Advertisement

Airfoils and Airfoil Systems of Finite Span

  • William Frederick Durand

Abstract

The subject of this Chapter is the investigation of the forces experienced by an airfoil of finite span and by airfoil systems. The basic idea for the following deductions has been indicated at the end of III 32. The only point we have to add is that in the case of a single wing of ordinary type we may substitute the lift per unit span l for Λ (see III 31), and consequently take l as the principal unknown quantity. Then III (27.7) becomes:
$$ w = \frac{1}{{{e^V}}}\int\limits_{ - b}^{ + b} {dn\frac{{{{dl} \mathord{\left/ {\vphantom {{dl} {dn}}} \right. \kern-\nulldelimiterspace} {dn}}}}{{4\pi \left( {y - \eta } \right)}}} $$
(1.1)
and III (31.9), neglecting the difference between φ and tan φ:
$$ \varphi = \frac{w}{V} = \frac{1}{{{e^{{V^2}}}}}\int\limits_{ - b}^{ + b} {dn\frac{{{{dl} \mathord{\left/ {\vphantom {{dl} {dn}}} \right. \kern-\nulldelimiterspace} {dn}}}}{{4\pi \left( {y - n} \right)}}} $$
(1.2)
Now suppose that the geometrical angle of incidence of an airfoil section. defined with reference to the x axis, or what comes to the same, with reference to the horizontal velocity V, has the value α; then the effective angle of incidence i, measured from the downward sloping effective velocity, is given by1:i = αφ

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter IV A. Single Wing

  1. Betz, A., Beiträge zur Tragflügeltheorie mit besonderer Berücksichtigung des einfachen rechteckigen Flügels, Dissertation, Göttingen 1919.Google Scholar
  2. Glauert, H., Aerofoil Theory, A.R.C. R. and M. 723, p. 160, 1920–1 (I).Google Scholar
  3. Glauert, H., The Calculation of the Characteristics of Tapered Wings, A.R.C. R. and M. 767, p. 76, 1921–2 (I).Google Scholar
  4. Glauert, H., A Method of Calculating the Characteristics of a Tapered Wing. A.R.C. R. and M. 824, p. 74, 1922–3 (I).Google Scholar
  5. Fuchs, R., Beiträge zur Prandtl’schen Tragflügeltheorie, Z.A.M.M. 1, p. 106, 1921.zbMATHGoogle Scholar
  6. Trefftz, E., Prandtl’sche Tragflächen- und Propellertheorie, Vorträge aus dem Gebiete der Hydro- und Aerodynamik, p. 34, Berlin 1924. (Th. von Kármán and T. Levi-Civita.) Also Z.A.M.M. 1, p. 206, 1921.Google Scholar
  7. Blenk, H., Der Eindecker als tragende Wirbelfläche, Z.A.M.M. 5, p. 36, 1925.zbMATHGoogle Scholar
  8. Wieselsberger, C., Theoretische Untersuchungen über die Querruderwirkungen beim Tragflügel, Rep. Aeron. Res. Inst. Tokyo, Vol. II, No. 30, p. 421, 1927.Google Scholar
  9. Betz, A. and Peterson, E., Zur Theorie der Querruder, Z.A.M.M. 8, p. 253, 1928.zbMATHGoogle Scholar
  10. Gates, S. B., An Analysis of a Rectangular Monoplane with Hinged Tips, A.R.C. R. and M. 1175, Vol. 33, p. 257, 1928–9 (I).Google Scholar
  11. Peterson, E., Theoretische und experimentelle Untersuchung der unter Einwirkung von Querrudern an Tragflügeln auftretenden Momente, Luftfahrtforschung II, 2, 1928.Google Scholar
  12. Wieselsbebger, C., and Asano, T., Bestimmung der durch Querruder eines Tragflügels erzeugten Luftkräfte und Momente, Z.F.M. 19, p. 289, 1928.Google Scholar
  13. Glauert, H., and Gates, S. B., The Characteristics of a Tapered and Twisted Wing with Sweepback, A.R.C. R. and M. 1226, Vol. 33, p. 267, 1928–9 (I).Google Scholar
  14. Noda, T., Contribution on Theory of Aerofoil (Rectangular Wing), Proc. Imp. Acad. Tokyo 5, p. 119, 1929.zbMATHGoogle Scholar
  15. Lotz, I., Berechnung der Auftriebsverteilung beliebig geformter Flügel, Z.F.M. 22, p. 189, 1931.Google Scholar

Chapter IV B. Multiplane Systems

  1. Betz, A., Die gegenseitige Beeinflussung zweier Tragflächen, Z.F.M. 5, p. 253, 1914.Google Scholar
  2. Betz, A., Berechnung der Luftkräfte auf eine Doppeldeckerzelle aus den entsprechenden Werten für Eindecker-Tragflächen, Techn. Berichte I, p. 103, 1917.Google Scholar
  3. Prandtl, L., Der induzierte Widerstand von Mehrdeckern, Techn. Berichte III, p. 309, 1918.Google Scholar
  4. Munk, M. General Biplane Theory, U.S. N.A.C.A. Report No. 151, 1922.Google Scholar
  5. Glauert, H., Theoretical Relationships for a Biplane, A.R.C. R. and M. 901, p. 173, 1923–4 (I).Google Scholar
  6. Glauert, H., The Performance of Tandem Systems, A.R.C. R. and M. 949, p. 66, 1924–5 (I).Google Scholar
  7. Eck, B., Neuartige Berechnung der aerodynamischen Eigenschaften eines Doppeldeckers, Z.F.M. 16, p. 183, 1925.Google Scholar
  8. Bose, N. K., and Prandtl, L., Beiträge zur Aerodynamik des Doppeldeckers, Z.A.M.M. 7, p. 1, 1927.zbMATHGoogle Scholar
  9. Hemke, P. E., Drag of Wings with End Plates, U.S. N.A.C.A. Report No. 267, p. 253, 1927.Google Scholar
  10. Rossner, G., Die günstigste Auftriebsverteilung bei Tragflügelgittern mit endlicher Spannweite, Ing.-Arch. 2, p. 36, 1931–1932.CrossRefGoogle Scholar
  11. Ferrari, C., Sul problema del biplano di apertura finita, L’Aerotecnica 13, p.39, 1933.Google Scholar
  12. Pistolesi, E., Considerazioni sul problema del biplano, L’Aerotecnica 13, p. 185, 1933.Google Scholar
  13. Millikan, C. B., Quoted Chapter II, b.Google Scholar

Chapter IV C. Influence of Boundaries (Interference)

  1. Wieselsberger, C., Über den Flügelwiderstand in der Nähe des Bodens, Z.F.M. 12, p. 145, 1921.Google Scholar
  2. Glauert, H., The Interference of Wind Channel Walls on the Aerodynamical Characteristics of an Aerofoil, A.R.C. R. and M. 867, p. 118, 1923–4 (I).Google Scholar
  3. Pistolesi, E., L’induzione di un tunnel di sezione quadrata, L’Aerotecnica, 1923.Google Scholar
  4. Koning, C., and Maas, v. d., Tunnel Corrections for Unsymmetrical Lift Distribution, Verh. and Versl. Rijksstudiedienst voor de Luchtvaart, IV, p. 240, 1927 (in Dutch).Google Scholar
  5. Stüper, J., Der durch einen Freistrahl hindurchgesteckte Tragflügel, Z.A.M.M. 7, p.249, 1927.Google Scholar
  6. Terazawa, K., On the Interference of Wind Tunnel Walls of Rectangular Cross Section on the Aerodynamic Characteristics of a Wing, Rep. Aeron. Res. Inst. Tokyo, Vol. IV, No. 44, p. 69, 1928.Google Scholar
  7. Bonder, J., Über die Bewegung von zwei Walzen in einer idealen Flüssigkeit mit Anwendung auf die Theorie des Fluges in der Nähe der Erde, Z.A.M.M. 9, p. 242, 1929 (in Polish, Trav. Inst. Aérod. Varsovie, Vol. IV, 1, p. 1, 1925).Google Scholar
  8. von Kármán, Th., Beitrag zur Theorie des Auftriebes, Vorträge aus dem Gebiete der Aerodynamik usw., p. 95, Berlin 1930. (A. Gilles, L. Hopf and Th. von Kármán.) See footnote 1, p. 243.Google Scholar
  9. Rosenhead, L., The Effect of Wind Tunnel Interference on the Characteristics of an Aerofoil, Roy. Soc. Proc. A 129, p. 135, 1930.CrossRefzbMATHGoogle Scholar
  10. Müller, W., Abbildungstheoretische Grundlagen für das Problem des Tragflügels in Erdbodennähe, Z.A.M.M. 11, p. 231, 1931.Google Scholar
  11. Poggi, L., Sulla variazione da apportarsi ai resultati delle esperienze eseguite al tunnel aerodinamico su die un modello alare, L’Aerotecnica No. 4, p. 424, 1931.Google Scholar
  12. Glauert, H., Some General Theorems Concerning Wind Tunnel Interference on Aerofoils, A.R.C. R. and M. 1470, Vol. 41, p. 218, 1932–3 (I).Google Scholar
  13. Glauert, H., Interference on the Characteristics of an Aerofoil in a Wind Tunnel of Circular Section, A.R.C. R. and M. 1453, Vol. 41, p. 229, 1932–3 (I).Google Scholar
  14. Glauert, H., Interference on the Characteristics of an Aerofoil in a Wind Tunnel of Rectangular Section, A.R.C. R. and M. 1459, Vol. 41, p. 241, 1932–3 (I).Google Scholar
  15. Millikan, C. B., On the Lift Distribution for a Wing of Arbitrary Plan Form in a Circular Wind Tunnel, Trans. A.S.M.E. 54, p. 197, 1932.Google Scholar
  16. Glauert, H., Wind Tunnel Interference on Wings, Bodies and Airscrews, A.R.C. R. and M. 1566, 1933.Google Scholar
  17. Prandtl, L., Tragflächenauftrieb und Widerstand in der Theorie, Jahrbuch der wissenschaftlichen Gesellschaft für Luftfahrt 5, p. 37, 1920.Google Scholar
  18. Prandtl, L., Application of Modern Hydrodynamics to Aeronautics, U.S. N.A.C.A. Report No. 116, 1921.Google Scholar
  19. Prandtl, L., and others, Ergebnisse der Aerodynamischen Versuchsanstalt, Vols. I–IV, München 1921–1932.Google Scholar
  20. Prandtl, L. and Tietjens, O., Hydro- und Aerodynamik, Vols. I and II, Berlin 1929–1931. (English edition by Den Hartog, New York 1933).Google Scholar
  21. Prandtl, L., Tragflächentheorie I und II, Göttinger Nachrichten, p. 451, 1918; p. 107, 1919. Reprinted in: Prandtl, L. and Betz, A., Vier Abhandlungen zur Hydro- und Aerodynamik, Göttingen 1927.Google Scholar
  22. 1.
    The reader is referred to Th. von Kábmán, Beitrag zur Theorie des Auftriebes, Vorträge aus dem Gebiete der Aerodynamik usw. (Aachen 1929), p. 98. Also for cases treated with the aid of the theory of two-dimensional motion to T. Sasaki, On the effect of the walls of a wind tunnel upon the lift coefficient of a model, Rep. Aeron. Res. Instit. Tokyo No. 77 (Vol. VI, p. 315, 1931; Japanese with English abstract).Google Scholar
  23. 2.
    Cases of two-dimensional motion have been considered by various authors, who nearly always make use of the methods of conformal transformation. By way of example the following papers are mentioned: T. Sasaki, On the effect of the wall of a wind tunnel upon the lift coefficient of a model, Rep. Aeron. Res. Instit. Tokyo No. 46 (Vol. IV, p. 149, 1928; Japanese with English abstract) and No. 77 (see footnote above)Google Scholar
  24. 2a.
    L. Rosenhead, The lift on a flat plate between parallel walls, Proc. Roy. Soc. London A 132, p. 127, 1931CrossRefGoogle Scholar
  25. 2b.
    S. Tomotika, On the moment of the force acting on a flat plate placed in a stream between two parallel walls, Rep. Aeron. Res. Instit. Tokyo No. 94 (Vol. VII, p. 357, 1933)Google Scholar
  26. 2c.
    S. Tomotika, T. Nagamiya and Y. Takenouti, The lift on a flat plate near a plane wall etc., ibidem No. 97 (Vol. VIII, p. 1, 1933; further papers are following).Google Scholar
  27. 1.
    In the case of an airfoil of finite span (see 32) there is also a change in the angle of incidence, causing an increase of the lift. Other effects causing an increase of lift come into play as soon as H is of the order of the chord, or smaller than the chord of the airfoil [see: Tomotika and others, Rep. Aeron. Res. Instit. Tokyo No. 97 (Vol. VIII, p. 1, 1933)Google Scholar
  28. 1a.
    further: G. Dätwyler, Untersuchungen über das Verhalten von Tragflügelprofilen sehr nahe am Boden, Mitt. Inst. f. Aerodynamik E. T. H. Zürich, 1934].Google Scholar

Copyright information

© Berlin · Julius Springer 1935

Authors and Affiliations

  • William Frederick Durand

There are no affiliations available

Personalised recommendations