Advertisement

Theory of the Wake

  • William Frederick Durand

Abstract

The validity of the airfoil theory as presented in the foregoing chapters is limited to the range of the angle of attack in which the airfoil is “unstalled”, i. e. no “separation” of the flow from the surface of the airfoil occurs. It is known that “stalling” or separation is, in general, connected with a certain decrease of the lift and with a very definite increase of the drag. We do not deal in this volume with the causes and the mechanism of the separation itself, because this problem belongs chiefly to the theory of viscous fluids. However, the motion in the “wake” produced behind a moving body in the case of separation can be approximately described by different methods using only the equations of ideal fluids. These methods are based on the assumption that although the viscous forces are in most cases essential for the separation, their influence on the flow in the wake itself can be neglected in a first approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

a) Method of Discontinouus Potential Motion: (2–4)

  1. Helmholtz, H., Über diskontinuierliche Flüssigkeitsbewegungen, Monatsberichte der Berliner Akademie 1868.Google Scholar
  2. Kirchhofe, G., Zur Theorie freier Flüssigkeitsstrahlen, Crelles Journal 70, p. 289, 1869.CrossRefGoogle Scholar
  3. Rayleigh, Lord, On the Resistance of Fluids, Phil. Mag. (IV) 2, p. 430, 1876.Google Scholar
  4. Rayleigh, Lord,Also Scientific Papers, Vol. I, p. 287, 1899.Google Scholar
  5. Levi-Civita, T., Scie e leggi di resistenza, Rendiconti del Circola Mat. di Palermo, fasc. 1, 1907.Google Scholar
  6. Kelvin, Lord, On the Doctrine of Discontinuity of Fluid Motion in Connection with the Resistance against a Solid Moving through a Fluid, Math. and Phys. Papers, Vol. IV, p. 215, 1910.Google Scholar
  7. Kelvin, Lord, Also in “Nature”, Vol. 50, p. 524, 1894.Google Scholar
  8. Greenhill, G., Report on the Theory of a Streamline past a Plane Barrier, etc. A.R.C. R. and M. 19, 1910.Google Scholar
  9. Greenhill, G., The Dynamics of Mechanical Flight, London 1912.MATHGoogle Scholar
  10. Villat, H.: Sur la résistance des fluides, Ann. Scient. de l’Ecole Normale Sup. 3. sér. 28, p. 203, Paris 1911;MathSciNetGoogle Scholar
  11. Villat, H.: Sur la résistance des fluides, Ann. Scient. de l’Ecole Normale Sup. 3. sér. 31, p. 455, 1914.MathSciNetGoogle Scholar
  12. Valcovici, V., Über diskontinuierliche Flüssigkeitsbewegungen mit zwei freien Strahlen, Dissertation, Göttingen 1913.Google Scholar
  13. Riabouchinsky, D., Sur les surfaces de glissement dans les fluides, Bull. Inst. Aérodyn. de Koutchino, Fasc. VI, p. 9 (Paris 1920).Google Scholar
  14. Riabouchinsky, D., Mouvement initial d’un liquide en contact avec un obstacle à arêtes vives, C. R. Acad. Paris 172, p. 521, 1921.Google Scholar
  15. Cisotti, U., Idromeccanica piana, Milano 1921–1922.Google Scholar
  16. Thirry, R., Sur les solutions multiples des problèmes d’hydrodynamique relatives aux mouvements glissants, Ann. Scient. de l’Ecole Normale Sup. 3. sér., 38, p. 229, 1921.Google Scholar
  17. Riabofchinsky, D., Recherches d’hydrodynamique, Thèses, Paris 1922.Google Scholar
  18. Riabofchinsky, D., See also: On some Cases of Two-dimensional Fluid Motions, Proc. London Mathem. Soc. (2) 25, p. 185, 1926.CrossRefGoogle Scholar
  19. Weinstein, A., Sur l’unicité des mouvements glissants, C. R. Acad. Paris 176, p. 493, 1923;MATHGoogle Scholar
  20. Weinstein, A., Ein hydrodynamischer Unitätssatz, Math. Zeitschrift 19, p. 265, 1924.CrossRefGoogle Scholar
  21. Riabourchinsky, D., Sur les singularités des mouvements fluides, Proc. II. Intern. Congress for Appl. Mech., p. 512, 1926.Google Scholar
  22. Brodetzely, S., Discontinuous Fluid Motion past Curved Barriers, Proc. II. Congress for Appl. Mech., p. 527, Zürich 1926.Google Scholar
  23. Rosenhead L., Resistance of a Barrier in the Shape of an Arc of a Circle, Proc. Roy. Soc. A 117, p. 417, 1928.CrossRefMATHGoogle Scholar
  24. Villat, H., Leçons sur l’hydrodynamique, Paris, 1929.Google Scholar
  25. Schmieden, C., Die unstetige Strömung um einen Kreiszylinder, Ing.-Arch. 1, p. 104, 1929–1930.CrossRefMATHGoogle Scholar
  26. Weinstein, A., Zur Theorie der Flüssigkeitsstrahlen, Math. Zeitschrift 31, p. 424, 1929.CrossRefMATHGoogle Scholar
  27. Riabouchinsky, D., Sur quelques problèmes généraux relatifs au mouvement et à la résistance des fluides, and: Théorie cavitationelle de la résistance des fluides, Proc. III. Intern. Congress for Appl. Mech., Vol. I, pp. 137, 148, Stockholm 1930.Google Scholar
  28. Betz, A., and Peterson, E.: Anwendung der Theorie der freien Strahlen, Ing.-Arch. 2, p. 190, 1931–1932.CrossRefGoogle Scholar
  29. Quarleri, A., Sulla teoria della scia nei liquidi perfetti. Caso del cilindro rotundo, Acc. dei Lincei 14, p. 332, 1931.MATHGoogle Scholar
  30. Bergmann, S., Mehrdeutige Lösungen bei Potentialströmungen mit freien Grenzen, Z.A.M.M. 12, p. 95, 1932.Google Scholar
  31. Weinstein, A., Sur les sillages provoqués par des arcs circulaires, Acc. dei Lincei 17, p. 83, 1933.MATHGoogle Scholar
  32. Weinstein, A., Sur les points de détachement des lignes de glissement, C. R. Acad. Paris 196, p. 324, 1933.MATHGoogle Scholar
  33. Friedrichs, K., Über ein Minimumproblem für Potentialströmungen mit freiem Rande, Math. Annalen 109, p. 64, 1933.Google Scholar
  34. Leray, J., and Weinstein, A., Sur un problème de représentation conforme posé par la théorie de Helmholtz, C. R. Acad. Paris 198, p. 430, 1934.Google Scholar
  35. See also:Demtchenko, B., Problèmes mixtes harmoniques en hydrodynamique des fluides parfaits, Paris, 1933, where very extensive bibliographies of this subject have been given.MATHGoogle Scholar

b) Vortex Sheets and Double Bows of Vortices: (5–7)

  1. Benard, H., Formation de centres de giration à l’arrière d’un obstacle en mouvement, C. R. Acad. Paris 147, p. 839, 1908.Google Scholar
  2. Benard, H., Also C. R. Acad. Paris 182, p. 1375, 1926;\Google Scholar
  3. Benard, H., Proc. II. Intern. Congress for Appl. Mech. pp. 495, 502, Zürich 1926.Google Scholar
  4. Kármán, Th. von, Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten 12, p. 509, 1911;\Google Scholar
  5. Kármán, Th. von, Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Göttinger Nachrichten 13, p. 547, 1912.Google Scholar
  6. Kármán, Th. von and Rubach, H.: Über den Mechanismus des Flüssigkeits- und Luftwiderstandes, Phys. Zeitschr. 13, p. 49, 1912.Google Scholar
  7. Glauert, H., Characteristics of a Kármán Vortex Street in a Channel of Finite Breadth, Proc. Roy. Soc. A 120, p. 34, 1928.CrossRefMATHGoogle Scholar
  8. Schlayer, K., Über die Stabilität der Kármánschen Wirbelstraße gegenüber Störungen in drei Dimensionen, Z.A.M.M. 8, p. 352, 1928.MATHGoogle Scholar
  9. Rosenhead, L., The Kármán Street of Vortices in a Channel of Finite Breadth, Phil. Trans. A 228, p. 275, 1929.CrossRefMATHGoogle Scholar
  10. Rosenhead, L., Double Vortices with Arbitrary Stagger, Proc. Cambridge Phil. Soc. 25, p. 132, 1929.CrossRefMATHGoogle Scholar
  11. Tomotika, S., Stability of a Kármán Vortex Street in a Channel of Finite Breadth, Proc. Phys. Math. Soc. Japan III, 2, p. 53, 1929.Google Scholar
  12. Villat, H., Leçons sur la théorie des tourbillons, Paris, 1930.MATHGoogle Scholar
  13. Levy, H., and Hooker, S. G., On the Vortex System in the Wake of a Cylinder in a Fluid, Phil. Mag. (VII) 9, p. 489, 1930.Google Scholar
  14. Rosenhead, L., The Formation of Vortices from a Surface of Discontinuity, Proc. Roy. Soc. A 134, p. 170, 1931.CrossRefGoogle Scholar
  15. Rosenhead, L., Note on the Instability of a Surface of Discontinuity, Proc. Cambr. Phil. Soc. 28, p. 35, 1932.CrossRefGoogle Scholar

c) Oseer’s Theory of the Wake: (8)

  1. Oseen, C. W., Beiträge zur Hydrodynamik, Ann. d. Physik (IV) 46, pp. 231, 623, 1130, 1915.Google Scholar
  2. Burgers, J. M., Stationary Streaming Caused by a Body in a Fluid with Friction, Proc. Acad. Amsterdam 23, p. 1082, 1922.Google Scholar
  3. Zeblon, N.: On Potential Problems in the Theory of Fluid Resistance, Proc. I. Intern. Congress for Appl. Mech., p. 365, Delft 1924.Google Scholar
  4. Oseen, C. W., Hydrodynamik, Leipzig 1927.MATHGoogle Scholar
  5. Burgers, J. M., On Oseen’s Theory for the Approximate Determination of the Flow of a Fluid with very Small Friction along a Body, Proc. Acad. Amsterdam 31, p. 433, 1927–1928.Google Scholar
  6. Eisner, F., Widerstandsmessungen an umströmten Zylindern, Berlin, 1929.MATHGoogle Scholar
  7. Villat, H., Leçons sur F hydrodynamique, Paris, 1929.Google Scholar
  8. Burgers, J. M., On the Application of Oseen’s Hydrodynamical Equations to the Problem of the Slipstream from an Ideal Propeller. Proc, Acad. Amsterdam 32, p. 1278, 1929Google Scholar
  9. Burgers, J. M., A Remark on a Formula for the Resistance Experienced by a Body in a Fluid, Given by Oseen and Zeilon, Proc. Acad. Amsterdam 33, p. 504, 1930.MATHGoogle Scholar
  10. Burgees, J. M., Über die Anwendung der Oseenschen hydrodynamischen Gleichungen auf das Widerstandsproblem, Proc. III. Intern. Congress for Appl. Mech., Vol. I, p. 191, Stockholm 1930.Google Scholar
  11. Lindner, F. V., Der Formwiderstand einer Platte, Proc. III. Intern. Congress for Appl. Mech., Vol. I, p. 198, Stockholm 1930.Google Scholar
  12. Lindner, F. V., Kielwasserströmungen um eine Platte, Ing.-Arch. 2, p. 169, 1931–1932.CrossRefGoogle Scholar
  13. Müller, W., Zur Konstruktion von idealen Kielwasserströmungen, Proc. III. Intern. Congress for Appl. Mech., Vol. I, p. 205, 1930.Google Scholar
  14. Müller, W., Zur Theorie der Kielwasserströmung um eine ebene Platte, Ing.-Arch. 2, p. 20, 1931–1932.CrossRefGoogle Scholar
  15. Müller, W., Zur Theorie der Oseen-Strömung um eine ebene Platte, Ing.-Arch., 2, p. 415, 1931–1932.CrossRefGoogle Scholar

Copyright information

© Berlin · Julius Springer 1935

Authors and Affiliations

  • William Frederick Durand

There are no affiliations available

Personalised recommendations