Skip to main content
  • 48 Accesses

Abstract

It is apparent, even from a cursory examination of the literature, that there has been a tremendous application of isotopic methods to various problems concerned with amino acid and protein metabolism. In this chapter an attempt will be made to review the chief aspects of amino acid biosynthesis and catabolism which have been approached by using radioactive isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdou, I. A., and H. Tarver: Plasma protein I. Loss from circulation and catabolism to carbon dioxide. J. biol. Chem. 190, 769 (1951a).

    PubMed  CAS  Google Scholar 

  • — Plasma protein II. Relationship between circulating and tissue protein. J. biol. Chem. 190, 781 (1951b).

    PubMed  CAS  Google Scholar 

  • W. O. Reinhardt and H. Tarver: Plasma protein III. The equilibrium between blood and lymph protein. J. biol. Chem. 194, 15 (1952).

    PubMed  CAS  Google Scholar 

  • Abelson, P. H.: Amino acid biosynthesis in Escherichia coli: Isotopic competition with C14-glucose. J. biol. Chem. 206, 335 (1954).

    PubMed  CAS  Google Scholar 

  • E. T. Bolton and E. Aldous: Utilization of carbon dioxide in the synthesis of proteins by Escherichia coli I. J. biol. Chem. 198, 165 (1952a).

    PubMed  Google Scholar 

  • — Utilization of carbon dioxide in the synthesis of proteins by Escherichia coli II. J. biol. Chem. 198, 173 (1952b).

    PubMed  CAS  Google Scholar 

  • R. Britten, D. B. Cowie, and R. B. Roberts: Synthesis of aspartic and glutamic families of amino acids in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 39, 1020 (1953).

    Article  Google Scholar 

  • Abrams, A., and H. Borsook: The conversion of L-histidine to glutamic acid by liver enzymes. J. biol. Chem. 198, 205 (1952).

    PubMed  CAS  Google Scholar 

  • Abrams, R., E. Hammarsten, and D. Shemin: Glycine a precursor of purines in yeast. J. biol. Chem. 173, 429 (1948).

    PubMed  CAS  Google Scholar 

  • Adams, E.: L-Histidinal, a biosynthetic precursor of histidine. J. biol. Chem. 217, 325 (1955).

    PubMed  CAS  Google Scholar 

  • R. Friedman and A. Goldstone,: Animal metabolism of hydroxyproline: Isolation and enzymic reactions of γ-hydroxyglutamic semialdehyde. Biochim. biophys. Acta 30, 212 (1958).

    Article  PubMed  Google Scholar 

  • Adelberg, E. A.: The biosynthesis of isoleucine and valine II. Independence of the biosynthetic pathways in Neurospora. J. biol. Chem. 216, 431 (1955).

    PubMed  CAS  Google Scholar 

  • D. M. Bonner, and E. L. Tatum: A precursor of isoleucine obtained from a mutant strain of Neurospora crassa. J. biol. Chem. 190, 837 (1951).

    PubMed  Google Scholar 

  • Albert, P. W., B. T. Scheer, and H. J. Deuel, Jr.: The effect of 3-hydroxyanthranilic acid on the excretion of niacin by the rat. J. biol. Chem. 175, 479 (1948).

    PubMed  CAS  Google Scholar 

  • Alexander, N., and D. M. Greenberg: Studies on the biosynthesis of serine. J. biol. Chem. 214, 821 (1955).

    PubMed  CAS  Google Scholar 

  • Allfrey, V., M. M. Daly, and A. E. Mirsky: Synthesis of protein in the pancreas II. The role of ribonucleoprotein. J. gen. Physiol. 37, 157 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Allfrey, V. G., A. E. Mirsky, and S. Osawa: Protein synthesis in isolated cell nuclei. J. gen. Physiol. 40, 451 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Altman, K. I., G. W. Casarett, R. E. Masters, T. R. Noonan, and K. Salomon: Hemoglobin synthesis from glycine labeled with radioactive carbon on its α-carbon atom. J. biol. Chem. 176, 319 (1948).

    PubMed  CAS  Google Scholar 

  • K. Salomon, and T. R. Noonan: Hemin synthesis in rabbit bone marrow homogenates. J. biol. Chem. 177, 489 (1949).

    PubMed  CAS  Google Scholar 

  • L. L. Miller, and J. E. Richmond: The role of the carbon skeleton of lysine in the biosynthesis of hemoglobin. Arch. Biochem. 36, 399 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Ames, B. N.: In McElroy and Glass, Amino Acid Metabolism, Baltimore. The Johns Hopkins Press, p. 365, 1955.

    Google Scholar 

  • Anderson, E. I., and W. A. Mosher: Incorporation of S35 from DL-cystine into glutathione and protein in the rat. J. biol. Chem. 188, 717 (1951).

    PubMed  CAS  Google Scholar 

  • Andersson-Kottö, I., G. Ehrensvärd, G. Högström, E. Reio, and E. Saluste: Amino acid formation and utilization in Neurospora. J. biol. Chem. 210, 455 (1954).

    PubMed  Google Scholar 

  • Anfinsen, C. B., and D. Steinberg: Studies on the biosynthesis of ovalbumin. J. biol. Chem. 189, 739 (1951).

    PubMed  CAS  Google Scholar 

  • Armstrong, M. D., F-C. Chao, V. J. Parker, and P. E. Wall: Endogenous formation of hippuric acid. Proc. Soc. exp. Biol. (N. Y.) 90, 675 (1955).

    Article  CAS  Google Scholar 

  • A. Mcmillan, and K. N. F. Shaw: 3-Methoxy-4-hydroxy-D-mandelic acid, a urinary metabolite of norepinephrine. Biochim. biophys. Acta 25, 422 (1958).

    Article  Google Scholar 

  • K. N. F. Shaw, and P. E. Wall: The phenolic acids of human urine. Paper chromatography of phenolic acids. J. biol. Chem. 218, 293 (1956).

    PubMed  CAS  Google Scholar 

  • Armstrong, S. H., Jr., J. Kukral, J. Hershman, K. Mcleod, J. Wolter, and D. Bronsky: The persistence in the blood of the radioactive label of albumins, gamma globulins and globulins of intermediate mobility II. Comparison of gamma globulins labeled with S35 and I131 in the same subjects. J. Lab. clin Med. 45, 51 (1955).

    PubMed  CAS  Google Scholar 

  • K. Mcleod, J. Wolter, and J. Kukral: The persistence in the blood of the radioactive label of albumin, gamma globulins, globulins of intermediate mobility studied with S35 and paper electrophoresis: Methods and preliminary results. J. Lab. clin. Med. 43, 918 (1954).

    PubMed  CAS  Google Scholar 

  • Arnstein, H. R. V.: The biosynthesis of choline methyl groups by the rat. Biochem. J. 48, 27 (1951).

    PubMed  CAS  Google Scholar 

  • — and J. C. Crawhall: The metabolism of DL-[β-14C] and DL-[35S] cystine by the rat. Biochem. J. 55, 280 (1953).

    PubMed  Google Scholar 

  • — and D. Keglevic: A comparison of alanine and glucose as precursors of serine and glycine. Biochem. J. 62, 199 (1956).

    PubMed  Google Scholar 

  • — and A. Neuberger: Hippuric acid synthesis in the rat. Biochem. J. 50, 154 (1951).

    PubMed  Google Scholar 

  • — The synthesis of glycine and serine by the rat. Biochem. J. 55, 271 (1953).

    PubMed  CAS  Google Scholar 

  • — The effect of cobalamin on the quantitative utilization of serine, glycine and formate for the synthesis of choline and methyl groups of methionine. Biochem. J. 55, 259 (1953).

    PubMed  CAS  Google Scholar 

  • — and V. Stankovic: The effect of certain vitamin deficiencies on glycine biosynthesis. Biochem. J. 62, 190 (1956).

    PubMed  Google Scholar 

  • Awapara, J.: Absorption of injected taurine-S35 by rat organs. J. biol. Chem. 225, 877 (1957).

    PubMed  CAS  Google Scholar 

  • — and V. M. Doctor: Enzymatic oxidation of cysteine-S35 to cysteine sulfinic acid. Arch. Biochem. 58, 506 (1955).

    Article  PubMed  Google Scholar 

  • — and W. J. Wingo: On the mechanism of taurine formation from cysteine in the rat. J. biol. Chem. 203, 189 (1953).

    PubMed  Google Scholar 

  • Axelrod, J.: O-methylation of epinephrine and other catechols in vitro and in vivo. Science 126, 400 (1957).

    Article  PubMed  CAS  Google Scholar 

  • J. K. Inscoe, S. Senoh, and B. Witkop: O-methylation, the principal pathway for the metabolism of epinephrine and norepinephrine in the rat. Biochim. biophys. Acta 27, 210 (1958).

    Article  PubMed  Google Scholar 

  • Babson, A. L.: The rate of loss of labeled plasma proteins from the circulation of tumor bearing rats. Biochim. biophys. Acta 20, 418 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Bachhawat, B. K., and M. J. Coon: Enzymatic activation of carbon dioxide I. Crystalline carbon dioxide activating enzyme. J. biol. Chem. 231, 625 (1958).

    PubMed  CAS  Google Scholar 

  • W. G. Robinson, and M. J. Coon: Enzymatic carboxylation of ß-hydroxyisovaleryl coenzyme A. J. biol. Chem. 219, 539 (1956).

    PubMed  CAS  Google Scholar 

  • Baddiley, J., G. Ehrensvärd, R. Johansson, L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis I. The cultivation of Torulopsis yeast on C13H3C14OOH as a single carbon source. J. biol. Chem. 183, 771 (1950).

    CAS  Google Scholar 

  • E. Klein, L. Reio, and E. Saluste: Acetic acid metabolism in Torulopsis utilis II. Metabolic connection between acetic acid and tyrosine and a method of degradation of the phenolic ring structure of tyrosine. J. biol. Chem. 183, 777 (1950).

    CAS  Google Scholar 

  • Baker, R. S., J. E. Johnson, and S. W. Fox: Incorporation of p-fluorophenylalanine into proteins of Lactobacillus arabinosus. Biochim. biophys. Acta 28, 318 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Baldrige, R. C., and C. D. Tourtellotte: The metabolism of histidine III. Urinary metabolites. J. biol. Chem. 233, 125 (1958).

    Google Scholar 

  • Barker, H. A.: On the fermentation of glutamic acid. Enzymologia 2, 175 (1937).

    CAS  Google Scholar 

  • — In Gunsalus and Stanier, The Bacteria, Vol. 2. New York: Academic Press 1959.

    Google Scholar 

  • R. D. Smyth, E. J. Wawszkiewicz, M. N. Lee, and R. M. Wilson: Enzymic preparation and characterization of an α-L-β-methylaspartic acid. Arch. Biochem. 78, 468 (1958).

    Article  PubMed  Google Scholar 

  • H. Weissbach, and R. D. Smyth: A coenzyme containing pseudo vitamin B12. Proc. nat. Acad. Sci. (Wash.) 44, 1093 (1958).

    Article  Google Scholar 

  • Barry, J. M.: The use of glutamine and glutamic acid by the mammary gland for casein biosynthesis. Biochem. J. 63, 669 (1956).

    PubMed  CAS  Google Scholar 

  • — and B. F. Sansom: The use of asparagine and glutamine for the biosynthesis of casein and plasma proteins. Biochem. J. 68, 487 (1958).

    PubMed  CAS  Google Scholar 

  • Bauer, F. K., W. H. Blahd, M. Fields, and G. Getchell: Ascitic fluid and plasma protein exchange in cirrhosis of liver; studies with radioiodinated human serum albumin and gamma globulin. Metabolism 3, 289 (1954).

    PubMed  CAS  Google Scholar 

  • M. Tubis, and H. B. Thomas: Accumulation of homologous radioiodinated albumin in experimental tumors. Proc. Soc. exp. Biol. (N. Y.) 90, 140 (1955).

    Article  CAS  Google Scholar 

  • Baugham, D. R., and R. J. Terry: The absorption of 131I-labelled homologous and heterologous serum proteins fed orally to young rats. Biochem. J. 66, 579 (1957).

    Google Scholar 

  • Beljanski, M., and S. Ochoa: Protein biosynthesis by a cell-free bacterial system. Proc. nat. Acad. Sci. (Wash.) 44, 494 (1958).

    Article  CAS  Google Scholar 

  • Benedict, J. D., H. J. Kalinsky, L. A. Scarrone, A. R. Wertheim, and De W. Stetten, Jr.: The origin of urinary creatine in progressive muscular distrophy. J. clin. Invest. 34, 141 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Berg, P.: Synthesis of labile methyl groups by guinea pig tissue in vitro. J. biol. Chem. 190 31 (1951).

    PubMed  CAS  Google Scholar 

  • — A study of formate utilization in pigeon liver extract. J. biol. Chem. 205, 145 (1953).

    PubMed  CAS  Google Scholar 

  • — Acyl adenylates: The interaction of adenosine triphosphate and L-methionine. J. biol. Chem. 222, 1025 (1956).

    PubMed  CAS  Google Scholar 

  • — Studies on the enzymatic utilization of amino acid adenylates: the formation of adenosine triphosphate. J. biol. Chem. 233, 601 (1958).

    PubMed  CAS  Google Scholar 

  • — and E. J. Ofengard: An enzymatic mechanism for linking amino acids to RNA. Proc. nat. Acad. Sci. (Wash.) 44, 78 (1958).

    Article  Google Scholar 

  • Berlin, N. I., C. Hewitt, and C. Lotz: Hippuric acid synthesis in man after the administration of glycine-α-C14. Biochem. J. 58, 498 (1954).

    PubMed  CAS  Google Scholar 

  • — and B. M. Tolbert: Metabolism of glycine-2-C14 in man: V. Further considerations of pulmonary excretion of C14O2. Proc. Soc. exp. Biol. (N. Y.) 88, 386 (1955).

    Article  CAS  Google Scholar 

  • — and J. H. Lawrence: Studies on glycine-2-C14 metabolism in man. I. The pulmonary excretion of C14O2. J. clin. Invest. 30, 73 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Bernlohr, R. W., and G. C. Webster: Transfer of oxygen-18 during amino acid activation. Arch. Biochem. 73, 276 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Berson, S. A., and R. S. Yalow: The distribution of I131 labeled human serum albumin introduced into ascitic fluid: analysis of the kinetics of a three compartment catenary transfer system in man and speculations on possible sites of degradation. J. clin. Invest. 33, 377 (1954).

    Article  PubMed  CAS  Google Scholar 

  • S. S. Schreiber, and J. Post: Tracer experiments with I131 labeled human serum albumin: Distribution and degradation studies. J. clin. Invest. 32, 746 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Bidinost, L. E.: Rate of formation of myosin in the muscle of the rat. J. biol. Chem. 190, 423 (1951).

    PubMed  CAS  Google Scholar 

  • Black, A. L., and M. Kleiber: The recovery of norleucine from casein after administration of norleucine-3-C14 to intact cows. J. Amer. chem. Soc. 77, 6082 (1955).

    Article  CAS  Google Scholar 

  • — and C. F. Baxter: Glucose as a precursor of amino acids in the intact dairy cow. Biochim. biophys. Acta 17, 346 (1955).

    Article  PubMed  CAS  Google Scholar 

  • — and A. H. Smith: Carbonate and fatty acids as precursors of amino acids in casein. J. biol. Chem. 197, 365 (1952).

    PubMed  CAS  Google Scholar 

  • — and D. N. Stewart: Acetate as a precursor of amino acids of casein in the intact dairy cow. Biochim. biophys. Acta 23, 54 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Blakley, R. L.: The interconversion of serine and glycine: Participation of pyridoxal phosphate. Biochem. J. 61, 315 (1955).

    PubMed  CAS  Google Scholar 

  • Blaschko, H., P. Holton, and G. H. S. Stanley: The formation of noradrenaline from dihydroxy phenyl serine. Brit. J. Pharmacol. 5, 431 (1950).

    PubMed  CAS  Google Scholar 

  • Bloch, K.: Some aspects of the metabolism of leucine and valine. J. biol. Chem. 155, 255 (1944).

    CAS  Google Scholar 

  • — Metabolism of 1(+)-arginine in the rat. J. biol. Chem. 165, 469 (1946a).

    PubMed  CAS  Google Scholar 

  • — Metabolism of 1(+)-arginine and synthesis of creatine in the pigeon. J. biol. Chem. 165, 477 (1946b).

    PubMed  CAS  Google Scholar 

  • — The synthesis of glutathione in isolated liver. J. biol. Chem. 179, 1245 (1949).

    PubMed  CAS  Google Scholar 

  • — and R. Schoenheimer: The biological precursors of creatine. J. biol. Chem. 138, 167 (1941).

    Google Scholar 

  • Block, R. J., and J. A. Sterol: Synthesis of sulfur amino acids from inorganic sulfate by ruminants. Proc. Soc. exp. Biol. (N. Y.) 73, 391 (1950).

    Article  CAS  Google Scholar 

  • Borek, E., L. Ponticorvo, and D. Rittenberg: Protein turnover in microorganisms. Proc. nat. Acad. Sci. (Wash.) 44, 369 (1958).

    Article  CAS  Google Scholar 

  • Borsook, H.: A rate governing reaction of protein synthesis. Nature (Lond.) 182, 1006 (1958).

    Article  CAS  Google Scholar 

  • C. L. Deasy, A. J. Haagen-Smit, G. Keighley, and P. H. Lowy: The degradation of L-lysine in guinea pig liver homogenate: Formation of α-aminoadipic acid. J. biol. Chem. 176, 1383 (1948).

    PubMed  Google Scholar 

  • — The degradation of α-aminoadipic acid in guinea pig liver homogenate. J. biol. Chem. 176, 1395 (1948).

    PubMed  CAS  Google Scholar 

  • — The uptake in vitro of C14-labeled glycine, L-leucine, and L-lysine by different components of guinea pig liver homogenate. J. biol. Chem. 184, 529 (1950).

    CAS  Google Scholar 

  • — Incorporation in vitro of labeled amino acids into proteins of rabbit reticulocytes. J. biol. Chem. 196, 669 (1952).

    PubMed  CAS  Google Scholar 

  • — and G. L. Keighley: The “continuing” metabolism of nitrogen in animals. Proc. roy. Soc. Lond. 118 B, 488 (1935).

    Google Scholar 

  • Boström, H., and B. Mansson: On the enzymatic exchange of the sulfate group of chondroitin sulfate in slices of cartilage. J. biol. Chem. 196, 483 (1953).

    Google Scholar 

  • Boulanger, P., and R. Osteux: Action de la L-aminoacid-deshydrogenase du foie de dindon sur les acides amines basiques. Biochim. biophys. Acta 21, 552 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Bouthillier, L. P., and M. Goldner: The metabolism of histamine-β-C14. Arch. Biochem. 44, 251 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Boyer, P. D., O. J. Koeppe, and W. W. Luchsinger: Direct oxygen transfer in enzymatic syntheses coupled to adenosine triphosphate degradation. J. Amer. chem. Soc. 78, 365 (1956).

    Google Scholar 

  • Braunstein, A. E., and G. Y. Vilenkina: Enzymatic formation of glycine from serine, threonine and other hydroxyamino acids in animal tissues. Doklady Akad. Nauk S.S.S.R. 66, 243 (1949).

    Google Scholar 

  • Bregoff, H. M., and C. C. Delwiche: The formation of choline and betaine in leaf discs of Beta vulgaris. J. biol Chem. 217, 819 (1955).

    PubMed  CAS  Google Scholar 

  • Bremer, J.: Species differences in the conjugation of free bile acids with taurine and glycine. Biochem. J. 63, 507 (1956a).

    PubMed  CAS  Google Scholar 

  • — Cholyl-S-CoA as an intermediate in the conjugation of cholic acid with taurine by rat liver microsomes. Acta chem. scand. 10, 56 (1956b).

    Article  CAS  Google Scholar 

  • — and U. Gloor: Studies on the conjugation of cholic acid with taurine in cell subfractions. Bile acids and steroids 23. Acta chem. scand. 9, 689 (1955).

    Article  Google Scholar 

  • Britten, R. J., R. B. Roberts, and E. F. French: Amino acid adsorption and protein synthesis in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 41, 863 (1955).

    Article  CAS  Google Scholar 

  • Brown, D. D., and M. W. Kies: Hydantoin-5-propionic acid: A new urinary metabolite of urocanic acid. J. Amer. chem. Soc. 80, 6147 (1958).

    Article  CAS  Google Scholar 

  • Brown, R. R., and J. M. Price: Quantitative studies on metabolites of tryptophan in the urine of the dog, cat, rat, and man. J. biol. Chem. 219, 985 (1956).

    PubMed  CAS  Google Scholar 

  • Brown, S. A., and R. V. Byerrum: The origin of the methyl carbon of nicotine formed by Nicotiana rustica L. J. Amer. chem. Soc. 74, 1523 (1952).

    Article  CAS  Google Scholar 

  • Buchanan, J. M., J. C. Sonne, and A. M. Delluva: II. The role of lactate, glycine, and carbon dioxide as precursors of the carbon chain and nitrogen atom 7 of uric acid. J. biol. Chem. 173, 81 (1948).

    PubMed  CAS  Google Scholar 

  • Burke, K. A., R. F. Nystrom, and B. C. Johnson: The role of methionine as a methyl donor for choline synthesis in the chick. J. biol. Chem. 188, 723 (1951).

    PubMed  CAS  Google Scholar 

  • Byerrum, R. U., J. H. Flokstra, L. J. Dewey, and C. D. Ball: Incorporation of formate and the methyl group of methionine into methoxyl groups of lignin. J. biol. Chem. 210, 633 (1954).

    PubMed  CAS  Google Scholar 

  • R. L. Hamill, and C. D. Ball: The incoporartion of glycine into nicotine in tobacco plant metabolism. J. biol. Chem. 210, 645 (1954).

    PubMed  CAS  Google Scholar 

  • Calvin, M.: The path of carbon in photosynthesis. Harvey Lect. Ser. 46, 218 (1950–1951).

    CAS  Google Scholar 

  • Campbell, L. L., Jr.: The oxidative degradation of glycine by a Pseudomonas. J. biol. Chem. 217, 669 (1955).

    PubMed  CAS  Google Scholar 

  • Campbell, R. M., D. F. Cuthbertson, C. M. Matthews, and A. S. Mcfarlane: Behaviour of 14C-and 131I-labelled plasma proteins in the rat. J. appl. rad. Isotopes 1, 66 (1956).

    Article  CAS  Google Scholar 

  • Canellakis, E. S., and H. Tarver: Studies on protein synthesis in vitro IV. Concerning the apparent uptake of methionine by particulate preparations from liver. Arch. Biochem. 42, 387 (1953).

    Article  PubMed  CAS  Google Scholar 

  • — The metabolism of methylmercaptan in the intact animal. Arch. Biochem. 42, 446 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Cantoni, G. L.: Methylation of nicotinamide with a soluble enzyme system from rat liver. J. biol. Chem. 189, 203 (1951a).

    PubMed  CAS  Google Scholar 

  • — Activation of methionine for transmethylation. J. biol. Chem. 189, 745 (1951b).

    PubMed  CAS  Google Scholar 

  • Cantoni, G. L., and J. Durell: Activation of methionine for transmethylation 2. The methionine activating enzyme: studies on the mechanism of the reaction. J. biol. Chem. 225, 1033 (1957).

    PubMed  CAS  Google Scholar 

  • — and P. L. Vignos, Jr.: Enzymatic mechanism of creatine synthesis. J. biol. Chem. 209, 647 (1954).

    PubMed  CAS  Google Scholar 

  • De Castro, F. T., R. R. Brown, and J. M. Price: The intermediary metabolism of tryptophan by cat and rat tissue preparations. J. biol. Chem. 228, 777 (1957).

    PubMed  CAS  Google Scholar 

  • Challenger, F.: Methyl mercaptan in relation to Foetor Hepaticus. Biochem. J. 59, 372 (1955).

    PubMed  CAS  Google Scholar 

  • Chang, M. L. W., and B. C. Johnson: Nicotinic acid metabolism 3. C14-carboxyl labeled nicotinamide and nicotinic acid in the chick. J. biol. Chem. 226, 799 (1956).

    Google Scholar 

  • Chao, F-C., C. C. Delwiche, and D. M. Greenberg: Biological precursors of glycine. Biochim. biophys. Acta 10, 103 (1953).

    Article  PubMed  CAS  Google Scholar 

  • — and H. Tarver: Breakdown of urea in the rat. Proc. Soc. exp. Biol. (N. Y.) 84, 406 (1953).

    Article  CAS  Google Scholar 

  • Chapeville, F., et P. Fromageot: La formation enzymatique de l’acide cystéine sulfinique à partir de sulfite. Biochim. biophys. Acta 14, 415 (1954).

    Article  PubMed  CAS  Google Scholar 

  • — Formation de sulfite, d’acide cystéique et de taurine à partir de sulfate par l’oeuf embryonne. Biochim. biophys. Acta 26, 538 (1957).

    Article  PubMed  CAS  Google Scholar 

  • A. Brigelhuber, et M. Henry: Utilization des sulfites par l’animal supérieur. Biochim. biophys. Acta 20, 351 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Christensen, H. N.: In McElroy and Glass, Amino Acid Metabolism. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • — Active transport, with special reference to the amino acids. Perspectives Biol. Med. 2, 228 (1959).

    Google Scholar 

  • H. M. Parker, and T. R. Riggs: Nonexchange of carboxyl oxygen in mammalian amino acid transport. J. biol. Chem. 233, 1485 (1958).

    PubMed  Google Scholar 

  • D. H. Thompson, S. Markle, and M. Sidky: Decreasing “Amino acid hunger” of human muscle with age. Proc. Soc. exp. Biol. (N. Y.) 99, 780 (1958).

    Article  Google Scholar 

  • Clark, C. T., H. Weissbach, and S. Udenfriend: 5-Hydroxytryptophan decarboxylase: Preparation and properties. J. biol. Chem. 210, 139 (1954).

    PubMed  CAS  Google Scholar 

  • Clark, I., and D. Rittenberg: The metabolic activity of the α-hydrogen atom of lysine. J. biol. Chem. 189, 521 (1951).

    PubMed  CAS  Google Scholar 

  • Clark, J. M., Jr.: Amino acid activation in plant tissues. J. biol. Chem. 233, 421 (1958).

    PubMed  CAS  Google Scholar 

  • Cohen, G. N., et D. B. Cowie: Remplacement total de la methionine par la selenomethionine dans les protéines d’Escherichia coli. C. R. Acad. Sci. (Paris) 244, 680 (1957).

    CAS  Google Scholar 

  • H. O. Halvorson, and S. Spiegelman: Effects of p-fluorophenylalanine on the growth and physiology of yeast. Wash. Acad. Sci. Symp. 1, 100 (1958).

    Google Scholar 

  • — et V. Rickenberg: Concentration spécifique reversible des amino acides chez Escherichia coli. Ann. Inst. Pasteur 91, 693 (1956).

    CAS  Google Scholar 

  • Cohen, S.: Plasma protein distribution and turnover in the female baboon. Biochem. J. 64, 286 (1956).

    PubMed  CAS  Google Scholar 

  • — and A. H. Gordon: Catabolism of plasma albumin by the perfused rat liver. Biochem. J. 70, 544 (1958).

    PubMed  Google Scholar 

  • R. C. Holloway, C. Matthews, and A. S. Mcfarlane: Distribution and elimination of 131I-and 14C-labelled plasma proteins in the rabbit. Biochem. J. 62, 143 (1956).

    PubMed  Google Scholar 

  • Coon, M. J.: The metabolic fate of the isopropyl group of leucine. J. biol. Chem. 187, 71 (1950).

    PubMed  CAS  Google Scholar 

  • — and N. S. B. Abrahamsen: The relation of α-methylbutyrate to isoleucine metabolism I. Acetoacetate formation. J. biol. Chem. 195, 805 (1952a).

    PubMed  Google Scholar 

  • — and G. S. Greene: The relation of α-methylbutyrate to isoleucine metabolism. J. biol. Chem. 199, 75 (1952b).

    PubMed  Google Scholar 

  • — and S. Gurin: Studies on the conversion of radioactive leucine to acetoacetate. J. biol. Chem. 180, 1159 (1949).

    PubMed  Google Scholar 

  • Cornelius, C. E., A. L. Black, and M. Kleiber: The use of glycine-1-C14 in the measurement of serum protein turnover rates in dairy cows. Amer. J. vet. Res. 20, 44 (1959).

    PubMed  CAS  Google Scholar 

  • Cowgill, R. W., and B. Freeburg: The metabolism of methylhistidine compounds in animals. Arch. Biochem. 71, 466 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Cowie, D. B., E. T. Bolton, and M. K. Sands: Sulfur metabolism in Escherichia coli 2. Competitive utilization of labeled and non labeled sulfur Compounds. J. Bact. 62, 63 (1951).

    PubMed  CAS  Google Scholar 

  • — and G. N. Cohen: Biosynthesis in Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. biophys. Acta 26, 252 (1957).

    Article  PubMed  CAS  Google Scholar 

  • — and B. P. Walton: Kinetics of formation and utilization of metabolic pools in the biosynthesis of protein and nucleic acids. Biochim. biophys. Acta 21, 211 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Cunningham, L. W., and B. J. Nuenke: Physical and chemical studies of a limited reaction of iodine with proteins. J. biol. Chem. 234, 1447 (1959).

    PubMed  CAS  Google Scholar 

  • Cutinelli, C., G. Ehrensvärd, L. Reio, E. Saluste, and R. Stjernholm: Acetic acid metabolism in Escherichia coli 1. General features, and the metabolic connection between acetate and glutamic acid aspartic acid, glycine, alanine, valine, serine and threonine. Acta chem. scand. 5, 353 (1951).

    Article  CAS  Google Scholar 

  • D’Addabbo, Von A., and E. Kallee: 131I-Serumproteine und Schilddrüse. Z. Naturforsch. 14b, 240 (1959).

    Google Scholar 

  • Dalgliesch, C. E., and H. Tabechian: Comparison of the metabolism of 14C-labelled L-phenylalanine, L-tyrosine and L-tryptophan in the rat. Biochem. J. 62, 625 (1956).

    Google Scholar 

  • Davie, E. W., V. V. Koningsberger, and F. Lipmann: The isolation of a tryptophan-activat-ing enzyme from pancreas. Arch. Biochem. 65, 21 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Davis, B. D.: Aromatic biosynthesis I. The role of shikimic acid. J. biol. Chem. 191, 315 (1951).

    PubMed  CAS  Google Scholar 

  • — Intermediates in amino acid biosynthesis. Advanc. Enzymol. 16, 247 (1955).

    CAS  Google Scholar 

  • Davis, J. W., and G. D. Novelli: The activation of amino acids in extracts of pea seedlings. Arch. Biochem. 75, 299 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Delluva, A. M., and D. W. Wilson: A study with isotopic carbon of the assimilation of carbon dioxide in the rat. J. biol. Chem. 166, 739 (1946).

    PubMed  CAS  Google Scholar 

  • Dewey, L. J., R. U. Byerrum, and C. D. Ball: The origin of the methyl group of nicotine through transmethylation. J. Amer. chem. Soc. 76, 3997 (1954).

    Article  CAS  Google Scholar 

  • Dewey, D. L., and E. Work: Diaminopimelic acid and lysine. Nature (Lond.) 169, 533 (1952).

    Article  CAS  Google Scholar 

  • Dimant, E., E. Landsberg, and I. M. London: The metabolic behavior of reduced glutathione in human and avian erythrocytes. J. biol. Chem. 213, 769 (1955).

    PubMed  CAS  Google Scholar 

  • Dintzis, R. Z., and A. B. Hastings: The effect of antibiotics on urea breakdown in mice. Proc. nat. Acad. Sci. (Wash.) 39, 571 (1953).

    Article  CAS  Google Scholar 

  • Dische, R., and D. Rittenberg: The metabolism of phenylalanine-4-C14. J. biol. Chem. 211, 199 (1954).

    PubMed  CAS  Google Scholar 

  • Dixon, F. J., P. H. Maurer, and M. P. Deichmiller: Half-lives of homologous serum albumins in several species. Proc. Soc. exp. Biol. (N. Y.) 83, 287 (1953).

    Article  CAS  Google Scholar 

  • D. W. Talmage, P. H. Maurer, and M. P. Deichmiller: The half-life of homologous gamma globulin (antibody) in several species. J. exp. Med. 96, 313 (1952).

    Article  CAS  Google Scholar 

  • Doctor, V. M., and J. Awapara: The incorporation of serine-3-C14 into citrovorum factor. J. biol. Chem. 220, 161 (1956).

    PubMed  CAS  Google Scholar 

  • T. L. Patton, and J. Awapara: Incorporation of serine-3-C14 and formaldehyde-C14 into methionine in vitro 1. Role of folic acid. Arch. Biochem. 67, 404 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Downey, P. F., and S. Black: A new naturally occurring isomer ofβmethyl lanthionine. J. biol. Chem. 228, 171 (1957).

    PubMed  CAS  Google Scholar 

  • Dreyfus, J-C., G. Shapira, et J. Kruh: Sur la durée de vie des protéines musculaires. C. R. Soc. Biol. (Paris) 150, 1145 (1956).

    CAS  Google Scholar 

  • Drinker, C. K.: Extravascular protein and the lymphatic system. Ann. N. Y. Acad. Sci. 46, 807 (1946).

    Article  CAS  Google Scholar 

  • Dubeck, M., and S. Kirkwood: The origin of the O-and N-methyl groups of the alkaloid ricinine. J. biol. Chem. 199, 307 (1952).

    PubMed  CAS  Google Scholar 

  • Durell, J., D. G. Anderson, and G. L. Cantoni: The synthesis of methionine by enzymic transmethylation 1. Purification and properties of homocysteine methylpherase. Biochim. biophys. Acta 26, 270 (1957a).

    Article  PubMed  CAS  Google Scholar 

  • — and J. M. Sturtevant: The synthesis of methionine by enzymic transmethylation 2. Enthalpy change in the methyl-transfer from dimethylacetothetin. Biochim. biophys. Acta 26, 282 (1957b).

    Article  PubMed  CAS  Google Scholar 

  • Du Vigneaud, V.: Migration of the methyl group in the body. Proc. Amer. Philos. Soc. 92, 127 (1948).

    CAS  Google Scholar 

  • J. P. Chandler, M. Cohn, and G. B. Brown: The transfer of the methyl group from methionine to choline and creatine. J. biol. Chem. 134, 787 (1940).

    Google Scholar 

  • — and A. W. Moyer: The inablility of creatine and creatinine to enter into transmethylation in vivo. J. biol. Chem. 139, 917 (1941).

    Google Scholar 

  • — and M. Cohn: The utilization of the methyl groups of choline in the biological synthesis of methionine. J. biol. Chem. 149, 519 (1943).

    Google Scholar 

  • S. Simmonds, A. W. Moyer, and M. Cohn: The role of dimethyl-and monomethyl-aminoethanol in transmethylation reactions in vivo. J. biol. Chem. 164, 603 (1946).

    Google Scholar 

  • M. Cohn, J. P. Chandler, J. R. Schenck, and S. Simmonds: The utilization of the methyl group of methionine in the biological synthesis of choline and creatine. J. biol. Chem. 140, 625 (1941).

    Google Scholar 

  • J. R. Rachele, and A. M. White: A crucial test of transmethylation in vivo by intramolecular isotopic labeling. J. Amer. chem. Soc. 78, 5131 (1936).

    Article  Google Scholar 

  • C. Ressler, and J. R. Rachele: The biological synthesis of “labile methyl groups”. Science 112, 267 (1950c).

    Article  PubMed  Google Scholar 

  • Du Vigneaud, V., S. Simmonds, J. P. Chandler, and M. Cohn: Synthesis of labile methly groups in the white rat. J. biol. Chem. 159, 755 (1945).

    CAS  Google Scholar 

  • — A further investigation of the role of betaine in transmethylation reactions. J. biol. Chem. 165, 639 (1946).

    PubMed  CAS  Google Scholar 

  • Du Vigneaud, V., S. Simmonds, and M. Cohn: A further investigation of the ability of sarcosine to serve as a labile methyl donor. J. biol. Chem. 166, 47 (1946).

    PubMed  CAS  Google Scholar 

  • — and W. G. Verly: Incorporation in vivo of C14 from labeled methanol into the methyl groups of choline. J. Amer. chem. Soc. 72, 1049 (1950a).

    Article  CAS  Google Scholar 

  • — and J. E. Wilson: Incorporation of the carbon of formaldehyde and formate into the methyl groups of choline. J. Amer. chem. Soc. 72, 2819 (1950b).

    Article  CAS  Google Scholar 

  • Dziewiatkowski, D.D.: Conversion of sulfide sulfur to cystine sulfur in the rat, with use of radioactive sulfur. J. biol. Chem. 164, 165 (1946).

    PubMed  CAS  Google Scholar 

  • — Utilization of sulfate sulfur in rat for the synthesis of cystine. J. biol. Chem. 207, 181 (1954).

