General and Exact Theory of Waves in Finite Elastic Strain

Conference paper


After the classical researches of Christoffel, Hugoniot, Hadamard, and Duhem on waves in elastic materials, it might seem that little remains to be learned. Such is not the case. As for most parts of mechanics, it has been necessary in the last decade to go over the matter again, not only so as to free the conceptual structure from lingering linearizing and to fix it more solidly in the common foundation of modern mechanics, but also so as to derive from it specific predictions satisfying modern needs for contact between theory and rationally conceived experiment. After reading the recent papers by Toupin & Bernstein [1961, 1] and by Hayes & Rivlin [1961, 2], I have seen that more can be learned than is there proved. In the present paper I follow Toupin & Bernstein’s approach to the general theory yet try to achieve the elegant and explicit directness of Ericksen’s earlier treatment of isotropic incompressible materials [1953]. At the same time, all the results of Hayes & Rivlin are obtained in shorter but more general form as immediate corollaries.


Elastic Material Wave Speed Isotropic Material Hyperelastic Material Singular Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1901.
    Hadamard, J.: Sur la propagation des ondes. Bull. Soc. Math. France 29, 50–60.zbMATHGoogle Scholar
  2. 1903 1.
    Hadamard, J.: Leçons sur la Propagation des Ondes et les Equations de l’Hydrodynamique (Lectures of 1898 —1900). Paris: Hermann.Google Scholar
  3. 2.
    Duhem, P.: Sur la propagation des ondes dans un milieu parfaitement élastique affecté de déformations finies. C. R. Acad. Sci. Paris 136, 1379–1381 (1903).zbMATHGoogle Scholar
  4. 1905.
    Duhem, P.: Recherches sur l’élasticité. Troisième Partie. La stabilité des milieux élastiques. Ann. Ecole Norm. (3) 22, 143–217.(1905).MathSciNetGoogle Scholar
  5. 1906.
    Duhem, P.: Recherches sur l’élasticité. Quatrième Partie. Propriétés générales des ondes dans les milieux visqueux et non visqueux. Ann. Ecole Normale (3) 23, 169–223. (1906).MathSciNetGoogle Scholar
  6. 1920 1.
    Jouguet, E.: Sur les ondes de choc dans les corps solides. C. R. Acad. Sci. Paris 171, 461–464. (1920)zbMATHGoogle Scholar
  7. 2.
    Jouet, E.: Sur la célérité des ondes dans les corps solides. C. R. Acad. Sci. Paris 171, 512–515. (1920)Google Scholar
  8. 3.
    Jouguet, E.: Sur la variation d’entropie dans les ondes de choc des solides élastiques. C. R. Acad. Sci. Paris 171, 789–791. (1920)zbMATHGoogle Scholar
  9. 4.
    Jouguet, E.: Application du principe de Carnot-Clausius aux ondes de choc des solides élastiques. C. R. Acad. Sci. Paris 171, 904–907. (1920)zbMATHGoogle Scholar
  10. 1921.
    Jouguet, E.: Notes sur la théorie de l’élasticité. Ann. Toulouse (3) 12 47–92. (1921)MathSciNetzbMATHGoogle Scholar
  11. 1925.
    Brillouin, L.: Sur les tensions de radiation. Annales de Physique (10) 4, 528–586. (1925)zbMATHGoogle Scholar
  12. 1938.
    Brillouin, L.: Les Tenseurs en Mécanique et en Elasticité. Paris: Masson. (1938)Google Scholar
  13. 1942.
    Finzi, B.: Propagazione ondosa nei continui anisotropi. Rend. Ist. Lombardo Cl. Sci. Mat. Nat. 75= (3) 6 (1941–1942), 630–640.Google Scholar
  14. 1943.
    Tolotti, C.: Deformazioni elastiche finite: onde ordinarie di discontinuità e caso tipico di solidi elastici isotropi. Rend, di Mat. e delle Applic. (5) 4, 34–59. (1943)MathSciNetGoogle Scholar
  15. 1949.
    Pastori, M.: Propagazione ondosa nei continui anisotropi e corrispondenti direzioni principali. Il Nuovo Cimento (9) 6, 187–193. (1949)MathSciNetCrossRefGoogle Scholar
  16. 1952.
    Truesdell, C.: The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal. 1, 125–300. Corrections and additions, ibid. 2, 595–616 (1953).MathSciNetGoogle Scholar
  17. 1953 1.
    Ericksen, J.L.: On the propagation of waves in isotropic incompressible perfectly elastic materials. J. Rational Mech. Anal. 2, 329–337.(1953)MathSciNetzbMATHGoogle Scholar
  18. 2.
    Hughes, D. S., & J. L. Kelly: Second-order elastic deformation of solids. Phys. Rev. (2) 92, 1145–1149. 1953zbMATHCrossRefGoogle Scholar
  19. 1954.
    Baker, M., & J. L. Ericksen: Inequalities restricting the form of the stress- deformation relations for isotropic solids and Reiner-Rivlin fluids. J. Washington Acad. Sci. 44, 33–35. (1954)MathSciNetGoogle Scholar
  20. 1956.
    Truesdell, C.: Das ungelöste Hauptproblem der endlichen Elastizitätstheorie. Z. angew. Math. Mech. 36, 97–103. (1954)MathSciNetGoogle Scholar
  21. 1958.
    Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2 (1958/59), 197–226.ADSzbMATHCrossRefGoogle Scholar
  22. 1959 1.
    Coleman, B. D., & W. Noll: On the thermostatics of continuous media. Arch. Rational Mech. Anal. 4 (1959/60), 97–128.MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 2.
    Rivlin, R. S.: The constitutive equations for certain classes of deformations. Arch. Rational Mech. Anal. 3, 304–311. (1959)MathSciNetzbMATHGoogle Scholar
  24. 1960.
    Rivlin, R.S.: Constitutive equations for classes of deformations. Viscoelasticity: Phenomenological Aspects. New York: Academic Press 93–108. (1960)Google Scholar
  25. 1961 1.
    Toupin, R. A., & B. Bernstein: Sound waves in deformed perfectly elastic materials; the acoustoelastic effect. J. Acoust. Soc. Amer. 33, 216–225. (1961)MathSciNetADSCrossRefGoogle Scholar
  26. 2.
    Hayes, M., & R. S. Rivlin: Propagation of a plane wave in an isotropic elastic material subject to pure homogeneous deformation. Arch. Rational Mech. Anal. 8, 15–22. (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 3.
    Toupin, R. A.: Some relations between waves, stability, uniqueness criteria, and restrictions on the form of the energy function in elasticity theory. Lecture delivered at a meeting in Newcastle-upon-Tyne. (1961)Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1965

Authors and Affiliations

  1. 1.The Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations