Advertisement

On the Growth and Decay of One-Dimensional Acceleration Waves

Conference paper

Abstract

Paper I of this series laid the foundations of a theory of one-dimensional shock and acceleration waves in general nonlinear materials with memory and gave formulae for the velocity of such waves [1].* There the reader will find a detailed explanation of the terminology to be used here and examples of circumstances in which the behavior of three-dimensional bodies is described by the one-dimensional theory.

Keywords

Reference Configuration Linear Viscoelasticity Ultrasonic Attenuation Simple Material Critical Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Coleman, B. D., M. E. Gurtin, & I. Herrera R., Arch. Rational Mech. Anal. 19, 1–18 (1965).MathSciNetzbMATHGoogle Scholar
  2. [2]
    Noll, W., Arch. Rational Mech. Anal. 2, 197–226 (1958).zbMATHGoogle Scholar
  3. [3]
    Coleman, B. D., Arch. Rational Mech. Anal. 17, 230–254 (1964).zbMATHGoogle Scholar
  4. [4]
    TRUESDELL, C., & R. A. TOUPIN, The Classical Field Theories. In the Encyclopedia of Physics, Vol. III/l, edited by S. FLÜGGE. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  5. [5]
    Thomas, T.Y., Plastic Flow and Fracture in Solids. New York-London: Academic Press 1961.zbMATHGoogle Scholar
  6. [6]
    Chu, B.-T., Stress Waves in Isotropic Viscoelastic Materials 1, a report to ARPA from the Division of Engineering, Brown University, Providence, March 1962.Google Scholar
  7. [7]
    Gurtin, M. E., & I. Herrera R., Quart. Ap Math. 22, 360–364 (1964).MathSciNetGoogle Scholar
  8. [8]
    Thomas, T. Y., J. Math. Mech. 6, 455–469 (1957).MathSciNetzbMATHGoogle Scholar
  9. [9]
    Green, W. A., Arch. Rational Mech. Anal. 16, 79–89 (1964).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. [10]
    Bland, D. R., J. Mech. Phys. Solids 12, 245–267 (1964).ADSCrossRefGoogle Scholar
  11. [11]
    Coleman, B. D., & W. Noll, Ann. N.Y. Acad. Sci. 89, 672–714 (1961)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    COLEMAN, B. D., Arch. Rational Mech. Anal., forthcoming.Google Scholar
  13. [13]
    Truesdell, C., Arch. Rational Mech. Anal. 8, 263–296 (1961).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    Gross, B., Mathematical Structure of the Theories of Viscoelasticity. Paris: Hermann & Cie. 1953.zbMATHGoogle Scholar
  15. [15]
    Ferry, J. D., Viscoelastic Properties of Polymers. New York: Wiley 1961.Google Scholar
  16. [16]
    Coleman, B. D., & W. Noll, Simple Fluids with Fading Memory. In: Proc. Internat. Sympos. Second-Order Effects, Haifa, 1962: New York: Macmillan 1964, pp. 530–552.Google Scholar
  17. [17]
    Wang, C.-C., Arch. Rational Mech. Anal. 18, 117–126 (1965).MathSciNetADSzbMATHGoogle Scholar
  18. [18]
    Coleman, B. D., Arch. Rational Mech. Anal. 17, 1–46 (1964).MathSciNetADSGoogle Scholar
  19. [19]
    Lee, E. H., & I. Kanter, J. Appl. Phys. 24, 1115–1122 (1953).ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    Hunter, S. C., Viscoelastic Waves. In: Progress in Solid Mechanics, Vol.1, edited by I. N. Sneddon & R. Hill. Amsterdam: North-Holland Publishing Co. 1960.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1965

Authors and Affiliations

  1. 1.Mellon InstitutePittsburghUSA
  2. 2.Brown UniversityProvidenceUSA

Personalised recommendations