    PubMed  CAS  Google Scholar 

  • — Some aspects of the metabolism of chondroitin sulfate-S35 in the rat. J. biol. Chem. 223, 239 (1956).

    PubMed  CAS  Google Scholar 

  • Edlbacher, S.: Histidase und Urocaninase. Ergebn. Enzymforsch. 9, 131 (1943).

    CAS  Google Scholar 

  • De Eds, F., A. N. Booth, and F. T. Jones: Methylation and dehydroxylation of phenolic compounds by rats and rabbits. J. biol. Chem. 225, 615 (1957).

    CAS  Google Scholar 

  • Ehrensvärd, G.: Amino acid metabolism in Torulopsis utilis. Cold Spr. Harb. Symp. quant. Biol. 13, 81 (1948).

    Article  Google Scholar 

  • — Metabolism of amino acids and proteins. Ann. Rev. Biochem. 24, 275 (1955).

    Article  PubMed  Google Scholar 

  • — Biosynthesis of aromatic ring systems from C3 and C4 fragments. Chem. Soc. Symp. p. 17 (1958).

    Google Scholar 

  • — The formation of tyrosine in Escherichia coli and Neurospora crassa, grown on isotope-labeled acetate as the sole source of carbon. Ark. Kemi. 5, 229 (1953).

    Google Scholar 

  • L. Reio, and E. Saluste: On the origin of the basic amino acids. Acta chem. scand. 3, 645 (1949).

    Article  Google Scholar 

  • — and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis III. Metabolic connection between acetic acid and various amino acids. J. biol. Chem. 189, 93 (1951).

    PubMed  Google Scholar 

  • Elder, N. A., and R. A. Mortensen: The incorporation of labeled glycine into erythrocyte glutathione. J. biol. Chem. 218, 261 (1956).

    PubMed  CAS  Google Scholar 

  • Eljarn, L.: The conversion of cystinamine to taurine in rat, rabbit, and man. J. biol. Chem. 206, 483 (1954).

    Google Scholar 

  • — and J. Bremer: The conjugation of 2-aminoethane sulfinic acid (hypotaurine) with cholic acid by rat liver microsomes. Acta chem. scand. 10, 1046 (1956).

    Article  Google Scholar 

  • A. Phil, and A. Sverdrup: The synthesis of S35 labeled hypotaurine and its metabolism in rats and mice. J. biol. Chem. 223, 353 (1956).

    Google Scholar 

  • Elliott, D. F., and A. Neuberger: The irreversibility of the deamination of threonine in the rabbit and rat. Biochem. J. 46, 207 (1950).

    PubMed  CAS  Google Scholar 

  • Elwyn, D., and D. B. Sprinson: The relation of folic acid to the metabolism of serine. J. biol. Chem. 184, 475 (1950).

    PubMed  CAS  Google Scholar 

  • A. Weissbach, S. S. Henry, and D. B. Sprinson: The biosynthesis of choline from serine and related compounds. J. biol. Chem. 213, 281 (1955).

    PubMed  CAS  Google Scholar 

  • Ericson, L. E., J. N. Williams, Jr., and C. A. Elvehjem: Studies on partially purified betaine-homocysteine transmethylase of liver. J. biol. Chem. 212, 537 (1955).

    PubMed  CAS  Google Scholar 

  • Evans, E. A., and L. Slotin: The role of carbon dioxide in the synthesis of urea in rat liver slices. J. biol. Chem. 136, 805 (1940).

    CAS  Google Scholar 

  • Feinberg, R. H., and D. M. Greenberg: Studies of urocanic acid. Nature (Lond.) 181, 897 (1958).

    Article  CAS  Google Scholar 

  • Fellman, J. H., and M. K. Devlin: Concentration and hydroxylation of free phenylalanine in adrenal glands. Biochim. biophys. Acta, 28, 328 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Fine, J., and A. M. Seligman: Traumatic shock IV. A study of the problem of the lost plasma in hemorrhagic shock by the use of radioactive plasma proteins. J. clin. Invest. 22, 285 (1943).

    Article  PubMed  CAS  Google Scholar 

  • Fink, R. M., T. Enns, C. P. Kimball, H. E. Silberstein, W. F. Ball, S. G. Madden, G. H. Whipple: Plasma protein metabolism-Normal and associated with shock. Observations using protein labeled by heavy nitrogen in lysine. J. exp. Med. 80, 455 (1944).

    Article  PubMed  CAS  Google Scholar 

  • Flavin, M., and C. B. Anfinsen: The isolation and characterization of cysteic acid peptides in studies on ovalbumin synthesis. J. biol. Chem. 211, 375 (1954).

    PubMed  CAS  Google Scholar 

  • Fones, W. S., T. P. Waalkes, and J. White: Conversion of L-valine to glucose and glycogen in the rat. Arch. Biochem. 32, 89 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Forker, L. L., I. L. Chaikoff, and W. O. Reinhardt: Circulation of plasma proteins: Their transport to lymph. J. biol. Chem. 197, 625 (1952).

    PubMed  CAS  Google Scholar 

  • Forssberg, A., and L. Revesz: A study on the metabolic state of proteins in the cells of two ascitic tumors. Biochim. biophys. Acta 25, 165 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Fournier, J. P., and L. P. Bouthillier: Additional evidence on the enzymatic transformation of histidine to glutamic acid. J. Amer. chem. Soc. 74, 5210 (1952).

    Article  CAS  Google Scholar 

  • Franz, I. D., Jr., R. B. Loftfield, and W. W. Miller: Incorporation of C14 from carboxyl-labeled DL-alanine into the proteins of liver slices. Science 106, 544 (1947).

    Article  Google Scholar 

  • Freeman, T., A. H. Gordon, and J. H. Humphrey: Distinction between catabolism of native and denatured proteins by the isolated perfused liver after carbon loading. Brit. J. exp. Path. 39, 459 (1958).

    PubMed  CAS  Google Scholar 

  • C. M. E. Matthews, A. S. Mcfarlane, H. Bennhold, and E. Kaller: Albumin labeled with iodine-131 in an analbuminaemic subject. Nature (Lond.) 183, 606 (1959).

    Article  CAS  Google Scholar 

  • Friedberg, F., H. Tarver, and D. M. Greenberg: The distribution pattern of sulfur-labeled methionine in the protein and the free amino acid fraction of tissues after intravenous administration. J. biol. Chem. 173, 355 (1948).

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and J. P. Folkes: The assimilation of amino acids by bacteria 18. The incorporation of glutamic acid into the protein fraction of Staphyloccocus aureus. Biochem. J. 55, 721 (1953).

    PubMed  CAS  Google Scholar 

  • C. J. Shepherd, and J. P. Folkes: Incorporation of amino acids by disrupted Staphylococcal cells. Nature (Lond.) 182, 592 (1958).

    Article  CAS  Google Scholar 

  • Gehrmann, G., K. Lauenstein, and K. I. Altman: Evidence for non-uniform labeling of glycine residues in rat collagen. Arch. Biochem. 62, 509 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Gerdes, K., u. W. Maurer: Messung zur Lebensdauer von Fibrinogen beim Menschen und beim Kaninchen. Biochem. Z. 328, 522 (1957).

    PubMed  CAS  Google Scholar 

  • Gholson, R. K., and L. M. Henderson: The formation of acetate from the benzene ring of tryptophan. Biochim. biophys. Acta 30, 424 (1958).

    Article  PubMed  CAS  Google Scholar 

  • G. A. Mourkides, R. J. Hill, and R. E. Koeppe: The metabolism of DL-tryptophan-α-C14 by the rat. J. biol. Chem. 234, 96 (1959).

    PubMed  CAS  Google Scholar 

  • D. R. Rao, L. M. Henderson, R. J. Hill, and R. E. Koeppe: The metabolism of DL-tryptophan-7α-C14 by the rat. J. biol. Chem. 230, 179 (1958).

    PubMed  CAS  Google Scholar 

  • Giatonde, M. K., and D. Richter: The uptake of 35S into rat tissues after injection of [35S] methionine. Biochem. J. 59, 690 (1950).

    Google Scholar 

  • Gilvarg, C.: The enzymatic synthesis of diaminopimelic acid. J. biol. Chem. 233, 1501 (1958).

    PubMed  CAS  Google Scholar 

  • — and K. Bloch: The utilization of acetic acid for amino acid synthesis in yeast. J. biol. Chem. 193, 339 (1951).

    PubMed  Google Scholar 

  • — Utilization of glucose-1-C14 for the synthesis of phenylalanine and tyrosine. J. biol. Chem. 199, 689 (1952).

    PubMed  CAS  Google Scholar 

  • Gitlin, D.: Distribution dynamics of circulating and extravascular-I131 plasma proteins. Ann. N. Y. Acad. Sci. 70, 122 (1957).

    Article  PubMed  CAS  Google Scholar 

  • D. G. Cornwell, D. Nakasato, J. L. Oncley, W. L. Hughes, Jr., and C. A. Janeway: Studies on the metabolism of plasma proteins in the nephrotic syndrome II. The lipoproteins. J. clin. Invest. 37, 171 (1958).

    Google Scholar 

  • — and C. A. Janeway: The dynamic equilibrium between circulating and extra vascular plasma proteins. Science 118, 301 (1953).

    Article  PubMed  Google Scholar 

  • Goldstein, M., A. J. Friedhoff, and C. Simmons: Metabolic pathways of 3-hydroxytyramine. Biochim. biophys. Acta 33, 572 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Goldsworthy, P. D., and W. Volwiler: Comparative metabolic fate of chemically (I131) and biosynthetically (C14 or S35-) labeled proteins. Ann. N. Y. Acad. Sci. 70, 26 (1957).

    Article  PubMed  CAS  Google Scholar 

  • — Mechanism of protein turnover studied with cystine-S35, lysine-C14 doubly labeled plasma proteins of the dog. J. biol. Chem. 230, 817 (1958).

    PubMed  CAS  Google Scholar 

  • T. Winnick, and D. M. Greenberg: Distribution of C14 in glycine and serine of liver protein following the administration of labeled glycine. J. biol. Chem. 180, 341 (1949).

    PubMed  CAS  Google Scholar 

  • Goodwin, L. D., and J. M. Kinney: Studies on one-carbon metabolism in man. J. biol. Chem. 230, 487 (1958).

    PubMed  CAS  Google Scholar 

  • Gordon, A. H.: The use of the isolated perfused liver to detect alterations to plasma proteins, Biochem. J. 66, 255 (1957).

    PubMed  CAS  Google Scholar 

  • Grau, C. R., and R. Steele: Phenylalanine and tyrosine utilization in normal and phenylalanine deficient young mice. J. Nutr. 53, 59 (1954).

    PubMed  CAS  Google Scholar 

  • Green, H., and H. S. Anker: Kinetics of amino acid incorporation into serum proteins. J. gen. Physiol. 38, 283 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, D. M.: Chemical pathways of metabolism vol. 2. New York: Academic Press 1954.

    Google Scholar 

  • — and E. N. Sassenrath: Non conversion of arabinose and ribose to glycine. Biochim. biophys. Acta 15, 150 (1954).

    Article  PubMed  Google Scholar 

  • Greenberg, G. R., L. Jaenicke, and M. Silverman: Occurrence of N10-formyl tetrahydro-folic acid and its general involvement in transformylation. Biochim. biophys. Acta 17, 588 (1955).

    Article  Google Scholar 

  • Grinstein, M., M. D. Kamen, and C. V. Moore: Observations on the utilization of glycine in the biosynthesis of hemoglobin. J. biol. Chem. 174, 767 (1948).

    PubMed  CAS  Google Scholar 

  • Grisolia, S., R. H. Burris, and P. P. Cohen: Carbon dioxide and ammonia fixation in the biosynthesis of citrulline. J. biol. Chem. 191, 203 (1951).

    PubMed  CAS  Google Scholar 

  • Grisolia, S., and P. P. Cohen: Study of carbon dioxide fixation in the synthesis of citrulline. J. biol. Chem. 176, 929 (1948).

    PubMed  CAS  Google Scholar 

  • — Catalytic role of glutamate derivatives in citrulline biosynthesis. J. biol. Chem. 204, 753 (1953).

    PubMed  CAS  Google Scholar 

  • Grobbelaar, N., and F. C. Steward: Pipecolic acid in Phaseolus vulgaris: Evidence on its derivation from lysine. J. Amer. chem. Soc. 75, 4341 (1953).

    Article  CAS  Google Scholar 

  • Gross, D., and H. Tarver: Studies on ethionine IV. The incorporation of ethionine into the proteins of tetrahymena. J. biol. Chem. 217, 169 (1955).

    PubMed  CAS  Google Scholar 

  • Gross, S. R.: The enzymatic conversion of 5-dehydroshikimic acid to protocatechuic acid. J. biol. Chem. 233, 1146 (1958).

    PubMed  CAS  Google Scholar 

  • Grossman, C. M., R. J. Winzler, and J. D. Hauschildt: The conversion of glycine to serine by human liver tissue. Science 118, 330 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Grossowicz, N., and Y. S. Halpern: Enzymatic transfer and hydrolysis involving glutamine and asparagine. J. biol. Chem. 228, 643 (1957).

    PubMed  CAS  Google Scholar 

  • Gurin, S., and A. M. Delluva: The biological synthesis of radioactive adrenalin from phenylalanine. J. biol. Chem. 170, 545 (1947).

    CAS  Google Scholar 

  • Gutmann, H. R., and J. L. Wood: A note on the acetylation of sulfur amino acids by liver and kidney. J. biol. Chem. 189, 473 (1951).

    PubMed  CAS  Google Scholar 

  • Halvorson, H.: Intracellular protein and nucleic acid turnover in resting yeast cells. Biochim. biophys. Acta 27, 255 (1958).

    Article  PubMed  CAS  Google Scholar 

  • — Studies on protein and nucleic acid turnover in growing cultures of yeast. Biochim. biophys. Acta 27, 267 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Halvorson, H. O., et G. N. Cohen: Incorporation des amino-acides endogènes et exogènes dans les protéines de la levure. Ann. Inst. Pasteur 95, 73 (1958).

    CAS  Google Scholar 

  • Hancock, R., and J. T. Park: Cell-wall synthesis by Staphylococcus aureus in the presence of chloramphenicol. Nature (Lond.) 181, 1050 (1958).

    Article  CAS  Google Scholar 

  • Hankes, L. V., and L. M. Henderson: The metabolism of carboxyl-labeled 3-hydroxy-anthranilic acid in the rat. J. biol. Chem. 225, 349 (1957).

    PubMed  CAS  Google Scholar 

  • — and I. H. Segel: Synthesis and metabolism of tritium-labeled DL-kynurenine. Proc. Soc. exp. Biol. (N. Y.) 97, 568 (1958).

    Article  CAS  Google Scholar 

  • — Synthesis and metabolism of quinolinic acid ring labeled with tritium. Proc. Soc. exp. Biol. (N. Y.) 94, 447 (1957).

    Article  CAS  Google Scholar 

  • — and M. Urivetsky: Mammalian conversion of C14 carboxyl labeled 3-hydroxyanthranilic acid into N’-methyl nicotinamide. Arch. Biochem. 52, 484 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Harmon, D. H., M. R. Kirk, and B. M. Tolbert: The effect of cancer and fasting on oxidation of labeled acetate, glucose and glycine to C14O2. Amer. J. Physiol. 196, 265 (1959).

    PubMed  CAS  Google Scholar 

  • Harms, W. S., and T. Winnick: Further studies of the biosynthesis of carnosine and anserine in vertebrates. Biochim. biophys. Acta 15, 480 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Hayaishi, O., S. Rothberg, A. H. Mehler, and Y. Saito: Studies on oxygenases. Enzymatic formation of kynurenine from tryptophan. J. biol. Chem. 229, 889 (1957).

    PubMed  CAS  Google Scholar 

  • — and R. Y. Stanier: The bacterial oxidation of tryptophan III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J. Bact. 62, 691 (1951).

    PubMed  CAS  Google Scholar 

  • H. Tabor, and T. Hayaishi: Enzymatic formation of formylaspartic acid from imidazole acetic acid. J. Amer. chem. Soc. 76, 5570 (1954).

    Article  CAS  Google Scholar 

  • — N-Formimino-L-aspartic acid as an intermediate in the enzymatic conversion of imidazole acetic acid to formyl aspartic acid. J. biol. Chem. 227, 161 (1957).

    PubMed  CAS  Google Scholar 

  • Hecht, L. L, M. L. Stephenson, and P. C. Zamecnik: Dependence of amino acid binding to soluble ribonucleic acid on cytidine triphosphate. Biochim. biophys. Acta 29, 460 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger, C., E. P. Abraham, and S. Lepkovsky: Tryptophan metabolism 2. Concerning the mechanism of the mammalian conversion of tryptophan into nicotinic acid. J. biol. Chem. 179, 151 (1949b).

    PubMed  CAS  Google Scholar 

  • M. E. Gullberg, A. F. Morgan, and S. Lepkovsky: Tryptophan metabolism 1. Concerning the mechanism of the mammalian conversion of tryptophan into kynurenine, kynurenic acid, and nicotinic acid. J. biol. Chem. 179, 143 (1949a).

    PubMed  CAS  Google Scholar 

  • Heimberg, M., and S. F. Velick: The synthesis of aldolase and Phosphorylase in rabbits. J. biol. Chem. 208, 725 (1954).

    PubMed  CAS  Google Scholar 

  • Heinz, E.: Kinetic studies on the “influx” of glycine-1-C14 into the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. 211, 781 (1954).

    PubMed  CAS  Google Scholar 

  • — The exchange ability of glycine accumulated by carcinoma cell. J. biol. Chem. 225, 305 (1957).

    PubMed  CAS  Google Scholar 

  • — and H. A. Mariani: Concentration work and energy dissipation in active transport of glycine into carcinoma cells. J. biol. Chem. 228, 97 (1957).

    PubMed  Google Scholar 

  • — and P. M. Walsh: Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells. J. biol. Chem. 233. 1488 (1958).

    PubMed  Google Scholar 

  • Henderson, L. M., and L. V. Hankes: The metabolism of DL-tryptophan-3a, 7a, 7-C14 and DL-tryptophan-α-C14 in the rat. J. biol. Chem. 222, 1069 (1956).

    PubMed  CAS  Google Scholar 

  • Hendler, R. W.: Possible involvement of lipids in protein synthesis. Science 128, 143 (1958).

    Article  PubMed  CAS  Google Scholar 

  • — and C. B. Anfinsen: The incorporation of carbon dioxide into both carboxyl groups of glutamic acid. J. biol. Chem. 209, 55 (1954).

