content of fixed carbon in amino acids. J. biol. Chem. 203, 55 (1953).PubMedGoogle Scholar
  646. D. T. Handa: The distribution of fixed carbon in amino acids. J. biol. Chem. 218, 577 (1956).PubMedGoogle Scholar
  647. Tabachnick, M., and H. Tarver: The conversion of methionine-S35 to cystathionine-S35 and taurine-S35 in the rat. Arch. Biochem. 56, 115 (1955).PubMedCrossRefGoogle Scholar
  648. Tabor, H., A. H. Mehler, O. Hayaishi, and J. White: Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids. J. biol. Chem. 196, 121 (1952).PubMedGoogle Scholar
  649. — and R. W. Schayer: Isotopic measurements on the oxidation of histamine to imidazole acetic acid in vivo. J. biol. Chem. 200, 605 (1953).PubMedGoogle Scholar
  650. S. M. Rosenthal, and C. W. Tabor: The biosynthesis of spermidine and spermine from putrescine and methionine. J. biol. Chem. 233, 907 (1958).PubMedGoogle Scholar
  651. Takahashi, H., and J. M. Price: Dehydroxylation of xanthurenic acid to 8-hydroxyquinaldic acid. J. biol. Chem. 233, 150 (1958).PubMedGoogle Scholar
  652. Tarver, H., and L. M. Morse: The release of the sulfur from the tissues of rats fed labeled methionine. J. biol. Chem. 173, 53 (1948).PubMedGoogle Scholar
  653. — and C. L. A. Schmidt: The conversion of methionine to cystine: Experiments with radioactive sulfur. J. biol. Chem. 130, 67 (1939).Google Scholar
  654. — Radioactive sulfur studies 1. Synthesis of methionine, 2. Conversion of methionine sulfur to taurine sulfur in dogs and rats. J. biol. Chem. 146, 69 (1942).Google Scholar
  655. — The urinary sulfur partition in normal and cystinuric dogs fed labeled methionine. 167, 387 (1947).Google Scholar
  656. Tatum, E. L., and D. Shemin: Mechanism of tryptophan synthesis in Neurospora. J. biol. Chem. 209, 671 (1954).PubMedGoogle Scholar
  657. Thomas, R. C., V. H. Cheldelin, B. E. Christensen, and C. H. Wang: Conversion of acetate and pyruvate to tyrosine in yeast. J. Amer. chem. Soc. 75, 5554 (1953).CrossRefGoogle Scholar
  658. Thompson, R. C., and J. E. Ballou: Studies of metabolic turnover with tritium as a tracer IV. Metabolically inert lipide and protein fractions from the rat. J. biol. Chem. 208, 883 (1954).PubMedGoogle Scholar
  659. — Studies of metabolic turnover with tritium as a tracer V. The predominantly nondynamic state of body constituents in the rat. J. biol. Chem. 223, 795 (1956).PubMedGoogle Scholar
  660. Tolbert, B. M., and coworkers: Private communication.Google Scholar
  661. Tomlinson, N.: Carbon dioxide and acetate utilization by Clostridium kluyveri II. Synthesis of amino acids. J. biol. Chem. 209. 597 (1954a).PubMedGoogle Scholar
  662. — Carbon dioxide utilization by Clostridium kluyveri III. A new path of glutamic acid synthesis. J. biol. Chem. 209, 605 (1954b).PubMedGoogle Scholar
  663. Toporek, M., L. L. Miller, and W. F. Bale: Carbon atom 2 of L-histidine-2-C14, a source of the carbon of labile methyl groups in liver. J. biol. Chem. 198, 839 (1952).PubMedGoogle Scholar
  664. Topper, Y. J., and D.W. Stetten, Jr.: Formation of “acetyl” from succinate by rabbit liver slices. J. biol. Chem. 209, 63 (1954).PubMedGoogle Scholar
  665. Turba, F. A. Leismann, and G. Kleinhenz: Zeitlicher Verlauf des Einbaues von C14-markier-ten Aminosäuren in die Proteine von Hefezellen. Biochem. Z. 329, 97 (1937).Google Scholar
  666. Tuve, T. W., and H. H. Williams: Identification of selenomethionine in the protein of E. coli employing the chromatographic fingerprint method. J. Amer. chem. Soc. 79, 5830 (1957).CrossRefGoogle Scholar
  667. Tyor, M. P.: Human serum albumin tagged with I131 in patients with ascites caused by abdominal carbinomatosis and portal cirrhosis: The rates of interchange between the vascular compartment and peritoneal cavity. J. Lab. clin. Med. 44, 110 (1954).PubMedGoogle Scholar
  668. Udenfriend, S., and S. P. Bessman: The hydroxylation of phenylalanine and antipyrine in phenylpyruvic oligophrenia. J. biol. Chem. 203, 961 (1953).PubMedGoogle Scholar
  669. J. R. Cooper, C. T. Clark, and J. E. Baer: Rate of turnover of epinephrine in the adrenal medulla. Science 117, 663 (1953).PubMedCrossRefGoogle Scholar
  670. E. Titus, H. Weissbach., and R E. Peterson: Biogenesis and metabolism of 5-hydroxyindole compounds. J. biol. Chem. 219, 335 (1956).PubMedGoogle Scholar
  671. — and J. B. Wyngaarden: Precursors of adrenal epinephrine and norepinephrine in vivo. Biochim. biophys. Acta 20, 48 (1956).PubMedCrossRefGoogle Scholar
  672. Ulrich, F., H. Tarver, and C. H. Li: Effects of growth and adrenocorticotropic hormones on the metabolism of albumin in hypophysectomized rats. J. biol. Chem. 209, 117 (1954).PubMedGoogle Scholar
  673. Umbarger, H. E., and B. Brown: Isoleucine and valine metabolism in Escherichia coli 8. The formation of acetolactate. J. biol. Chem. 233, 1156 (1958).PubMedGoogle Scholar
  674. — and E. J. Eyring: Acetolactate, an early intermediate in valine biosynthesis. J. Amer. chem. Soc. 79, 2980 (1957).CrossRefGoogle Scholar
  675. Ussing, H. H.: The rate of protein renewal in mice and rats studied by means of heavy hydrogen. Acta physiol. scand. 2, 209 (1941).CrossRefGoogle Scholar
  676. Varner, J. E., D. H. Slocum, and G. C. Webster: Transfer of oxygen in the arsenolysis of glutamine. Arch. Biochem. 73, 508 (1958).PubMedCrossRefGoogle Scholar
  677. — and G. C. Webster: Studies on the enzymatic synthesis of glutamine. Plant Physiol. 30, 393 (1955).PubMedCrossRefGoogle Scholar
  678. Vaughan, M., and D. Steinberg: Incorporation of amino acid analogues into crystalline proteins. IV. Int. Cong. Biochem. (Vienna) Symp. VIII (5) (1958).Google Scholar
  679. Ven, A. M., Vande, V. V. Koningsberger, and J. T. G. Overbeek: Isolation of a tyrosine-activating enzyme from baker’s yeast. Biochim. biophys. Acta 28, 134 (1958).CrossRefGoogle Scholar
  680. Vogel, H. J.: In McElroy, and Glass, Amino Acid Metabolism. Baltimore: Johns Hopkins Press 1955.Google Scholar
  681. — An ornithine-proline interrelation in Escherichia coli. J. Amer. chem. Soc. 78, 2631 (1956).Google Scholar
  682. P. H. Abelson, and E. T. Bolton: On ornithine and proline synthesis in Escherichia coli. Biochim. biophys. Acta 11, 584 (1953).PubMedCrossRefGoogle Scholar
  683. — and D. M. Bonner: Acetylornithinase of Escherichia coli. Partial purification and some properties. J. biol. Chem. 218, 97 (1956).PubMedGoogle Scholar
  684. — and B. D. Davis: Glutamic-γ-semialdehyde and Δ’-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Amer. chem. Soc. 74, 109 (1952).CrossRefGoogle Scholar
  685. Vohra, P., F. H. Lantz, and F. H. Kratzer: The effect of folic acid and vitamin B12 on the synthesis of serine and choline from glycine in the liver of young turkey poults. J. biol. Chem. 221, 501 (1956).PubMedGoogle Scholar
  686. Volwiler, W., P. D. Goldsworthy, M. P. Macmartin, P. A. Wood, I. R. Mackay, and K. Fremont-Smith: Biosynthetic determination with radioactive sulfur of turnover rates of various plasma proteins in normal and cirrhotic man. J. clin. Invest. 34, 1126 (1955).PubMedCrossRefGoogle Scholar
  687. Wachsman, J. T.: The role of α-ketoglutarate and mesaconate in glutamate fermentation in Clostridium tetanomorphum. J. biol. Chem. 223, 19 (1956).PubMedGoogle Scholar
  688. — and H. A. Barker: Tracer experiments on glutamate fermentation by Clostridium tetanomorphum. J. biol. Chem. 217, 695 (1955).PubMedGoogle Scholar
  689. Wagner, R. P., A. Bergquist, and H. S. Forrest: The accumulation of acetylmethylcarbinol and acetylethylcarbinol by a mutant of Neurospora crassa and its significance in the biosynthesis of isoleucine and valine. J. biol. Chem. 234, 99 (1959).PubMedGoogle Scholar
  690. Walker, J. B.: Studies on the mechanism of action of kidney transamidinase. J. biol. Chem. 224, 57 (1957).PubMedGoogle Scholar
  691. Walter, H., and F. Haurowitz: Turnover of young and old serum proteins. Science 128, 140 (1958).PubMedCrossRefGoogle Scholar
  692. Wang, C. H., B. E. Christensen, and V. H. Cheldelin: Conversion of acetate and pyruvate to glutamic acid in yeast. J. biol. Chem. 201, 683 (1953).PubMedGoogle Scholar
  693. R. C. Thomas, V. H. Cheldelin, and B. E. Christensen: Conversion of acetate and pyruvate to aspartic acid in yeast. J. biol. Chem. 197, 663 (1952).PubMedGoogle Scholar
  694. Wasserman, K., and H. S. Mayerson: Exchange of albumin between plasma and lymph. Amer. J. Physiol. 165, 15 (1951).PubMedGoogle Scholar
  695. Watanabe, Y., S. Konishi, and K. Shimura: Biosynthesis of threonine from homoserine VI. Homoserine kinase. J. Biochem. (Tokyo) 44, 299 (1957).Google Scholar
  696. Webster, G. C.: Peptide bond synthesis in higher plants I. The synthesis of glutathione. Arch. Biochem. 47, 241 (1953).PubMedCrossRefGoogle Scholar
  697. Webster, G. C., Amino acid incorporation by intact and disrupted ribonucleoprotein particles. J. biol. Chem. 229, 535 (1957).PubMedGoogle Scholar
  698. — and J. E. Varner: On the mechanism of the enzymatic synthesis of glutamine. J. Amer. chem. Soc. 76, 633 (1954).CrossRefGoogle Scholar
  699. Webster, G. C., and J. E. Varner: Peptide bond synthesis in higher plants II. Studies on the mechanism of synthesis of γ-glutamylcysteine. Arch. Biochem. 52, 22 (1954).PubMedCrossRefGoogle Scholar
  700. — Aspartate metabolism and asparagine synthesis in plant systems. J. biol. Chem. 215, 91 (1955).PubMedGoogle Scholar
  701. — Peptide bond synthesis in higher plants III. The formation of glutathione from γ-glutamylcysteine. Arch. Biochem. 55, 95 (1955).PubMedCrossRefGoogle Scholar
  702. Wegand, F., R. Junk, and D. Leber: Adenyl-thiomethyl pentose. Hoppe-Seylers Z. physiol. Chem. 291, 191 (1952).Google Scholar
  703. Weinhouse, S.: In McElroy, and Glass, Amino Acid Metabolism. Baltimore: Johns Hopkins Press 1955.Google Scholar
  704. — and B. Friedmann: Metabolism of labeled 2-carbon acids in the intact rat. J. biol. Chem. 191, 707 (1951).PubMedGoogle Scholar
  705. — Study of precursors of formate in the intact rat. J. biol. Chem. 197, 733 (1952).Google Scholar
  706. — and R. H. Millington: Ketone body formation from tyrosine. J. biol. Chem. 181, 645 (1949).PubMedGoogle Scholar
  707. Weiss, U., B. D. Davis, and E. S. Mingioli: Aromatic biosynthesis X. Identification of an early precursor as 5-dehydroquinic acid. J. Amer. chem. Soc. 75, 5572 (1952).CrossRefGoogle Scholar
  708. C. Gilvarg, E. S. Mingioli, and B. D. Davis: Aromatic biosynthesis XI. The aromatization step in the synthesis of phenylalanine. Science 119, 774 (1954).PubMedCrossRefGoogle Scholar
  709. Weissbach, A., D. Elwyn, and D. B. Sprinson: The synthesis of the methyl groups and ethanolamine moiety of choline from serine and glycine in the rat. J. Amer. chem. Soc. 72, 3316 (1950).CrossRefGoogle Scholar
  710. Westley, J., and J. Ceithaml: Synthesis of histidine in Escherichia coli II. Radioisotopic tracer studies. J. biol. Chem. 219, 139 (1956).PubMedGoogle Scholar
  711. White, K.: The formation of glycine and serine: calculations of certain reaction rates in the rat using the data of Arnstein and Neuberger. Arch. Biochem. 75, 215 (1958).PubMedCrossRefGoogle Scholar
  712. Wiame, P. J.: Le role biosynthétique du cycle des acides tricarboxyliques. Advanc. Enzymol. 18, 241 (1957).Google Scholar
  713. Wieland, T., and H. Merz: In vitro Reaktion von Proteinen mit aktivierten Aminosäuren. Ein Ultramikroverfahren zum Edmanschen Ablauf radioaktiver Peptide. Biochem. Z. 330, 521 (1958).PubMedGoogle Scholar
  714. — and G. Pfleiderer: Aktivierung von Aminosäuren. Advanc. Enzymol. 19, 235 (1957).Google Scholar
  715. — and B. Sandmann: Zum Wirkungsmechanismus der Glutamin-Synthetase aus Erbsen. Biochem. Z. 330, 198 (1958).PubMedGoogle Scholar
  716. Wiggans, D. S., W. W. Burr, Jr., and H. W. Rumsfeld, Jr.: Metabolism of serum proteins I. Albumin labeled with valine-1-C14 and methionine-S35. Arch. Biochem. 72, 169 (1957).PubMedCrossRefGoogle Scholar
  717. Willson, C. D., and E. A. Adelberg: The biosynthesis of leucine and valine 4. Accumulation of citramalic acid and α, β-dimethylmalic acids by a Neurospora mutant. J. biol. Chem. 229, 1011 (1957).PubMedGoogle Scholar
  718. K. W. King, and R. H. Burris: Transamination reactions in plants. J. biol. Chem. 208, 863 (1954).Google Scholar
  719. R. J. Hill, and R. E. Koeppe: The metabolism of γ-aminobutyric acid-4-C14 by intact rats. J. biol. Chem. 234, 347 (1959).Google Scholar
  720. Windsor, E.: α-Aminoadipic acid as a precursor to lysine in Neurospora. J. biol. Chem. 192. 607 (1951).PubMedGoogle Scholar
  721. Wingo, W. J., and J. Awapara: Decarboxylation of L-glutamic acid by brain. J. biol. Chem. 187, 267 (1950).PubMedGoogle Scholar
  722. R. A. Smith, and J. Wood: The metabolism of DL-methionine sulfone by the rat. Arch. Biochem. 47, 307 (1953).PubMedCrossRefGoogle Scholar
  723. Winnick, T., I. Moring-Claesson, and D. M. Greenberg: Distribution of radioactive carbon among certain amino acids of liver homogenate protein, following uptake experiments with labeled glycine. J. biol. Chem. 175, 127 (1948).PubMedGoogle Scholar
  724. — and R. E. Winnick: Biosynthesis of carnosine and anserine in vitro. Biochim. biophys. Acta 23, 649 (1957).PubMedCrossRefGoogle Scholar
  725. Winzler, R. J., K. Moldave, M. E. Rafelson, Jr., and H. E. Pearson: Conversion of glucose to amino acids by brain and liver of the new born mouse. J. biol. Chem. 199, 485 (1925).Google Scholar
  726. Wittenberg, J., and D. Shemin: The location in the protoporphyrin of the carbon atoms derived from the α-carbon atom of glycine. J. biol. Chem. 185, 103 (1950).PubMedGoogle Scholar
  727. Woessner, J. F., B. K. Bachhawat, and M. J. Coon: Enzymatic activation of carbon dioxide II. Role of biotin in the carboxylation of β-hydroxyisovaleryl coenzyme A. J. biol. Chem. 233, 520 (1958).PubMedGoogle Scholar
  728. Wolf, G.: The metabolism of α-C14-histidine in the intact rat. J. biol. Chem. 200, 637 (1953).PubMedGoogle Scholar
  729. — and C. R. A. Berger: Themetabolism of hydroxyproline in the intact rat. Incorporation of hydroxyproline into protein and urinary metabolites. J. biol. Chem. 230, 231 (1958).PubMedGoogle Scholar
  730. Wolf, G., W. W. Heck, and J. C. Leak: The metabolism of hydroxyproline-α-C14 in the intact rat. Radioactivity in amino acids from proteins. J. biol. Chem. 223, 95 (1956).PubMedGoogle Scholar
  731. P-H. L. Wu, and W. W. Heck: The metabolism of α-C14-histidine in the intact rat 2. Radioactive excretion products in urine. J. biol. Chem. 222, 159 (1956).PubMedGoogle Scholar
  732. Wolff, E. C., S. Black, and P. F. Downey: Enzymatic synthesis of S-methylcysteine. J. Amer. chem. Soc. 78, 5958 (1956).CrossRefGoogle Scholar
  733. Wood, H. G.: The synthesis of liver glycogen in the rat as an indicator of intermediary metabolism. Cold Spr. Harb. Symp. quant. Biol. 13, 201 (1948).CrossRefGoogle Scholar
  734. Work, E.: The isolation of α, ε-diaminopimelic acid from Cornybacterium diphtheriae and Mycobacterium, tuberculosis. Biochem. J. 49, 17 (1951).PubMedGoogle Scholar
  735. — and D. L. Dewey: The distribution of α, ε-diaminopimelic acid among various microorganisms. J. gen. Microbiol. 9, 394 (1953).PubMedCrossRefGoogle Scholar
  736. Yanofsky, C.: An isotopic study of the conversion of anthranilic acid to indole. J. biol. Chem. 217, 345 (1955).PubMedGoogle Scholar
  737. — Indole-3-glycerolphosphate, an intermediate in the biosynthesis of indole. Biochim. biophys. Acta 20, 438 (1956).PubMedCrossRefGoogle Scholar
  738. Yoshida, A., and M. Yamasaki: Studies on the mechanism of protein synthesis; Incorporation of ethionine into α-amylase of Bacillus subtilis. Biochim. biophys. Acta 34, 158 (1959).PubMedCrossRefGoogle Scholar
  739. Zabin, I., and K. Bloch: The formation of ketone bodies from isovaleric acid. J. biol. Chem. 185, 117 (1950).PubMedGoogle Scholar
  740. Zachan, N. G., G. Acs, and F. Lipmann: Isolation of adenosine amino acid esters from a ribonuclease digest of soluble liver ribonucleic acid. Proc. nat. Acad. Sci. (Wash.) 44, 885 (1958).CrossRefGoogle Scholar
  741. Zakrzewski, S. F., and C. A. Nichol: The incorporation of formate-C14 into citrovorum factor. J. biol. Chem. 213, 697 (1955).PubMedGoogle Scholar
  742. Zamecnik, P. C., and E. B. Keller: Relation between phosphate energy donors and incorporation of labeled amino acids into proteins. J. biol. Chem. 209, 337 (1954).PubMedGoogle Scholar
  743. Ziegler, D. M., and J. B. Melchior: Fractionation of pituitary homogenates by differential centrifugation II. Distribution of the amino acid-incorporating system. J. biol. Chem. 222, 731 (1956).PubMedGoogle Scholar
  744. Zioudrou, G., S. Fujii, and J. S. Fruton: Labeling of proteins by isotopic amino acid derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 439 (1948).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1961

Authors and Affiliations

  • H. Tarver
  • M. Rothstein
  • H. Tarver

There are no affiliations available

Personalised recommendations