    PubMed  Google Scholar 

  • Henriques, O. B., S. B. Hgho, and A. Neuberger: Quantitative aspects of glycine metabolism in the rabbit. Biochem. J. 60, 409 (1955).

    PubMed  CAS  Google Scholar 

  • Hevesy, G.: Radioactive indicators, New York, Interscience, p. 303, 1948.

    Google Scholar 

  • Hoagland, M. B.: An enzymatic mechanism for amino acid activation in animal tissues. Biochim. biophys. Acta 16, 288 (1955).

    Article  PubMed  CAS  Google Scholar 

  • — Enzymatic reactions between amino acids and ribonucleic acids as intermediate steps in protein synthesis, IV. Internat. Congr. Biochem. (Vienna). Symp. VIII (2), 1958.

    Google Scholar 

  • E. B. Keller, and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. biol. Chem. 218, 345 (1956).

    PubMed  Google Scholar 

  • P. C. Zamecnik, N. Sharon, F. Lipmann, M. P. Stulberg, and P. D. Boyer: Oxygen transfer to AMP in the enzymatic synthesis of the hydroxamate of tryptophan. Biochim. biophys. Acta 26, 215 (1957).

    Article  PubMed  Google Scholar 

  • — and M. L. Stephenson: Intermediate reactions in protein biosynthesis. Biochim. biophys. Acta 24, 215 (1957).

    Article  PubMed  Google Scholar 

  • Hobbs, D. C., and R. E. Koeppe: The metabolism of glutaric acid-3-C14 by the intact rat. J. biol. Chem. 230, 655 (1958).

    PubMed  CAS  Google Scholar 

  • Hogness, D. S., M. Cohn, and J. Monod: Studies on the induced synthesis of ß-galactosidase in Escherichia coli: The kinetics and mechanism of sulfur incorporation. Biochim. biophys. Acta 16, 99 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Högström, G.: Isotope distribution in amino acids from regenerating rat liver after administration of labeled acetate. Acta chem. scand. 7, 45 (1951).

    Article  Google Scholar 

  • Holley, R. W.: An alanine dependent, ribonuclease-inhibited conversion of AMP to ATP, and its possible relation to protein synthesis. J. Amer. chem. Soc. 79, 658 (1957).

    Article  CAS  Google Scholar 

  • Horner, W. H., and C. G. Mackenzie: The biological formation of sarcosine. J. biol. Chem. 187, 15 (1950).

    PubMed  CAS  Google Scholar 

  • I. Siegel, and J. Bruton: The synthesis of arginine from guanidino acetic acid. J. biol. Chem. 220, 861 (1956).

    PubMed  CAS  Google Scholar 

  • Hughes, W. L.: The chemistry of iodination. Ann. N. Y. Acad. Sci. 70, 3 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Hultin, T., and G. Beskow: The incorporation of C14-leucine into rat liver protein in vitro visualized as a two step reaction. Exp. cell. Res. 11, 665 (1956).

    Google Scholar 

  • Humphrey, J. H., A. Neuberger, and D. J. Perkins: Observations on the presence of plasma proteins in skin and tendon. Biochem. J. 66, 390 (1957).

    PubMed  CAS  Google Scholar 

  • Hunnekens, F.M., M. J. Osborn, and H.R. Whiteley: Folic acid coenzymes. Metabolic reactions involving “active formate” and “active formaldehyde” are surveyed. Science 128, 120 (1958).

    Article  Google Scholar 

  • Iber, F. L., K. Nassau, I. C. Plough, F. M. Berger, W. H. Meroney and K. Fremont-Smith: The use of radioiodinated albumin in metabolic studies. Effects of level of dietary protein and L-triiodothyronine on the catabolism of radioiodinated human serum albumin. J. clin. Invest. 37, 1442 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Ichihara, A., and D. M. Greenberg: Pathway of serine formation from carbohydrate in rat liver. Proc. nat. Acad. Sci. (Wash.) 41, 605 (1955).

    Article  CAS  Google Scholar 

  • — Further studies on the pathway of serine formation from carbohydrate. J. biol. Chem. 224, 331 (1957).

    PubMed  CAS  Google Scholar 

  • Johnston, R. B., and K. Bloch: The synthesis of glutathione in cell free pigeon liver extracts. J. biol. Chem. 179, 493 (1949).

    PubMed  CAS  Google Scholar 

  • — Enzymatic synthesis of glutathione. J. biol. Chem. 188, 221 (1951).

    PubMed  CAS  Google Scholar 

  • Jones, M. E., L. Spector, and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. chem. Soc. 77, 819 (1955).

    Article  CAS  Google Scholar 

  • Jonsson, S., and W. A. Mosher: The in vitro synthesis of labile methyl groups. J. Amer. chem. Soc. 72, 3316 (1950).

    Article  CAS  Google Scholar 

  • Kao, K. Y. T., and R. J. Boucek: Incorporation and conversion of lysine-2-C14 in rat biopsy connective tissue. Proc. Soc. exp. Biol. (N. Y.) 98, 526 (1958).

    Article  CAS  Google Scholar 

  • Karjala, S. A., B. Turnquest, 3rd and R. W. Schayer: Urinary metabolites of radioactive histamine. J. biol. Chem. 219, 9 (1956).

    PubMed  CAS  Google Scholar 

  • Katz, J., and coworkers: Personal communication.

    Google Scholar 

  • Keller, E. B., R. A. Boissonnas, and V. Du Vigneaud: The origin of the methyl group of epinephrine. J. biol. Chem. 183, 627 (1950).

    CAS  Google Scholar 

  • J. R. Rachele, and V. Du Vigneaud: A study of transmethylation with methionine containing deuterium and C14 in the methyl group. J. biol. Chem. 177, 733 (1949).

    PubMed  CAS  Google Scholar 

  • J. L. Wood, and V. Du Vigneaud: An investigation of transmethylation from N’-methyl-nicotinamide. Proc. Soc. exp. Biol. (N. Y.) 67, 182 (1948).

    Article  CAS  Google Scholar 

  • Kikuchi, G., A. Kumar, P. Talmage, and D. Shemin: The enzymatic synthesis of δ-amino-levulinic acid. J. biol. Chem. 233, 1214 (1958).

    PubMed  CAS  Google Scholar 

  • Kikuchi, G., D. Shemin, and B. J. Buchmann: The enzymatic synthesis of δ-aminole-vulinic acid. Biochim. biophys. Acta 28, 219 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Kingdon, N. S., L. T. Webster, Jr., and E. W. Davie: Enzymatic formation of adenyl tryptophan: isolation and identification. Proc. nat. Acad. Sci. (Wash.) 44, 757 (1958).

    Article  CAS  Google Scholar 

  • Kinnory, D. S., Y. Takeda, and D. M. Greenberg: Isotope studies on the metabolism of valine. J. biol. Chem. 212, 385 (1955).

    PubMed  CAS  Google Scholar 

  • Kipnis, D. M., and M. W. Noall: Stimulation of amino acid transport by insulin in the isolated rat diaphragm. Biochim. biophys. Acta 28, 226 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Kirk, M. R., S. Lepkovsky, and B. M. Tolbert: Effect of feeding on C14O2 respiration of labeled metabolites in rats, Metabolism, in press (1959).

    Google Scholar 

  • Kirkwood, S., and L. Marion: The biogenesis of alkaloids 2. Origin of the methyl groups of hordenine and choline. Canadian J. Chem. 29, 30 (1951).

    Article  CAS  Google Scholar 

  • Kirshner, N.: Pathway of noradrenaline formation from DOPA. J. biol. Chem. 226, 821 (1957).

    PubMed  CAS  Google Scholar 

  • McC. Goodall, and L. Rosen: Metabolism of DL-adrenaline-2-C14 in the human. Proc. Soc. exp. Biol. (N. Y.) 98, 627 (1958).

    Article  Google Scholar 

  • Kisliuk, R. L., and W. Sakami: The stimulation of serine biosynthesis in pigeon liver extracts by tetrahydrofolic acid. J. Amer. chem. Soc. 76, 1456 (1954).

    Article  CAS  Google Scholar 

  • — A study of the mechanism of serine biosynthesis. J. biol. Chem. 214, 47 (1955).

    PubMed  CAS  Google Scholar 

  • — and M. V. Patwardhan: The metabolism of the methionine carbon chain in the intact rat. J. biol. Chem. 221, 885 (1956).

    PubMed  CAS  Google Scholar 

  • Kit, S., and D. M. Greenberg: Tracer studies on the metabolism of the Gardner lymphosarcoma II. Energy yielding reactions and amino acid uptake into protein of the tumor cell. Cancer Res. 11, 495 (1951).

    PubMed  CAS  Google Scholar 

  • Kleiber, M., A. H. Smith, A. L. Black, M. A. Brown, and B. M. Tolbert: Acetate as a precursor of milk constituents in the intact dairy cow. J. biol. Chem. 197, 371 (1952).

    PubMed  CAS  Google Scholar 

  • Knox, W. E., and A. H. Mehler: The conversion of tryptophan to kynurenine in liver. J. biol. Chem. 187, 419 (1950).

    PubMed  CAS  Google Scholar 

  • Kock A. L., and H. R. Levy: Protein turnover in growing cultures of Escherichia coli. J. biol. Chem. 217, 947 (1955).

    Google Scholar 

  • Koeppe, R. E., and R. J. Hill: The incorporation of carboxyl and biocarbonate carbon into glutamic acid by the rat. J. biol. Chem. 216, 813 (1955).

    PubMed  CAS  Google Scholar 

  • M. L. Minthorn, Jr. and R. J. Hill: Formation of serine from glycerol-1,3-C14. Arch. Biochem. 68, 355 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Koessler, K. K., and M. T. Hanke: Studies on proteinogenous amines IV. The production of histamine from histidine by Bacillus coli communis. J. biol. Chem. 39, 539 (1919).

    CAS  Google Scholar 

  • Koppelman, R., S. Mandeles, and M. E. Hanke: Use of enzymes and radiocarbon in estimation of the equilibrium constants for the decarboxylation of lysine and glutamate. J. biol. Chem. 230, 73 (1958).

    PubMed  CAS  Google Scholar 

  • Kornberg, H. L., R. E. Davies, and D. R. Wood: The activity and function of gastric urease in the rat. Biochem. J. 56, 363 (1954).

    PubMed  CAS  Google Scholar 

  • Korzenovsky, M.: In McElroy and Glass, Amino Acid Metabolism, p. 309. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Kowalsky, A., C. Wyttenbach, L. Langer, and D. E. Koshland, Jr.: Transfer of oxygen in the glutamine synthetase reaction. J. biol. Chem. 219, 719 (1956).

    PubMed  CAS  Google Scholar 

  • Kraml, M., and L. P. Bouthillier: The conversion of urocanic acid to glutamic acid in the intact rat. Canad. J. Biochem. 33, 590 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Krebs, H. A., L. V. Eggleston, and V. A. Knivett: Arsenolysis and phosphorolysis of citrulline in mammalian liver. Biochem. J. 59, 185 (1955).

    PubMed  CAS  Google Scholar 

  • S. Gurin, and L. V. Eggleston: The pathway of oxidation of acetate in baker’s yeast. Biochem. J. 51, 614 (1952).

    CAS  Google Scholar 

  • Krehl, W. A., P. S. Sarma, L. J. Teply, and C. A. Elvehjem: Factors affecting the dietary niacin and tryptophan requirement of the growing rat. J. Nature 31, 85 (1946).

    CAS  Google Scholar 

  • Kruh, J., J-C. Dreyfus, G. Schapira, and P. Padieu: Non-uniform incorporation of glycine-2-C14 with rabbit hemoglobin in vivo and in vitro. J. biol. Chem. 228, 113 (1957).

    PubMed  CAS  Google Scholar 

  • G. Schapira, and J-C. Dreyfus: Evolution differente dans le temps de la radioactivité du glycocolle libre du muscle et du foie. C. R. Soc. Biol. (Paris) 150, 1356 (1956).

    CAS  Google Scholar 

  • Kushner, D. S., D. Bronsky, A. Dubin, B. P. Maduros, and S. H. Armstrong, Jr.: The persistence in the blood of the radioactive label of albumins, gamma globulins, and globulins of intermediate mobility IV. Specific activity ratios between plasma and edema fluid of I131-albumin injected intravenously in nutritional and nephrotic hypoproteinemia. J. Lab. clin. Med. 49, 440 (1957).

    PubMed  CAS  Google Scholar 

  • Lardy, H. A., R. L. Potter, and R. H. Burris: I. The role of biotin in bicarbonate utilization by Lactobacillus arabinosus studied with C14. J. biol. Chem. 179, 721 (1949).

    PubMed  CAS  Google Scholar 

  • Lascelles, J., and D. D. Woods: The synthesis of serine and Leuconostoc citrovorum factor by cell suspensions of Streptococcus faecalis. R. Biochem. J. 58, 486 (1954).

    CAS  Google Scholar 

  • Leblond, C. P., N. B. Everett, and B. Simmons: Sites of protein synthesis as shown by radioautography after administration of S35-labelled methionine. Amer. J. Anat. 101, 225 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Leifer, E., W. H. Langham, J. F. Nyc, and H. K. Mitchell: The use of isotopie nitrogen in a study of the conversion of 3-hydroxyanthranilic acid to nicotinic acid in Nenrospora. J. biol. Chem. 184, 589 (1950).

    PubMed  CAS  Google Scholar 

  • L. J. Roth, and L. H. Hempelmann: Metabolism of C14-labeled urea. Science 108, 748 (1948).

    Article  PubMed  CAS  Google Scholar 

  • D. S. Hogness, and M. H. Corson: The metabolism of radioactive nicotinic acid and nicotinamide. J. biol. Chem. 190, 595 (1951).

    PubMed  CAS  Google Scholar 

  • Lerner, A. B.: On the metabolism of phenylalanine and tyrosine. J. biol. Chem. 181, 281 (1949).

    PubMed  CAS  Google Scholar 

  • Letellier, G., and L. P. Bouthillier: The metabolism of DL-hydroxyproline-2-C14 in the rat. Canad. J. Biochem. 32, 154 (1954).

    Article  Google Scholar 

  • Levine, M., and H. Tarver: On the synthesis and some applications of serine-β-C14. J. biol. Chem. 184, 427 (1950).

    PubMed  CAS  Google Scholar 

  • — Studies on ethionine III. Incorporation of ethionine into rat proteins. J. biol. Chem. 192, 835 (1951).

    PubMed  CAS  Google Scholar 

  • Levinton, L., H. Eagle, and K. A. Piez: The role of glutamine in protein biosynthesis in tissue culture. J. biol. Chem. 227, 929 (1957).

    Google Scholar 

  • — and A. Meister: Reversibility of the enzymatic synthesis of glutamine. J. biol. Chem. 209, 265 (1954).

    Google Scholar 

  • G. H. Hogeboom, and E. L. Kuff: Studies on the relationship between the enzymatic synthesis of glutamine and the glutamyl transfer reaction. J. Amer. chem. Soc. 77, 5304 (1955).

    Article  Google Scholar 

  • Levy, L., and M. J. Coon: The role of formate in the biosynthesis of histidine. J. biol. Chem. 192, 807 (1951).

    PubMed  CAS  Google Scholar 

  • — Biosynthesis of histidine from radioactive acetate and glucose. J. biol. Chem. 208, 691 (1954).

    PubMed  CAS  Google Scholar 

  • Lewallen, C. G., M. Berman, and J. E. Rall: Studies of iodoalbumin metabolism I. A mathematical approach to the kinetics. J. clin. Invest. 38, 66 (1959).

    Article  PubMed  CAS  Google Scholar 

  • J. E. Rall, and M. Berman: Studies of iodoalbumin metabolism II. The effects of thyroid hormone. J. clin. Invest. 38, 88 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Lewis, K. F., and S. Weinhouse: Studies in valine biosynthesis II. α-acetolactate formation in microorganisms. J. Amer. chem. Soc. 80, 4913 (1958).

    Article  CAS  Google Scholar 

  • Lien, O. G., Jr., and D. M. Greenberg: Chromatographic studies on the interconversion of amino acids. J. biol. Chem. 195, 637 (1952).

    PubMed  CAS  Google Scholar 

  • — Identification of α-aminobutyric acid enzymatically formed from threonine. J. biol. Chem. 200, 367 (1953).

    PubMed  CAS  Google Scholar 

  • Lin, P. H., and B. C. Johnson: Nicotinic acid metabolism II. The metabolism of radioactive nicotinic acid and nicotinamide in the rat. J. Amer. chem. Soc. 75, 2974 (1953).

    Article  CAS  Google Scholar 

  • Linko, P., and A. I. Virtanen: On the biosynthesis of some recently discovered derivatives of glutamic acid in plants. Acta chem. scand. 12, 68 (1958).

    Article  CAS  Google Scholar 

  • Lipmann, F.: Symposium on amino acid activation. Chairman’s introduction: some facts and problems. Proc. nat. Acad. Sci. (Wash.) 44, 67 (1958).

    Article  CAS  Google Scholar 

  • Littlefield, J. W., and E. B. Keller: Incorporation of C14-amino acids into ribonucleoprotein particles from the Ehrlich mouse ascites tumor. J. biol. Chem. 224, 13 (1957).

    PubMed  CAS  Google Scholar 

  • J. Gross, and P. C. Zamecnik: Studies on cytoplasmic ribonucleoprotein particles from the liver of the rat. J. biol. Chem. 217, 111 (1955).

    PubMed  CAS  Google Scholar 

  • — The biosynthesis of protein. Prog. Biophys. 8, 347 (1957).

    Google Scholar 

  • — and E. A. Eigner: The time required for the synthesis of a ferritin molecule in rat liver. J. biol. Chem. 231, 925 (1958).

    Google Scholar 

  • — and A. Harris: Participation of free amino acids in protein synthesis. J. biol. Chem. 219, 151 (1956).

    Google Scholar 

  • London, I. M.: In Youmans, J. B., Symposia on Nutrition II. Plasma Proteins. p. 72. Springfield: C. C. Thomas 1950.

    Google Scholar 

  • Long, C. L., H. N. Hill, I. M. Weinstock, and L. M. Henderson: Studies of the enzymatic transformation of 3-hydroxyanthranilate to quinolate. J. biol. Chem. 211, 405 (1954).

    PubMed  CAS  Google Scholar 

  • Lowenstein, J. M., and P. P. Cohen: The formation of carbamyl aspartic acid by rat liver preparations. J. Amer. chem. Soc. 76, 5571 (1954).

    Article  CAS  Google Scholar 

  • — Studies on the mechanism of carbamylaspartic acid synthesis. J. biol. Chem. 213, 689 (1955).

    PubMed  CAS  Google Scholar 

  • — Studies on the biosynthesis of carbamylaspartic acid. J. biol. Chem. 220, 57 (1956).

    PubMed  CAS  Google Scholar 

  • Lowy, B. A., G. B. Brown, and J. R. Rachele: A study of formaldehyde-C14, D2 as a one carbon metabolite in the rat. J. biol. Chem. 220, 325 (1956).

    PubMed  CAS  Google Scholar 

  • Lowy, P. H.: The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch. Biochem. 47, 228 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Machlin, L. J., and P. B. Pearson: Studies on utilization of sulfate sulfur for growth of the chicken. Proc. Soc. exp. Biol. (N. Y.) 93, 204 (1957).

    Article  Google Scholar 

  • L. Struglia, and P. B. Pearson: Metabolism of methionine and cysteine sulfur in the developing chick embryo. Arch. Biochem. 59, 326 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, C. G.: Formation of formaldehyde and formate in the biooxidation of the methyl group. J. biol. Chem. 186, 351 (1950).

    PubMed  CAS  Google Scholar 

  • — In McElroy and Glass, Amino Acid Metabolism, p. 684. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • — and R. H. Abeles: Production of active formaldehyde in the mitochondrial oxidation of sarcosine-CD3. J. biol. Chem. 222, 145 (1956).

    PubMed  CAS  Google Scholar 

  • — and V. Du Vigneaud: The source of urea carbon. J. biol. Chem. 172, 353 (1948).

    PubMed  Google Scholar 

  • — and W. R. Frisell: The metabolism of dimethylglycine by mitochondria. J. biol. Chem. 232, 417 (1958).

    PubMed  Google Scholar 

  • J. M. Johnston, and W. R. Frisell: Isolation of formaldehyde from dimethylethanolamine, dimethylglycine, sarcosine and methanol. J. biol. Chem. 203, 743 (1953).

    PubMed  Google Scholar 

  • J. R. Rachele, N. Cross, J. P. Chandler, and V. Du Vigneaud: A study of the rate of oxidation of the methyl group of dietary methionine. J. biol. Chem. 183, 617 (1950).

    Google Scholar 

  • Macleod, P. R., and H. A. Lardy: Metabolic functions of biotin II. Fixation of carbon dioxide by normal and biotin-deficient rats. J. biol. Chem. 179, 733 (1949).

    PubMed  CAS  Google Scholar 

  • S. Grisolia, P. P. Cohen, and H.A. Lardy: Metabolic functions of biotin III. The synthesis of citrulline from ornithine in liver tissue of normal and biotin deficient rats. J. biol. Chem. 180, 1003 (1949).

    PubMed  CAS  Google Scholar 

  • Madden, R. E., and R. G. Gould: Turnover rate of fibrinogen in the dog. J. biol. Chem. 196, 641 (1952).

    PubMed  CAS  Google Scholar 

  • Magasanik, B.: Guanine as a source of the nitrogen 1-carbon 2 portion of the imidazole ring of histidine. J. Amer. chem. Soc. 78, 5449 (1956).

    Article  CAS  Google Scholar 

  • Mandeles, S., and K. Bloch: Enzymatic synthesis of γ-glutamylcysteine. J. biol. Chem. 214, 639 (1955).

    PubMed  CAS  Google Scholar 

  • Mandelstam, J.: Turnover of proteins in growing and non-growing populations of Escherichia coli. Biochem. J. 69, 110 (1958).

    PubMed  CAS  Google Scholar 

  • — and H. J. Rogers: Chloramphenicol-resistant incorporation of amino acids into Staphylococci and cell wall synthesis. Nature (Lond.) 181, 956 (1958).

    Article  Google Scholar 

  • Margen, S., and H. Tarver: Comparative studies on the turnover of serum albumin in normal human subjects. J. clin. Invest. 35, 1161 (1956).

    Article  PubMed  CAS  Google Scholar 

  • — The deiodination of proteins labeled with I131. Ann. N. Y. Acad. Sci. 70, 49 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Marsden, C. M., and L. Young: Biochemical studies of toxic agents 10. Observations on the metabolism of 35S-labelled mercapturic acids. Biochem. J. 69, 257 (1958).

    PubMed  CAS  Google Scholar 

  • Martignoni, P., and T. Winnick: Biosynthesis of carnosine and anserine in the chick. J. biol. Chem. 208, 251 (1954).

    PubMed  CAS  Google Scholar 

  • Masouredis, S. P., and M. L. Beeckmans: Comparative behavior of I131 and C14 labelled albumin in plasma of man. Proc. Soc. exp. Biol. (N. Y.) 89, 398 (1955).

    Article  CAS  Google Scholar 

  • Matsuo, Y., and D. M. Greenberg: Metabolic formation of homoserine and α-aminobutyric acid from methionine. J. biol. Chem. 215, 547 (1955).

    PubMed  CAS  Google Scholar 

  • M. Rothstein, and D. M. Greenberg: Metabolic pathways of homoserine in the mammal. J. biol. Chem. 221, 679 (1956).

    PubMed  CAS  Google Scholar 

  • Matsuoka, Z., and S. Yoshimatsu: Über eine neue Substanz, die aus Tryptophan im Tierkörper gebildet wird. Hoppe Seylers Z. physiol Chem. 143, 206 (1925).

    Article  CAS  Google Scholar 

  • Maurer, W., A. Niklas,: Messung der Umsatzrate von Serumeiweiß und Körpereiweiß beim normalen Kaninchen mit S35-Methionin. Biochem. Z. 326, 28 (1954).

    PubMed  CAS  Google Scholar 

  • Maw, G. A.: Thetin-homocysteine transmethylase. A preliminary study of the enzyme from rat liver. Biochem. J. 63, 116 (1956).

    PubMed  CAS  Google Scholar 

  • Mccorquodale, D. J., and G. C. Mueller: Preparation and properties of amino acid-adenylic acid mixed anhydrides. Arch. Biochem. 77, 13 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Mcfarlane, A. S.: Labelling of plasma proteins with radioactiveiodine. Biochem. J. 62, 135 (1956).

    PubMed  CAS  Google Scholar 

  • — Use of labeled plasma proteins in the study of nutritional problems. Prog. Biophys. 7, 115 (1957a).

    CAS  Google Scholar 

  • — The behavior of I131-labeled plasma proteins in vivo. Ann. N. Y. Acad. Sci. 70, 19 (1957b).

    Article  PubMed  CAS  Google Scholar 

  • Mcisaac, W. M., and I. H. Page: The metabolism of serotonin (5-hvdroxytryptamine). J. biol. Chem. 234, 858 (1959).

    PubMed  CAS  Google Scholar 

  • Mckee, F. W., W. G. Wilt, Jr., R. E. Hyatt, and G. H. Whipple: The circulation of ascitic fluid. J. exp. Med. 91, 115 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Mclean, J. R., G. L. Cohn, I. K. Brandt, and M. V. Simpson: Incorporation of labeled amino acids into the protein of muscle and liver mitochondria. J. biol. Chem. 233, 657 (1958).

    PubMed  CAS  Google Scholar 

  • Mcmanus, I. R.: Some metabolic precursors of the N-1-methyl group of anserine in the rat. J. biol. Chem. 225, 325 (1957).

    PubMed  CAS  Google Scholar 

  • Mcmanus, I. R.: The biosynthesis of valine by Saccharomyces cerevisiae. J. biol. Chem. 208, 639 (1954).

    PubMed  CAS  Google Scholar 

  • Mehler, A. H., and E. L. May: Studies with carboxyl-labeled 3-hydroxyanthranilic and picolinic acids in vivo and in vitro. J. biol. Chem. 223, 449 (1956).

    PubMed  CAS  Google Scholar 

  • — and H. Tabor: Deamination of histidine to form urocanic acid in liver. J. biol. Chem. 201, 775 (1953).

    PubMed  CAS  Google Scholar 

  • — and H. Bauer: The oxidation of histamine to imidazole acetic acid in vivo. J. biol. Chem. 197, 475 (1952).

    PubMed  CAS  Google Scholar 

  • Meister, A.: The oc-keto analogues of arginine, ornithine and lysine. J. biol. Chem. 206, 577 (1954).

    PubMed  CAS  Google Scholar 

  • — Enzymatic transamination reactions involving arginine and ornithine. J. biol. Chem. 206, 587 (1954).

    PubMed  CAS  Google Scholar 

  • — The metabolism of glutamine. Physiol. Rev. 36, 183 (1956).

    Google Scholar 

  • — Biochemistry of amino acids. New York: Academic Press 1957.

    Google Scholar 

  • A. N. Radhakrishnan, and S. D. Buckley: Enzymatic synthesis of L-pipecolic acid and L-proline. J. biol. Chem. 229, 789 (1957b).

    PubMed  Google Scholar 

  • H. A. Sober, S. V. Tice, and P. E. Fraser: Transamination and associated deamidation of asparagine and glutamine. J. biol. Chem. 197, 319 (1952).

    PubMed  Google Scholar 

  • Meltzer, H. L., and D. B. Sprinson: The synthesis of 4-C14, N15-L-threonine and a study of its metabolism. J. biol. Chem. 197, 461 (1952).

    PubMed  CAS  Google Scholar 

  • Metzenberg, R. L., L. M. Hall, M. Marshall, and P. P. Cohen: Studies on the biosynthesis of carbamyl phosphate. J. biol. Chem. 229, 1019 (1958).

    Google Scholar 

  • Meyer, E.: Über Alkaptonurie. Dtsch. Arch. klin. Med. 70, 443 (1901).

    Google Scholar 

  • Miller, D. A., and S. Simmonds: The metabolism of L-threonine and glycine by Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 43, 195 (1957).

    Article  CAS  Google Scholar 

  • Miller, L. L., and W. F. Bale: The metabolic conversion of the carbon chain of lysine-6-C14 to glutamic acid, aspartic acid and arginine. Arch. Biochem. 48, 361 (1954).

    Article  PubMed  CAS  Google Scholar 

  • C. L. Yuile, R. E. Masters, G. H. Tishkoff, and G. H. Whipple: The use of radioactive lysine in studies of protein metabolism. Synthesis and utilization of plasma proteins. J. exp. Med. 90, 297 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Mills, G. C., and J. L. Wood: Total mercapturic acid synthesis by liver and kidney. J. biol. Chem. 207, 695 (1954).

    PubMed  CAS  Google Scholar 

  • — Mercapturic acid precursors. J. biol. Chem. 219, 1 (1956).

    PubMed  CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan: An intermediate in the biosynthesis of lysine in Neurospora. J. biol. Chem. 174, 883 (1948).

    PubMed  CAS  Google Scholar 

  • Mitoma, C.: Studies on partially purified phenylalanine hydroxylase. Arch. Biochem. 60, 476 (1956).

    Article  PubMed  CAS  Google Scholar 

  • — and D. M. Greenberg: Studies on the mechanism of the biosynthesis of serine. J. biol. Chem. 196, 599 (1952).

    PubMed  Google Scholar 

  • T. E. Smith, F. Friedberg, and C. R. Rayford: Incorporation of hydroxyproline into tissue proteins by chick embryos. J. biol. Chem. 234, 78 (1959).

    PubMed  Google Scholar 

  • Miyake, A., A. H. Bokman, and B. S. Schweigert: 3-Hydroxyanthranilic acid metabolism VI. Chemical studies on intermediate. J. biol. Chem. 211, 391 (1954).

    PubMed  CAS  Google Scholar 

  • Moldave, K.: Effect of vitamin B6 on the in vivo utilization of radioactive phenylalanine. Arch. Biochem. 75, 418 (1958).

    Article  PubMed  CAS  Google Scholar 

  • P. Castelfranco, and A. Meister: The synthesis and some properties of amino acyl adenylates. J. biol. Chem. 234, 841 (1959).

    PubMed  Google Scholar 

  • — and A. Meister: Synthesis of phenacetylglutamine by human tissue. J. biol. Chem. 229, 463 (1957).

    PubMed  Google Scholar 

  • M. E. Rafelson, Jr., D. Lagerborg, H. E. Pearson, and R. J. Winzler: In vitro conversion of radioglucose to free and protein bound amino acids by virus-infected mouse brain. Arch. Biochem. 50, 383 (1954).

    Article  PubMed  Google Scholar 

  • R. J. Winzler, and H. E. Pearson: The incorporation in vitro of C14 into amino acids of control and virus-infected mouse brain. J. biol. Chem. 200, 357 (1953).

    PubMed  Google Scholar 

  • Moline, S. W., H. C. Walker, and B. S. Schweigert: 3-Hydroxyanthranilic acidmeta-bolism VII. Mechanism of formation of quinolinic acid. J. biol. Chem. 234, 880 (1959).

    PubMed  CAS  Google Scholar 

  • Moss, A. R., and R. Schoenheimer: The conversion of phenylalanine to tyrosine in normal rats. J. biol. Chem. 135, 415 (1940).

    CAS  Google Scholar 

  • De Moss, J. A., S. M. Genuth, and G. D. Novelli: The enzymatic activation of amino acids via their acyl-adenylate derivatives. Proc. nat. Acad. Sci. (Wash.) 42, 325 (1956).

    Article  CAS  Google Scholar 

  • — and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim. biophys. Acta 22, 49 (1956).

    Article  CAS  Google Scholar 

  • Moyed, H. S., and B. Magasanik: The role of purines in histidine biosynthesis. J. Amer. chem. Soc. 79, 4812 (1957).

    Article  CAS  Google Scholar 

  • Mudd, S. H., and G. L. Cantoni: Selenomethionine in enzymatic transmethylation. Nature (Lond.) 180, 1052 (1957).

    Article  CAS  Google Scholar 

  • Muir, H. M., and A. Neuberger: The biogenesis of porphyrins. The distribution of N15 in the ring system. Biochem. J. 45, 163 (1949).

    CAS  Google Scholar 

  • Muir, H. M., and A. Neuberger: The biogenesis of porphyrins 2. The origin of the methyne carbon atoms. Biochem. J. 47, 97 (1950).

    PubMed  CAS  Google Scholar 

  • Munch-Petersen, A., and H. A. Barker: The origin of the methyl group in mesaconate formed from glutamate by extracts of Clostridium tetanomorphum. J. biol. Chem. 230, 649 (1958).

    PubMed  CAS  Google Scholar 

  • Munier, R. L., and G. N. Cohen: Incorporation of d’analogues structuraux d’amino acides dans les protéines. Biochim. biophys. Acta 21, 592 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Muntz, J. A.: The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. biol. Chem. 182, 489 (1950).

    CAS  Google Scholar 

  • Nakada, H. I., and L. P. Sund: Glyoxylic acid oxidation by rat liver. J. biol. Chem. 233, 8 (1958).

    PubMed  CAS  Google Scholar 

  • — and S. Weinhouse: Studies of glycine oxidation in rat tissues. Arch. Biochem. 42, 257 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Nakao, A., and D. M. Greenberg: Studies on the incorporation of isotope from formaldehyde C14 and serine-3-C14 into the methyl group of methionine. J. biol. Chem. 230, 603 (1958).

    PubMed  CAS  Google Scholar 

  • Neidle, A., M. J. Mycek, D. D. Clarke, and H. Waelsch: Enzymatic exchange of protein amide groups. Arch. Biochem. 77, 227 (1958).

    Article  PubMed  CAS  Google Scholar 

  • — and H. Waelsch: Participation of glutamine in the biosynthesis of histidine. J. Amer. chem. Soc. 78, 1767 (1956).

    Article  CAS  Google Scholar 

  • Nemer, M., and D. Elwyn: Phosphorylation of serine in rat liver. J. Amer. chem. Soc. 79, 6564 (1957).

    Article  CAS  Google Scholar 

  • Neuberger, A., and H. G. B. Slack: The metabolism of collagen from liver, bone, skin and tendon in the normal rat. Biochem. J. 53, 47 (1953).

    PubMed  CAS  Google Scholar 

  • Niklas, A.: Über die Neubildungsgeschwindigkeit einzelner, getrennter Serumeiweiß-Fraktionen nach oraler Gabe von S35-Methionin an Ratten. Verh. dtsch. Ges. inn. Med. 58. Kongreß, 378 (1952).

    Google Scholar 

  • — and K. Hempel: Regeneration einzelner getrennter Serumeiweiß-Fraktionen nach akutem Blutverlust. Z. ges. exp. Med. 122, 399 (1954).

    Article  PubMed  Google Scholar 

  • — and G. Lehnert: Messung der Neubildungsrate des Serumeiweißes bei Kaninchen mit Masugi-Nephritis. Biochem. Z. 326, 79 (1954).

    PubMed  Google Scholar 

  • — and W. Maurer: Messung der Neubildung-und Abbaugeschwindigkeit einzelner Serumeiweiß-Fraktionen nach Gabe von S35-Methionin. Verh. dtsch. Ges. inn. Med. 59. Kongreß, 319 (1953).

    Google Scholar 

  • — and H. Krause: Messung der biologischen Halbwertszeiten einzelner Serumeiweiß-Fraktionen beim Kaninchen. Biochem. Z. 325, 464 (1954).

    PubMed  Google Scholar 

  • — and W. Oehlert: Autoradiographische Untersuchung der Größe des Eiweißstoffwechsels verschiedener Organe, Gewebe und Zellarten. Beitr. path. Anat. 116 (1) 92 (1956).

    Google Scholar 

  • — an H. Poliwoda: Zur Frage der biologischen Halbwertzeit menschlicher Albumine und Globuline. Biochem. Z. 326, 97 (1954).

    PubMed  Google Scholar 

  • E. Quincke, W. Maurer, and H. Neyen: Messung der Neubildungsraten und biologischen Halbwertszeiten des Eiweißes einzelner Organe und Zellgruppen bei der Ratte. Biochem. Z. 330, 1 (1958).

    PubMed  Google Scholar 

  • Nisman, B., F. H. Bergmann, and P. Berg: Observations on amino acid-dependent exchanges of inorganic pyrophosphate and ATP. Biochim. biophys. Acta 26, 639 (1957).

    Article  Google Scholar 

  • Nisonoff, A., F. W. Barnes, Jr., and T. Enns: Mechanisms of enzymatic transamination. Estimation of velocity of the glutamate-aspartate reaction at equilibrium. J. biol. Chem. 204, 957 (1953).

    PubMed  CAS  Google Scholar 

  • — and S. Von Schuching: Mechanisms of enzymatic transamination reaction between carbon chains of same length. Bull. Johns Hopk. Hosp. 94, 117 (1954).

    CAS  Google Scholar 

  • Noall, M. W., T. R. Riggs, L. M. Walker, and H. N. Christensen: Endocrine control of amino acid transfer. Science 126, 1002 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Novelli, G. D., and J. A. De Moss: The activation of amino acids and concepts of the mechanism of protein synthesis. J. cell. comp. Physiol. (Suppl.) 50, 173 (1957).

    Article  CAS  Google Scholar 

  • Nyc, J. F., H. K. Mitchell, E. Liefer, and W. H. Langham: The use of isotopic carbon in a study of the metabolism of anthranilic acid in Neurospora. J. biol. Chem. 179, 783 (1949).

    PubMed  CAS  Google Scholar 

  • Ogata, K., and H. Nohara: The possible role of the ribonucleic acid (RNA) of the PH 5 enzyme in amino acid activation. Biochim. biophys. Acta 25, 659 (1937).

    Article  Google Scholar 

  • Oginsky, E. L.: In McElroy and Glass, Amino Acid Metabolism, p. 300. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Ohmura, E., and O. Hayaishi: Enzymatic conversion of formyl aspartic acid to aspartic acid. J. biol. Chem. 227, 181 (1957).

    PubMed  CAS  Google Scholar 

  • Ottey, L., and E. L. Tatum: The cleavage ofβketoadipic acid by Neurospora crassa. J. biol. Chem. 229, 77 (1957).

    PubMed  CAS  Google Scholar 

  • Partridge, C. W. H., D. M. Bonner, and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. biol. Chem. 194, 269 (1952).

    PubMed  CAS  Google Scholar 

  • Pellerin, J., and A. D’iorio: Metabolism of radioactive β-(3,4-dihydroxyphenyl)-alanine-α-C14 in the albino rat. Canad. J. Biochem. 33, 1055 (1955).

    PubMed  CAS  Google Scholar 

  • Penn, N. W., S. Mandeles, and H. S. Anker: On the kinetics of turnover of serum albumin. Biochem. biophys. Acta 26, 349 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Peters, T., Jr., and C. B. Anfinsen: Net production of serum albumin by liver slices. J. biol. Chem. 186, 805 (1950).

    PubMed  CAS  Google Scholar 

  • Peterson, E. A., W. A. Fones, and J. White: Evidence for a three-carbon intermediate in the metabolism of valine. Arch. Biochem. 36, 323 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Piez, K. A., and R. C. Likins: The conversion of lysine to hydroxylysine and its relation to the biosynthesis of collagen in several tissues of the rat. J. biol. Chem. 229, 101 (1957).

    PubMed  CAS  Google Scholar 

  • Plaut, G. W. E., J. J. Betheil, and H. A. Lardy: The relationship of folic acid to formate metabolism in the rat. J. biol. Chem. 184, 795 (1950).

    PubMed  CAS  Google Scholar 

  • — and H. A. Lardy: Enzymatic incorporation of C14-bicarbonate into acetoacetate in the presence of various substrates. J. biol. Chem. 192, 435 (1951).

    PubMed  CAS  Google Scholar 

  • Putnam, F. W., F. Meyer, and A. Miyake: Proteins in multiple myeloma V. Synthesis and excretion of Bence-Jones protein. J. biol. Chem. 221, 527 (1956).

    Google Scholar 

  • — and A. Miyake: Proteins in multiple myeloma VIII. Biosynthesis of abnormal proteins. J. biol. Chem. 231, 671 (1958).

    PubMed  CAS  Google Scholar 

  • — and F. Meyer: The metabolism of DL-glutamic acid-l-C14 in man. J. biol. Chem. 231, 657 (1958).

    PubMed  CAS  Google Scholar 

  • Raacke, I. D.: Chemical aspects of recent hypotheses on protein synthesis. Quart. Rev. Biol. 33, 245 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz, J. C., and H. Tabor: The urinary excretion of formic acid and formiminoglutamic acid in folic acid deficiency. J. biol. Chem. 233, 252 (1958).

    PubMed  CAS  Google Scholar 

  • — and M. Olson: Evidence for a ribonucleoprotein intermediate in the synthesis of globin by reticulocytes. Exp. Cell. Res. 10, 747 (1956).

    Article  Google Scholar 

  • — and D. M. Greenberg: Independent antagonism of amino acid incorporation into protein. J. biol. Chem. 210, 837 (1954).

    Google Scholar 

  • — Role of glutamine in protein synthesis by the Ehrlich ascites carcinoma. J. biol. Chem. 222, 879 (1956).

    Google Scholar 

  • — Characteristics of the inhibition by ethionine of the incorporation of methionine into proteins of the Ehrlich ascites carcinoma in vitro. J. biol. Chem. 227, 217 (1957).

    Google Scholar 

  • Rachele, J. R., E. J. Kuchinaskas, F. H. Kratzer, and V. Du Vigneaud: Hydrogen isotope effect in the oxidation in vivo of methionine labeled in the methyl group. J. biol. Chem. 215, 593 (1955).

    PubMed  CAS  Google Scholar 

  • L. J. Reed, A. R. Kidwai, M. F. Ferger, and V. Du Vigneaud: Conversion of cystathionine labeled with S35 to cystine in vitro. J. biol. Chem. 185, 817 (1950).

    PubMed  CAS  Google Scholar 

  • Radhakrishnan, A. N., and A. Meister: Conversion of hydroxyproline to pyrrole-2-carboxylic acid. J. biol. Chem. 226, 559 (1957).

    PubMed  CAS  Google Scholar 

  • Radin, N. S., D. Rittinberg, and D. Shemin: The role of glycine in the biosynthesis of heme. J. biol. Chem. 184, 745 (1950).

    PubMed  CAS  Google Scholar 

  • Rafelson, M. E., Jr.: Conversion of acetate-1-C14 to tryptophan in Aerobacter aerogenes. J. biol. Chem. 212, 953 (1955a).

    PubMed  CAS  Google Scholar 

  • — Conversion of radioactive glucose and acetate to tryptophan by Aerobacter aerogenes. J. biol. Chem. 213, 479 (1855).

    Google Scholar 

  • — The biosynthesis of valine in Aerobacter aerogenes. J. Amer. chem. Soc. 77, 4679 (1955).

    Article  CAS  Google Scholar 

  • — The biosynthesis of leucine in Aerobacter aerogenes. Arch. Biochem. 72, 376 (1957).

    Article  PubMed  CAS  Google Scholar 

  • — and H. Arnoff: Studies on the metabolism of virus infected tissues I. Free amino acid metabolism in chick chorioallantoic membranes infected with influenza virus. Arch. Biochem. 75, 163 (1958).

    Article  PubMed  Google Scholar 

  • R. E. Winzler, and H. E. Pearson: The effects of Theiler’s GD VII virus on the incorporation of radioactive carbon from glucose into minced one day-old mouse brain. J. biol. Chem. 181, 595 (1949).

    PubMed  Google Scholar 

  • — A virus effect on the uptake of C14 from glucose in vitro by amino acids in mouse brain. J. biol. Chem. 193, 205 (1951).

    PubMed  CAS  Google Scholar 

  • Ratner, S., V. Nocito, and D. E. Green: Glycine oxidase. J. biol. Chem. 152, 119 (1944).

    CAS  Google Scholar 

  • — and O. Rochovansky: Biosynthesis of guanidinoacetic acid II. Mechanism of amidine group transfer. Arch. Biochem. 63, 296 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Ravdin, R. G., and D. T. Crandall: The enzymatic conversion of homogentisic acid to 4-fumarylacetoacetic acid. J. biol. Chem. 189, 137 (1951).

    PubMed  CAS  Google Scholar 

  • Reed, D. J., B. E. Christensen, V. H. Cheldelin, and C. H. Wang: Biosynthesis of leucine in baker’s yeast. J. Amer. chem. Soc. 76, 5574 (1954).

    Article  CAS  Google Scholar 

  • Reed, L. J., D. Cavallini, F. Plum, J. R. Rachele, and V. Du Vigneaud: The conversion of methionine to cystine in the human cystinuric. J. biol. Chem. 180, 783 (1949).

    PubMed  CAS  Google Scholar 

  • Reichard, P.: Ornithine carbamyl transferase from rat liver. Acta chem. scand. 11, 523 (1957).

    Article  CAS  Google Scholar 

  • Reichard, P., and G. Hanshoff: Aspartate carbamyl transferase from Escherichia coli. Acta chem. scand. 10, 548 (1956).

    Article  CAS  Google Scholar 

  • Reiss, O., and K. Bloch: Studies on leucine biosynthesis in yeast. J. biol. Chem. 216, 703 (1955).

    PubMed  CAS  Google Scholar 

  • Rendina, G., and M. J. Coon: Enzymatic hydrolysis of the coenzyme A thiol ester of β-hydroxypropionic and β-hydroxyisobutyric acids. J. biol. Chem. 225, 523 (1957).

    PubMed  CAS  Google Scholar 

  • Revel, H. R. B., and B. Magasanik: The enzymatic degradation of urocanic acid. J. biol. Chem. 233, 930 (1958).

    PubMed  CAS  Google Scholar 

  • Riggs, T. R., and L. M. Walker: Diminished uptake of C14-α-aminoisobutyric acid by tissues of vitamin B6-deficient rats. J. biol. Chem. 233, 132 (1958).

    PubMed  CAS  Google Scholar 

  • Rittenberg, D., and H. Waelsch: The source of carbon for urea formation. J. biol. Chem. 136, 799 (1940).

    CAS  Google Scholar 

  • Roberts, E., and S. Frankel: Further studies of glutamic acid decarboxylase in brain. J. biol. Chem. 190, 505 (1951).

    PubMed  CAS  Google Scholar 

  • M. Rothstein, and C. F. Baxter: Some metabolic studies of γ-aminobutyric acid. Proc. Soc. exp. Biol. (N. Y.) 97, 796 (1958).

    Article  CAS  Google Scholar 

  • Roberts, R. B., D. B. Cowie, R. Britten, E. Bolton, and P. H. Abelson: The role of the tricarboxylic acid cycle in amino acid synthesis in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 39, 1013 (1953).

    Article  CAS  Google Scholar 

  • P. H. Abelson, E. T. Bolton, and R. J. Britten: Studies of biosynthesis in Escherichia coli. Carnegie Inst. Pub. (Wash.) 607, 1955.

    Google Scholar 

  • Robertson, W. V. B., J. Hiwett, and C. Herman: The relation of ascorbic acid to the conversion of proline to hydroxyproline in the synthesis of collagen in the Carrageenan granuloma. J. biol. Chem. 234, 105 (1959).

    CAS  Google Scholar 

  • Robinson, W. G., B. K. Bachhawat, and M. J. Coon: Tiglyl coenzyme A and α-methyl-acetoacetyl coenzyme A, intermediates in the enzymatic degradation of isoleucine. J. biol. Chem. 218, 391 (1956).

    PubMed  CAS  Google Scholar 

  • — and M. J. Coon: The purification and properties of β-hydroxyisobutyric dehydrogenase. J. biol. Chem. 225, 511 (1957).

    PubMed  CAS  Google Scholar 

  • R. Nagle, B. K. Bachhawat, F. P. Kupiecki, and M. J. Coon: Coenzyme A thiol esters of isobutyric, methacrylic, and β-hydroxyisobutyric acids as intermediates in the enzymatic degradation of valine. J. biol. Chem. 224, 1 (1957).

    PubMed  CAS  Google Scholar 

  • Roloff, M., S. Ratner, and R. Schoenheimer: The biological conversion of ornithine into proline and glutamic acid. J. biol. Chem. 136, 561 (1940).

    CAS  Google Scholar 

  • Rosenfeld, G., L. C. Leeper, and S. Udenfriend: Biosynthesis of norepinephrine and epinephrine by the isolated perfused calf adrenal. Biochim. biophys. Acta 74, 252 (1958).

    CAS  Google Scholar 

  • Rothschild, S. S., M. O. Schreiber, and H. L. Mcgee: The effects of adrenocortical hormones on albumin metabolism studied with albumin-I131. J. clin. Invest. 37, 1229 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, M., C. G. Bly, and L. L. Miller: The metabolism of D-lysine-∈-C14. Arch. Biochem. 50, 252 (1954).

    Article  PubMed  CAS  Google Scholar 

  • — and D. M. Greenberg: Studies on the metabolism of xanthurenic acid-4-C14. Arch. Biochem. 68, 206 (1957).

    Article  PubMed  CAS  Google Scholar 

  • — Evidence for a new oxidative pathway for tryptophan. Biochim. biophys. Acta 34, 598 (1959).

    Article  PubMed  CAS  Google Scholar 

  • — Metabolism of DL-pipecolic acid-2-C14. J. Amer. chem. Soc. 81, 4756 (1959).

    Article  CAS  Google Scholar 

  • — and L. L. Miller: The metabolism of glutaric acid-1,5-C14 I. In normal and phlorizinized rats. J. biol. Chem. 199, 199 (1952).

    PubMed  CAS  Google Scholar 

  • — The metabolism of L-lysine-6-C14. J. biol. Chem. 206, 243 (1954a).

    PubMed  CAS  Google Scholar 

  • — The metabolism of glutaric acid-1,5-C14 2. Conversion to α-ketoglutaric acid in the intact rat. J. biol. Chem. 211, 859 (1954b).

    PubMed  CAS  Google Scholar 

  • — The conversion of lysine to pipecolic acid in the rat. J. biol. Chem. 211, 851 (1954c).

    PubMed  CAS  Google Scholar 

  • Rust, J. H., W. J. Visek, and L. J. Roth: Carbon dioxide fixation and urea synthesis in the rat. J. biol. Chem. 223, 671 (1956).

    PubMed  CAS  Google Scholar 

  • Sagers, R. D., and I. C. Gunsalus: Glycine cleavage and one-carbon transfer reactions in Clostridium acidi-urici and Diplococcus glycinophilus. Bact. Proc. 58, 119 (1958).

    Google Scholar 

  • Saito, Y., O. Hayaishi, and S. Rothberg: Studies on oxygenases. Enzymatic formation of 3-hydroxy-L-kynurenine from L-kynurenine. J. biol. Chem. 229, 921 (1957).

    PubMed  CAS  Google Scholar 

  • Sakami, W.: The conversion of formate and glycine to serine and glycogen in the intact rat. J. biol. Chem. 176, 995 (1958).

    Google Scholar 

  • — Formation of formate and labile methyl groups from acetone in the intact rat. J. biol. Chem. 187, 369 (1950).

    PubMed  CAS  Google Scholar 

  • — In McElroy, and Glass, Amino Acid Metabolism, p. 658. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • — and A. D. Welch: Synthesis of labile methyl groups by the rat in vivo and in vitro. J. biol. Chem. 187, 379 (1950).

    PubMed  Google Scholar 

  • Salamon, I. I., and B. D. Davis: Aromatic biosynthesis IX. The isolation of a precursor of shikimic acid. J. Amer. chem. Soc. 75, 5567 (1952).

    Article  Google Scholar 

  • Samuels, P. J.: The assimilation of amino acids by bacteria 17. Synthesis of glutathione by extracts of E. coli. Biochem. J. 55, 441 (1953).

    PubMed  CAS  Google Scholar 

  • Sarkar, N. K., D. D. Clarke, and H. Waelsch: An enzymatically catalyzed incorporation of amines into protein. Biochim. biophys. Acta 25, 451 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Sato, C. S., R. U. Byerrum, P. Albersheim, and J. Bonner: Metabolism of methionine and pectin esterification in plant tissue. J. biol. Chem. 233, 128 (1958).

    PubMed  CAS  Google Scholar 

  • — and C. D. Ball: The biosynthesis of pectinic acid methyl esters through transmethylation from methionine. J. biol. Chem. 224, 717 (1957).

    PubMed  CAS  Google Scholar 

  • Schayer, R. W.: Metabolism of ring labeled histamine. J. biol. Chem. 196, 469 (1952).

    PubMed  CAS  Google Scholar 

  • — and L. M. Henderson: The conversion of deutero-N15-tryptophan to quinolinic acid by the rat. J. biol. Chem. 195, 657 (1952).

    PubMed  Google Scholar 

  • Schenck, J. R., S. Simmonds, M. Cohen, C. M. Stevens, and V. Du Vigneaud: The relation of transmethylation to anserine. J. biol. Chem. 149, 355 (1943).

    CAS  Google Scholar 

  • Schepartz, B., and S. Gurin: The intermediary metabolism of phenylalanine labeled with radioactive carbon. J. biol. Chem. 180, 663 (1949).

    PubMed  CAS  Google Scholar 

  • Scher, W. I., Jr., and H. J. Vogel: Occurrence of ornithine-γ-transaminase A. dichotomy. Proc. nat. Acad. Sci. (Wash.) 43, 796 (1957).

    Article  CAS  Google Scholar 

  • Schiller, S., M. B. Mathews, J. A. Cifonelli, and A. Dorfman: The metabolism of mucopolysaccharides in animals. III. Further studies on skin utilizing C14-glucose, C14-acetate and S35-sodium sulfate. J. biol. Chem. 218, 139 (1956).

    PubMed  CAS  Google Scholar 

  • Schlenk, F., and R. E. De Palma: The formation of S-adenosylmethionine in yeast. J. biol. Chem. 229, 1037 (1957).

    PubMed  CAS  Google Scholar 

  • — and R. L. Smith: The mechanism of adenosine thiomethylriboside formation. J. biol. Chem. 204, 27 (1953).

    PubMed  CAS  Google Scholar 

  • — and J. A. Tilloston: Formation of 5′ ethylthioadenosine from DL-ethionine in yeast. J. biol. Chem. 206, 687 (1954).

    PubMed  CAS  Google Scholar 

  • Schlossmann, K., and F. Lynen: Biosynthese des Cysteins aus Serin und Schwefelwasserstoff. Biochem. Z. 328, 591 (1957).

    PubMed  CAS  Google Scholar 

  • Schoenberger, J. A., G. Kroll, E. L. Eckert, and R. M. Kark: Investigation of transfer rates of albumin tagged with I131 in ascites and edema II. Studies in control subjects and in patients with cirrhosis. J. Lab. clin. Med. 47, 227 (1956).

    PubMed  CAS  Google Scholar 

  • Schoenheimer, R.: The dynamic state of body constituents. Cambridge: Harvard Univ. Press 1942.

    Google Scholar 

  • Schreier, K., K. I. Altman, and L. H. Hempelmann: Metabolism of benzoic acid in normal and irradiated rats. Proc. Soc. exp. Biol. (N. Y.) 87, 61 (1954).

    Article  CAS  Google Scholar 

  • Schultze, B.: Biologische Halbwertzeit einzelner Globulin-Fraktionen beim Kaninchen. Biochem. Z. 329, 144 (1957).

    PubMed  CAS  Google Scholar 

  • — and W. Maurer: Über im Organismus des Kaninchens nach Injektion von S35-β und-γ-Globulinen entstehende S35-Albumine. Biochem. Z. 329, 127 (1957).

    PubMed  Google Scholar 

  • Schwartz, M., and B. Thomsen: Idiopathic or hypercatabolic hypoproteinaemia. Brit. med. J. 1, 14 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Schweet, R.: Incorporation of radioactive lysine into protein. Fed. Proc. 15, 350 (1956).

    Google Scholar 

  • Schweet, R. S., and E. H. Allen: Purification and properties of tyrosine-activating enzyme of hog pancreas, J. biol. Chem. 233, 1104 (1958).

    PubMed  CAS  Google Scholar 

  • F. C. Bovard, E. Allen, and E. Glassman: The incorporation of amino acids into ribonucleic acid. Proc. nat. Acad. Sci. (Wash.) 44, 173 (1958).

    Article  CAS  Google Scholar 

  • J. T. Holden, and P. H. Lowy: The metabolism of lysine in Neurospora. J. biol. Chem. 211, 517 (1954).

    PubMed  CAS  Google Scholar 

  • — In McElroy, and Glass, Amino Acid Metabolism, p. 496. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Shapiro, S. K.: Biosynthesis of methionine from homocysteine and S-methyl methionine in bacteria. J. Bact. 72, 730 (1956).

    PubMed  CAS  Google Scholar 

  • — Adenosyl methionine-homocysteine transmethylase. Biochim. biophys. Acta 29, 405 (1958).

    Article  PubMed  CAS  Google Scholar 

  • — and A. N. Mather: The enzymatic decomposition of S-adenosyl-L-methionine. J. biol. Chem. 233, 631 (1958).

    PubMed  Google Scholar 

  • Sharon, N., and F. Lipmann: Reactivity of analogs with pancreatic enzyme. Arch. Biochem. 69, 219 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Shaw, K. N. F., A. Mcmillan, and M. D. Armstrong: The metabolism of 3,4-dihydroxy-phenylalanine. J. biol. Chem. 226, 255 (1957).

    PubMed  CAS  Google Scholar 

  • Shemin, D.: The biological conversion of 1-serine to glycine. J. biol. Chem. 162, 297 (1946).

    PubMed  CAS  Google Scholar 

  • — In McElroy, and Glass, Amino Acid Metabolism, p. 727. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Shemin, D., and D. Rittenberg: Some interrelationships in general nitrogen metabolism. J. biol. Chem. 153, 401 (1955).

    Google Scholar 

  • — The utilization of glycine for the synthesis of porphyrin. J. biol. Chem. 159, 547 (1945).

    Google Scholar 

  • Shemin, D., and D. Rittenberg: The biological utilization of glycine for the synthesis of the protoporphyrin of hemoglobin. J. biol. Chem. 166, 621 (1946).

    PubMed  CAS  Google Scholar 

  • — The life span of the human red blood cell. J. biol. Chem. 166, 627 (1946).

    PubMed  CAS  Google Scholar 

  • — On the utilization of glycine for uric acid synthesis in man. J. biol. Chem. 167, 875 (1947).

    PubMed  CAS  Google Scholar 

  • — and C. S. Russell: ´-Aminolevulinic acid, its role in the biosynthesis of porphyrin and purines. J. Amer. chem. Soc. 75, 4873 (1953).

    Article  CAS  Google Scholar 

  • — and T. Abramsky: The succinate-glycine cycle I. The mechanism of pyrrole synthesis. J. biol. Chem. 215, 613 (1955).

    PubMed  CAS  Google Scholar 

  • — and J. Wittenberg: The mechanism of porphyrin formation. The role of the tricarboxylic acid cycle. J. biol. Chem. 192, 315 (1951).

    PubMed  CAS  Google Scholar 

  • Siegel, I., and J. Lafaye: Formation of the ß-carbon of serine from formaldehyde. Proc. Soc. exp. Biol. (N. Y.) 74, 620 (1950).

    Article  CAS  Google Scholar 

  • Siekevitz, P.: Uptake of radioactive alanine in vitro into the proteins of rat liver fractions. J. biol. Chem. 195, 549 (1952).

    PubMed  CAS  Google Scholar 

  • — and D. M. Greenberg: The biological formation of serine from glycine. J. biol. Chem. 180, 845 (1949).

    PubMed  Google Scholar 

  • — The biological formation of formate from methyl compounds in liver slices. J. biol. Chem. 186, 275 (1950).

    PubMed  CAS  Google Scholar 

  • Simkin, J. L., and T. S. Work: Incorporation of radioactive amino acids into proteins of the microsome fraction of guinea-pig liver in a cell free system. Biochem. J. 67, 617 (1957).

    PubMed  CAS  Google Scholar 

  • Simmonds, S., and V. Du Vigneaud: Transmethylation as a metabolic process in man. J. biol. Chem. 146, 685 (1942).

    CAS  Google Scholar 

  • — A further study of the lability of the methyl groups of creatine. Proc. Soc. exp. Biol. (N.Y.) 59, 293 (1945).

    Article  CAS  Google Scholar 

  • Simpson, M. V.: Further studies on the biosynthesis of aldolase and glyceraldehyde-3-phos-phate dehydrogenase. J. biol. Chem. 216, 179 (1955).

    PubMed  CAS  Google Scholar 

  • — and S. F. Velick: The synthesis of aldolase and glyceraldehyde-3-phosphate dehydrogenase in the rabbit. J. biol. Chem. 208, 61 (1954).

    PubMed  Google Scholar 

  • Sinex, F. M., and D. D. Van Slyke: The source and state of the hydroxylsine of collagen. J. biol. Chem. 216, 245 (1955).

    PubMed  CAS  Google Scholar 

  • — and D. R. Christman: The source and state of hydroxylsine of collagen II. J. biol. Chem. 234, 918 (1959).

    PubMed  CAS  Google Scholar 

  • Siperstein, M. D., and A. W. Murray: Enzymatic synthesis of cholyl CoA and taurocholic acid. Science 123, 377 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Skipper, H. E., L. L. Bennett, Jr., C. E. Bryan, and L. White, Jr.: Carbamates in the chemotherapy of leukemia VIII. Over-all tracer studies on carbonyl-labeled urethan, methylene-labeled urethan, and methylene-labeled ethyl alcohol. Cancer Res. 11, 46 (1951).

    PubMed  CAS  Google Scholar 

  • Sky-Peck, H. H., H. E. Pearson, and D. W. Visser: Incorporation of glucose-U-C14, glucose-1-C14, and glucose-6-C14 in vitro into the protein-bound amino acids of one day old mouse brain. J. biol. Chem. 223, 1033 (1956).

    PubMed  CAS  Google Scholar 

  • Slade, H. D.: In McElroy and Glass, Amino Acid Metabolism, p. 321. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Smith, L. H., and D. Stetten: Biosynthesis of orotic acid from citrulline. J. Amer. chem. Soc. 76, 3864 (1954).

    Article  CAS  Google Scholar 

  • Smith, M. E., and D. M. Greenberg: Preparation and properties of partially purified glutamic semialdehyde reductase. J. biol. Chem. 226, 317 (1957).

    PubMed  CAS  Google Scholar 

  • Smith, R. L., and F. Schlenk: The metabolic relationship between methionine and adenine thiomethyl riboside in yeast. Arch. Biochem. 38, 167 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Smythe, C. V., and D. Halliday: An enzymatic conversion of radioactive sulfide sulfur to cystine sulfur. J. biol. Chem. 144, 237 (1942).

    CAS  Google Scholar 

  • Snoke, J. E.: On the mechanism of the enzymatic synthesis of glutathione. J. Amer. chem. Soc. 75, 4872 (1953).

    Article  CAS  Google Scholar 

  • — Isolation and properties of yeast glutathione synthetase. J. biol. Chem. 213, 813 (1955).

    PubMed  CAS  Google Scholar 

  • — and K. Bloch: Formation and utilization of γ-glutamyleysteine in glutathione synthesis. J. biol. Chem. 199, 407 (1952).

    PubMed  Google Scholar 

  • — In Colowick, S. P., Glutathione, p. 129. New York: Academic Press 1954.

    Google Scholar 

  • — Studies on the mechanism of action of glutathione synthetase. J. biol. Chem. 213, 825 (1955).

    PubMed  CAS  Google Scholar 

  • S. Yanari, and K. Bloch: Synthesis of gluathione from γ-glutamyl cysteine. J. biol. Chem. 201, 573 (1953).

    PubMed  Google Scholar 

  • Solomon, G., and H. Tarver: The effect of diet on the rate of loss of labeled amino acid from tissue proteins. J. biol. Chem. 195, 447 (1952).

    PubMed  CAS  Google Scholar 

  • Soloway, S., and D. W. Stetten, Jr.: The metabolism of choline and its conversion to glycine in the rat. J. biol. Chem. 204, 207 (1953).

    PubMed  CAS  Google Scholar 

  • Sonne, J. C., J. M. Buchanan, and H. M. Delluva: Biological precursors of uric acid I. The role of lactate, acetate, and formate in the synthesis of the ureide groups of uric acid. J. biol. Chem. 173, 69 (1958).

    Google Scholar 

  • Sourkes, T., P. Heneage, and Y. Trano: Enzymatic decarboxylation of isomers and derivatives of dihydroxyphenylalanine. Arch. Biochem. 40, 185 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Speck, J. F.: The enzymatic synthesis of glutamine, a reaction utilizing adenosine triphosphate. J. biol. Chem. 179, 1405 (1949).

    PubMed  CAS  Google Scholar 

  • Spiegelman, S., H. O. Halvorson, and R. Ben-Ishai: In McElroy, and Glass, Amino Acid Metabolism, p. 124. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Sprinson, D. B., and D. Rittenberg: The metabolic reactions of carbon atom 2 of L-histidine. J. biol. Chem. 198, 655 (1952).

    PubMed  CAS  Google Scholar 

  • Srinivasan, P. R., M. Katagiri, and B. D. Davis: The conversion of phosphoenolpyruvic acid and D-erythrose-4-phosphate to 5-dehydroquinic acid. J. biol. Chem. 234, 713 (1959).

    PubMed  CAS  Google Scholar 

  • H. T. Shigeura, M. Sprecker, D. B. Sprinson, and B. D. Davis: The biosynthesis of shikimic acid from D-glucose. J. biol. Chem. 220, 477 (1956).

    PubMed  CAS  Google Scholar 

  • — and D. B. Sprinson: 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J. biol. Chem. 234, 716 (1959).

    PubMed  CAS  Google Scholar 

  • E. B. Kalan, and B. D. Davis: The enzymatic conversion of sedoheptulose-1,7-diphosphate to shikimic acid. J. biol. Chem. 223, 913 (1956).

    PubMed  CAS  Google Scholar 

  • Stadtman, T. C., and P. Elliott: A new ATP-forming reaction: The reductive deamination of glycine. J. Amer. chem. Soc. 78, 2020 (1956).

    Article  CAS  Google Scholar 

  • Staehelin, M., and F. Leuthardt: Über den Mechanismus der Glutaminsynthese. Helv. chim. Acta 38, 184 (1955).

    Article  CAS  Google Scholar 

  • Steele, R.: The formation of amino acids from carbohydrate carbon in the mouse. J. biol. Chem. 198, 237 (1952).

    PubMed  CAS  Google Scholar 

  • Steinberg, D., and C. B. Anfinsen: Evidence for intermediates in ovalbumin synthesis. J. biol. Chem. 199, 25 (1952).

    PubMed  CAS  Google Scholar 

  • M. Vaughan, and C. B. Anfinsen: Kinetic aspects of assembly and degradation of proteins. Science 124, 389 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Steinbock, H. L., and H. Tarver: Plasma protein V. The effect of the protein content of the diet on turnover. J. biol. Chem. 209, 127 (1954).

    PubMed  CAS  Google Scholar 

  • Steinfeld, J. L., R. R. Paton, A. L. Flick, R. A. Milch, F. E. Beach, and D. L. Tabern: Distribution and degradation of human serum albumin labeled with I131 by different techniques. Ann. N. Y. Acad. Sci. 70, 109 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Stekol, J. A.: In McElroy, and Glass, Amino Acid Metabolism, p. 509. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • E. I. Anderson, and S. Weiss: S-Adenosyl-L-methionine in the synthesis of choline, creatine, and cysteine in vivo and in vitro. J. biol. Chem. 233, 425 (1958).

    PubMed  Google Scholar 

  • S. Weiss, E. I. Anderson, P. T. Hsu, and A. Watjen: Vitamin B12 and folic acid in relation to methionine synthesis from betaine in vivo and in vitro. J. biol. Chem. 226, 95 (1957).

    PubMed  Google Scholar 

  • — and S. Weiss: On the origin of the carbon chain of cysteine in the rat. J. biol. Chem. 185, 271 (1950).

    PubMed  Google Scholar 

  • S. Weiss, and K. W. Weiss: Vitamin B12 and folic acid in the synthesis of choline in the rat. Arch. Biochem. 36, 11 (1952).

    Article  Google Scholar 

  • Stephenson, M. L., K. V. Thimann, and P. C. Zamecnik: Incorporation of C14-amino acids into proteins of leaf discs and cell-free fractions of tobacco leaves. Arch. Biochem. 56, 194 (1956).

    Article  Google Scholar 

  • Sterling, K.: The turnover rate of serum albumin in man as measured by I131-tagged albumin. J. clin. Invest. 30, 1228 (1951).

    Article  PubMed  CAS  Google Scholar 

  • — Serum albumin turnover in Laennec’s cirrhosis as measured by I131-tagged albumin. J. clin. Invest. 30, 1238 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Stetten, D., Jr.: Biological relationships of choline, ethanolamine, and related compounds. J. biol. Chem. 140, 143 (1941).

    CAS  Google Scholar 

  • — The fate of dietary serine in the body of the rat. J. biol. Chem. 144, 501 (1942).

    CAS  Google Scholar 

  • — and B. Bloom: The metabolism of the amidine group of arginine in the intact rat. J. biol. Chem. 220, 723 (1956).

    PubMed  Google Scholar 

  • Stetten, M. R.: Some aspects of the metabolism of hydroxyproline studied with the aid of isotopic nitrogen. J. biol. Chem. 181, 31 (1949).

    PubMed  CAS  Google Scholar 

  • Stetten, M. R.: Mechanism of the conversion of ornithine into proline and glutamic acid in vivo. J. biol. Chem. 189, 499 (1951).

    PubMed  CAS  Google Scholar 

  • — and R. Schoenheimer: The metabolism of l(-)proline studied with the aid of deuterium and isotopie nitrogen. J. biol. Chem. 153, 113 (1944).

    Google Scholar 

  • Strassman, M., L. A. Locke, A. J. Thomas, and S. Weinhouse: A study of leucine biosynthesis in Torulopsis utilis. Science 121, 303 (1955).

    Article  PubMed  CAS  Google Scholar 

  • — A study of leucine biosynthesis in Torulopsis utilis. J. Amer. chem. Soc. 78, 1599 (1956).

    Article  CAS  Google Scholar 

  • J. B. Shatton, M. E. Corsey, and S. Weinhouse: Enzyme studies on the biosynthesis of valine in yeast. J. Amer. chem. Soc. 80, 1771 (1958).

    Article  CAS  Google Scholar 

  • A. J. Thomas, L. A. Locke, and S. Weinhouse: The biosynthesis of isoleucine. J. Amer. chem. Soc. 78, 228 (1956).

    Article  CAS  Google Scholar 

  • — and S. Weinhouse: The biosynthesis of valine. J. Amer. chem. Soc. 77, 1261 (1955).

    Article  CAS  Google Scholar 

  • — and S. Weinhouse: The biosynthesis of arginine by Torulopsis utilis. J. Amer. chem. Soc. 74, 1726 (1952).

    Article  CAS  Google Scholar 

  • — Biosynthetic pathways III. The biosynthesis of lysine by Torulopsis utilis. J. Amer. chem. Soc. 75, 1680 (1953).

    Article  CAS  Google Scholar 

  • Strecker, H. J.: The interconversion of glutamic acid and proline I. The formation of Δ ‘-pyrro-line-5-carboxylc acid from glutiamic acid in Escherichia coli. J. biol. Chem. 225, 825 (1957).

    PubMed  CAS  Google Scholar 

  • Suhadolnik, R. J., C. O. Stevens, R. H. Decker, L. M. Henderson, and L. V. Hankes: Species variation in the metabolism of 3-hydroxyanthranilate to pyridinecarboxylic acids. J. biol. Chem. 228, 973 (1957).

    PubMed  CAS  Google Scholar 

  • Swick, R. W.: Measurement of protein turnover in rat liver. J. biol. Chem. 231, 751 (1958).

    PubMed  CAS  Google Scholar 

  • D. L. Buchanan, and A. Nakao: The normal content of fixed carbon in amino acids. J. biol. Chem. 203, 55 (1953).

    PubMed  Google Scholar 

  • D. T. Handa: The distribution of fixed carbon in amino acids. J. biol. Chem. 218, 577 (1956).

    PubMed  Google Scholar 

  • Tabachnick, M., and H. Tarver: The conversion of methionine-S35 to cystathionine-S35 and taurine-S35 in the rat. Arch. Biochem. 56, 115 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Tabor, H., A. H. Mehler, O. Hayaishi, and J. White: Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids. J. biol. Chem. 196, 121 (1952).

    PubMed  CAS  Google Scholar 

  • — and R. W. Schayer: Isotopic measurements on the oxidation of histamine to imidazole acetic acid in vivo. J. biol. Chem. 200, 605 (1953).

    PubMed  CAS  Google Scholar 

  • S. M. Rosenthal, and C. W. Tabor: The biosynthesis of spermidine and spermine from putrescine and methionine. J. biol. Chem. 233, 907 (1958).

    PubMed  CAS  Google Scholar 

  • Takahashi, H., and J. M. Price: Dehydroxylation of xanthurenic acid to 8-hydroxyquinaldic acid. J. biol. Chem. 233, 150 (1958).

    PubMed  CAS  Google Scholar 

  • Tarver, H., and L. M. Morse: The release of the sulfur from the tissues of rats fed labeled methionine. J. biol. Chem. 173, 53 (1948).

    PubMed  CAS  Google Scholar 

  • — and C. L. A. Schmidt: The conversion of methionine to cystine: Experiments with radioactive sulfur. J. biol. Chem. 130, 67 (1939).

    CAS  Google Scholar 

  • — Radioactive sulfur studies 1. Synthesis of methionine, 2. Conversion of methionine sulfur to taurine sulfur in dogs and rats. J. biol. Chem. 146, 69 (1942).

    CAS  Google Scholar 

  • — The urinary sulfur partition in normal and cystinuric dogs fed labeled methionine. 167, 387 (1947).

    CAS  Google Scholar 

  • Tatum, E. L., and D. Shemin: Mechanism of tryptophan synthesis in Neurospora. J. biol. Chem. 209, 671 (1954).

    PubMed  CAS  Google Scholar 

  • Thomas, R. C., V. H. Cheldelin, B. E. Christensen, and C. H. Wang: Conversion of acetate and pyruvate to tyrosine in yeast. J. Amer. chem. Soc. 75, 5554 (1953).

    Article  CAS  Google Scholar 

  • Thompson, R. C., and J. E. Ballou: Studies of metabolic turnover with tritium as a tracer IV. Metabolically inert lipide and protein fractions from the rat. J. biol. Chem. 208, 883 (1954).

    PubMed  CAS  Google Scholar 

  • — Studies of metabolic turnover with tritium as a tracer V. The predominantly nondynamic state of body constituents in the rat. J. biol. Chem. 223, 795 (1956).

    PubMed  CAS  Google Scholar 

  • Tolbert, B. M., and coworkers: Private communication.

    Google Scholar 

  • Tomlinson, N.: Carbon dioxide and acetate utilization by Clostridium kluyveri II. Synthesis of amino acids. J. biol. Chem. 209. 597 (1954a).

    PubMed  CAS  Google Scholar 

  • — Carbon dioxide utilization by Clostridium kluyveri III. A new path of glutamic acid synthesis. J. biol. Chem. 209, 605 (1954b).

    PubMed  CAS  Google Scholar 

  • Toporek, M., L. L. Miller, and W. F. Bale: Carbon atom 2 of L-histidine-2-C14, a source of the carbon of labile methyl groups in liver. J. biol. Chem. 198, 839 (1952).

    PubMed  CAS  Google Scholar 

  • Topper, Y. J., and D.W. Stetten, Jr.: Formation of “acetyl” from succinate by rabbit liver slices. J. biol. Chem. 209, 63 (1954).

    PubMed  CAS  Google Scholar 

  • Turba, F. A. Leismann, and G. Kleinhenz: Zeitlicher Verlauf des Einbaues von C14-markier-ten Aminosäuren in die Proteine von Hefezellen. Biochem. Z. 329, 97 (1937).

    Google Scholar 

  • Tuve, T. W., and H. H. Williams: Identification of selenomethionine in the protein of E. coli employing the chromatographic fingerprint method. J. Amer. chem. Soc. 79, 5830 (1957).

    Article  CAS  Google Scholar 

  • Tyor, M. P.: Human serum albumin tagged with I131 in patients with ascites caused by abdominal carbinomatosis and portal cirrhosis: The rates of interchange between the vascular compartment and peritoneal cavity. J. Lab. clin. Med. 44, 110 (1954).

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., and S. P. Bessman: The hydroxylation of phenylalanine and antipyrine in phenylpyruvic oligophrenia. J. biol. Chem. 203, 961 (1953).

    PubMed  CAS  Google Scholar 

  • J. R. Cooper, C. T. Clark, and J. E. Baer: Rate of turnover of epinephrine in the adrenal medulla. Science 117, 663 (1953).

    Article  PubMed  CAS  Google Scholar 

  • E. Titus, H. Weissbach., and R E. Peterson: Biogenesis and metabolism of 5-hydroxyindole compounds. J. biol. Chem. 219, 335 (1956).

    PubMed  CAS  Google Scholar 

  • — and J. B. Wyngaarden: Precursors of adrenal epinephrine and norepinephrine in vivo. Biochim. biophys. Acta 20, 48 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, F., H. Tarver, and C. H. Li: Effects of growth and adrenocorticotropic hormones on the metabolism of albumin in hypophysectomized rats. J. biol. Chem. 209, 117 (1954).

    PubMed  CAS  Google Scholar 

  • Umbarger, H. E., and B. Brown: Isoleucine and valine metabolism in Escherichia coli 8. The formation of acetolactate. J. biol. Chem. 233, 1156 (1958).

    PubMed  CAS  Google Scholar 

  • — and E. J. Eyring: Acetolactate, an early intermediate in valine biosynthesis. J. Amer. chem. Soc. 79, 2980 (1957).

    Article  CAS  Google Scholar 

  • Ussing, H. H.: The rate of protein renewal in mice and rats studied by means of heavy hydrogen. Acta physiol. scand. 2, 209 (1941).

    Article  CAS  Google Scholar 

  • Varner, J. E., D. H. Slocum, and G. C. Webster: Transfer of oxygen in the arsenolysis of glutamine. Arch. Biochem. 73, 508 (1958).

    Article  PubMed  CAS  Google Scholar 

  • — and G. C. Webster: Studies on the enzymatic synthesis of glutamine. Plant Physiol. 30, 393 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, M., and D. Steinberg: Incorporation of amino acid analogues into crystalline proteins. IV. Int. Cong. Biochem. (Vienna) Symp. VIII (5) (1958).

    Google Scholar 

  • Ven, A. M., Vande, V. V. Koningsberger, and J. T. G. Overbeek: Isolation of a tyrosine-activating enzyme from baker’s yeast. Biochim. biophys. Acta 28, 134 (1958).

    Article  Google Scholar 

  • Vogel, H. J.: In McElroy, and Glass, Amino Acid Metabolism. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • — An ornithine-proline interrelation in Escherichia coli. J. Amer. chem. Soc. 78, 2631 (1956).

    Google Scholar 

  • P. H. Abelson, and E. T. Bolton: On ornithine and proline synthesis in Escherichia coli. Biochim. biophys. Acta 11, 584 (1953).

    Article  PubMed  Google Scholar 

  • — and D. M. Bonner: Acetylornithinase of Escherichia coli. Partial purification and some properties. J. biol. Chem. 218, 97 (1956).

    PubMed  Google Scholar 

  • — and B. D. Davis: Glutamic-γ-semialdehyde and Δ’-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Amer. chem. Soc. 74, 109 (1952).

    Article  Google Scholar 

  • Vohra, P., F. H. Lantz, and F. H. Kratzer: The effect of folic acid and vitamin B12 on the synthesis of serine and choline from glycine in the liver of young turkey poults. J. biol. Chem. 221, 501 (1956).

    PubMed  CAS  Google Scholar 

  • Volwiler, W., P. D. Goldsworthy, M. P. Macmartin, P. A. Wood, I. R. Mackay, and K. Fremont-Smith: Biosynthetic determination with radioactive sulfur of turnover rates of various plasma proteins in normal and cirrhotic man. J. clin. Invest. 34, 1126 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Wachsman, J. T.: The role of α-ketoglutarate and mesaconate in glutamate fermentation in Clostridium tetanomorphum. J. biol. Chem. 223, 19 (1956).

    PubMed  CAS  Google Scholar 

  • — and H. A. Barker: Tracer experiments on glutamate fermentation by Clostridium tetanomorphum. J. biol. Chem. 217, 695 (1955).

    PubMed  Google Scholar 

  • Wagner, R. P., A. Bergquist, and H. S. Forrest: The accumulation of acetylmethylcarbinol and acetylethylcarbinol by a mutant of Neurospora crassa and its significance in the biosynthesis of isoleucine and valine. J. biol. Chem. 234, 99 (1959).

    PubMed  CAS  Google Scholar 

  • Walker, J. B.: Studies on the mechanism of action of kidney transamidinase. J. biol. Chem. 224, 57 (1957).

    PubMed  CAS  Google Scholar 

  • Walter, H., and F. Haurowitz: Turnover of young and old serum proteins. Science 128, 140 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. H., B. E. Christensen, and V. H. Cheldelin: Conversion of acetate and pyruvate to glutamic acid in yeast. J. biol. Chem. 201, 683 (1953).

    PubMed  CAS  Google Scholar 

  • R. C. Thomas, V. H. Cheldelin, and B. E. Christensen: Conversion of acetate and pyruvate to aspartic acid in yeast. J. biol. Chem. 197, 663 (1952).

    PubMed  CAS  Google Scholar 

  • Wasserman, K., and H. S. Mayerson: Exchange of albumin between plasma and lymph. Amer. J. Physiol. 165, 15 (1951).

    PubMed  CAS  Google Scholar 

  • Watanabe, Y., S. Konishi, and K. Shimura: Biosynthesis of threonine from homoserine VI. Homoserine kinase. J. Biochem. (Tokyo) 44, 299 (1957).

    CAS  Google Scholar 

  • Webster, G. C.: Peptide bond synthesis in higher plants I. The synthesis of glutathione. Arch. Biochem. 47, 241 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Webster, G. C., Amino acid incorporation by intact and disrupted ribonucleoprotein particles. J. biol. Chem. 229, 535 (1957).

    PubMed  CAS  Google Scholar 

  • — and J. E. Varner: On the mechanism of the enzymatic synthesis of glutamine. J. Amer. chem. Soc. 76, 633 (1954).

    Article  Google Scholar 

  • Webster, G. C., and J. E. Varner: Peptide bond synthesis in higher plants II. Studies on the mechanism of synthesis of γ-glutamylcysteine. Arch. Biochem. 52, 22 (1954).

    Article  PubMed  CAS  Google Scholar 

  • — Aspartate metabolism and asparagine synthesis in plant systems. J. biol. Chem. 215, 91 (1955).

    PubMed  CAS  Google Scholar 

  • — Peptide bond synthesis in higher plants III. The formation of glutathione from γ-glutamylcysteine. Arch. Biochem. 55, 95 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Wegand, F., R. Junk, and D. Leber: Adenyl-thiomethyl pentose. Hoppe-Seylers Z. physiol. Chem. 291, 191 (1952).

    Google Scholar 

  • Weinhouse, S.: In McElroy, and Glass, Amino Acid Metabolism. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • — and B. Friedmann: Metabolism of labeled 2-carbon acids in the intact rat. J. biol. Chem. 191, 707 (1951).

    PubMed  Google Scholar 

  • — Study of precursors of formate in the intact rat. J. biol. Chem. 197, 733 (1952).

    Google Scholar 

  • — and R. H. Millington: Ketone body formation from tyrosine. J. biol. Chem. 181, 645 (1949).

    PubMed  Google Scholar 

  • Weiss, U., B. D. Davis, and E. S. Mingioli: Aromatic biosynthesis X. Identification of an early precursor as 5-dehydroquinic acid. J. Amer. chem. Soc. 75, 5572 (1952).

    Article  Google Scholar 

  • C. Gilvarg, E. S. Mingioli, and B. D. Davis: Aromatic biosynthesis XI. The aromatization step in the synthesis of phenylalanine. Science 119, 774 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Weissbach, A., D. Elwyn, and D. B. Sprinson: The synthesis of the methyl groups and ethanolamine moiety of choline from serine and glycine in the rat. J. Amer. chem. Soc. 72, 3316 (1950).

    Article  CAS  Google Scholar 

  • Westley, J., and J. Ceithaml: Synthesis of histidine in Escherichia coli II. Radioisotopic tracer studies. J. biol. Chem. 219, 139 (1956).

    PubMed  CAS  Google Scholar 

  • White, K.: The formation of glycine and serine: calculations of certain reaction rates in the rat using the data of Arnstein and Neuberger. Arch. Biochem. 75, 215 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Wiame, P. J.: Le role biosynthétique du cycle des acides tricarboxyliques. Advanc. Enzymol. 18, 241 (1957).

    CAS  Google Scholar 

  • Wieland, T., and H. Merz: In vitro Reaktion von Proteinen mit aktivierten Aminosäuren. Ein Ultramikroverfahren zum Edmanschen Ablauf radioaktiver Peptide. Biochem. Z. 330, 521 (1958).

    PubMed  CAS  Google Scholar 

  • — and G. Pfleiderer: Aktivierung von Aminosäuren. Advanc. Enzymol. 19, 235 (1957).

    CAS  Google Scholar 

  • — and B. Sandmann: Zum Wirkungsmechanismus der Glutamin-Synthetase aus Erbsen. Biochem. Z. 330, 198 (1958).

    PubMed  CAS  Google Scholar 

  • Wiggans, D. S., W. W. Burr, Jr., and H. W. Rumsfeld, Jr.: Metabolism of serum proteins I. Albumin labeled with valine-1-C14 and methionine-S35. Arch. Biochem. 72, 169 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Willson, C. D., and E. A. Adelberg: The biosynthesis of leucine and valine 4. Accumulation of citramalic acid and α, β-dimethylmalic acids by a Neurospora mutant. J. biol. Chem. 229, 1011 (1957).

    PubMed  CAS  Google Scholar 

  • K. W. King, and R. H. Burris: Transamination reactions in plants. J. biol. Chem. 208, 863 (1954).

    Google Scholar 

  • R. J. Hill, and R. E. Koeppe: The metabolism of γ-aminobutyric acid-4-C14 by intact rats. J. biol. Chem. 234, 347 (1959).

    Google Scholar 

  • Windsor, E.: α-Aminoadipic acid as a precursor to lysine in Neurospora. J. biol. Chem. 192. 607 (1951).

    PubMed  CAS  Google Scholar 

  • Wingo, W. J., and J. Awapara: Decarboxylation of L-glutamic acid by brain. J. biol. Chem. 187, 267 (1950).

    PubMed  CAS  Google Scholar 

  • R. A. Smith, and J. Wood: The metabolism of DL-methionine sulfone by the rat. Arch. Biochem. 47, 307 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Winnick, T., I. Moring-Claesson, and D. M. Greenberg: Distribution of radioactive carbon among certain amino acids of liver homogenate protein, following uptake experiments with labeled glycine. J. biol. Chem. 175, 127 (1948).

    PubMed  CAS  Google Scholar 

  • — and R. E. Winnick: Biosynthesis of carnosine and anserine in vitro. Biochim. biophys. Acta 23, 649 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Winzler, R. J., K. Moldave, M. E. Rafelson, Jr., and H. E. Pearson: Conversion of glucose to amino acids by brain and liver of the new born mouse. J. biol. Chem. 199, 485 (1925).

    Google Scholar 

  • Wittenberg, J., and D. Shemin: The location in the protoporphyrin of the carbon atoms derived from the α-carbon atom of glycine. J. biol. Chem. 185, 103 (1950).

    PubMed  CAS  Google Scholar 

  • Woessner, J. F., B. K. Bachhawat, and M. J. Coon: Enzymatic activation of carbon dioxide II. Role of biotin in the carboxylation of β-hydroxyisovaleryl coenzyme A. J. biol. Chem. 233, 520 (1958).

    PubMed  CAS  Google Scholar 

  • Wolf, G.: The metabolism of α-C14-histidine in the intact rat. J. biol. Chem. 200, 637 (1953).

    PubMed  CAS  Google Scholar 

  • — and C. R. A. Berger: Themetabolism of hydroxyproline in the intact rat. Incorporation of hydroxyproline into protein and urinary metabolites. J. biol. Chem. 230, 231 (1958).

    PubMed  Google Scholar 

  • Wolf, G., W. W. Heck, and J. C. Leak: The metabolism of hydroxyproline-α-C14 in the intact rat. Radioactivity in amino acids from proteins. J. biol. Chem. 223, 95 (1956).

    PubMed  CAS  Google Scholar 

  • P-H. L. Wu, and W. W. Heck: The metabolism of α-C14-histidine in the intact rat 2. Radioactive excretion products in urine. J. biol. Chem. 222, 159 (1956).

    PubMed  CAS  Google Scholar 

  • Wolff, E. C., S. Black, and P. F. Downey: Enzymatic synthesis of S-methylcysteine. J. Amer. chem. Soc. 78, 5958 (1956).

    Article  CAS  Google Scholar 

  • Wood, H. G.: The synthesis of liver glycogen in the rat as an indicator of intermediary metabolism. Cold Spr. Harb. Symp. quant. Biol. 13, 201 (1948).

    Article  CAS  Google Scholar 

  • Work, E.: The isolation of α, ε-diaminopimelic acid from Cornybacterium diphtheriae and Mycobacterium, tuberculosis. Biochem. J. 49, 17 (1951).

    PubMed  CAS  Google Scholar 

  • — and D. L. Dewey: The distribution of α, ε-diaminopimelic acid among various microorganisms. J. gen. Microbiol. 9, 394 (1953).

    Article  PubMed  Google Scholar 

  • Yanofsky, C.: An isotopic study of the conversion of anthranilic acid to indole. J. biol. Chem. 217, 345 (1955).

    PubMed  CAS  Google Scholar 

  • — Indole-3-glycerolphosphate, an intermediate in the biosynthesis of indole. Biochim. biophys. Acta 20, 438 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, A., and M. Yamasaki: Studies on the mechanism of protein synthesis; Incorporation of ethionine into α-amylase of Bacillus subtilis. Biochim. biophys. Acta 34, 158 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Zabin, I., and K. Bloch: The formation of ketone bodies from isovaleric acid. J. biol. Chem. 185, 117 (1950).

    PubMed  CAS  Google Scholar 

  • Zachan, N. G., G. Acs, and F. Lipmann: Isolation of adenosine amino acid esters from a ribonuclease digest of soluble liver ribonucleic acid. Proc. nat. Acad. Sci. (Wash.) 44, 885 (1958).

    Article  Google Scholar 

  • Zakrzewski, S. F., and C. A. Nichol: The incorporation of formate-C14 into citrovorum factor. J. biol. Chem. 213, 697 (1955).

    PubMed  CAS  Google Scholar 

  • Zamecnik, P. C., and E. B. Keller: Relation between phosphate energy donors and incorporation of labeled amino acids into proteins. J. biol. Chem. 209, 337 (1954).

    PubMed  CAS  Google Scholar 

  • Ziegler, D. M., and J. B. Melchior: Fractionation of pituitary homogenates by differential centrifugation II. Distribution of the amino acid-incorporating system. J. biol. Chem. 222, 731 (1956).

    PubMed  CAS  Google Scholar 

  • Zioudrou, G., S. Fujii, and J. S. Fruton: Labeling of proteins by isotopic amino acid derivatives. Proc. nat. Acad. Sci. (Wash.) 44, 439 (1948).

    Article  Google Scholar 

Download references

Authors

Editor information

H. Schwiegk F. Turba

Rights and permissions

Reprints and permissions

Copyright information

© 1961 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarver, H., Rothstein, M., Tarver, H. (1961). Metabolism of Amino Acids and Protein. In: Schwiegk, H., Turba, F. (eds) Künstliche Radioaktive Isotope in Physiologie Diagnostik und Therapie/Radioactive Isotopes in Physiology Diagnostics and Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-92819-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-92819-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49048-4

  • Online ISBN: 978-3-642-92819-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics