Threshold Quantal Problems

  • E. Baumgardt
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 4)


There is no light, but we may see light. Light is a sensation and thus has no physical existence. Between the energy flux of electromagnetic radiation of a given bandwidth, called the stimulus, and the light sensation, there are physical, chemical, physiological and psychological events.


Test Stimulus Intrinsic Noise Temporal Summation Absolute Threshold Retinal Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolph, A. R.: Spontaneous slow potential fluctuations in the Limulus photoreceptor. J. gen. Physiol. 48, 297–322 (1964).PubMedCrossRefGoogle Scholar
  2. Agutlar, M., Stiles, W. S.: Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta 1, 59–66 (1954).CrossRefGoogle Scholar
  3. Arduini, A., Pinneo, L. R.: Properties of the retina in response to steady illumination. Arch. ital. Biol. 100, 425–448 (1962).Google Scholar
  4. Barlow, H. B.: Retinal noise and absolute threshold. J. opt. Soc. Amer. 46, 634–639 (1956).CrossRefGoogle Scholar
  5. Barlow, H. B.: Increment thresholds at low intensities considered as signal/noise discriminations. J. Physiol. (Lond.) 136, 469–488 (1957).Google Scholar
  6. Barlow, H. B.: Intrinsic noise of cones. In: Visual Problems of Colour. Vol. 2, pp. 615–630. London: H. M. Stationery Office 1958a.Google Scholar
  7. Barlow, H. B.: Temporal and spatial summation in human vision at different background intensities. J. Physiol. (Lond.) 141, 337–350 (1958b).Google Scholar
  8. Barlow, H. B.: Optic nerve impulses and Weber’s law. Cold Spr. Harb. Symp. quant. Biol. 30, 539–546 (1965).Google Scholar
  9. Barnes, R. B., Czerny, M.: Läßt sich ein Schroteffekt der Photonen mit dem Auge beobachten? Z. Phys. 79, 436–449 (1932).CrossRefGoogle Scholar
  10. Baumgardt, E.: Les théories photochimiques classiques et quantiques de la vision et Pinhibi-tion nerveuse en vision liminaire. Revue opt. 28, Partie théorique 453–479; Partie experimentale 661–690 (1949).Google Scholar
  11. Baumgardt, E.: Sehmechanismus und Quantenstruktur des Lichtes. Naturwissenschaften 39, 388–393 (1952).CrossRefGoogle Scholar
  12. Baumgardt, E.: Seuils visuels et quanta lumineux. Précisions. Ann. Psychol. (Paris) 53, 431–441 (1953).Google Scholar
  13. Baumgardt, E.: Sur le caractère aléatoire de l’absorption des photons. C. R. Acad. Sci. (Paris) 245, 2236–2238 (1957).Google Scholar
  14. Baumgardt, E.: Visual spatial and temporal summation. Nature (Lond.) 184, 1951–1952 (1959).CrossRefGoogle Scholar
  15. Baumgardt, E.: La nature statistique et aléatoire des flux lumineux extrêmement faibles et leur incidence sur la vision de nuit. Publication du Comité International de l’Eclairage No 4, 78–89 (1960).Google Scholar
  16. Baumgardt, E., Hillmann, B. M.: Duration and size as determinants of peripheral retinal response. J. opt. Soc. Amer. 51, 340–344 (1961).CrossRefGoogle Scholar
  17. Baumgardt, E., Segal, J.: Un dispositif permettant de réaliser des stimuli lumineux de durée ultracourte et de forme quelconque, mais constante. C. R. Soc. Biol. (Paris) 104, 255–257 (1946).Google Scholar
  18. Baumgardt, E., Smith, S. W.: Facilitation effect of background light on target detection: a test of theories of absolute threshold. Vision Res. 5, 299–312 (1965).CrossRefGoogle Scholar
  19. Baumgardt, E., Smith, S. W.: Comparaison de la sensibilité des cônes et des bâtonnets de l’oeil humain. C. R. Acad. Sci. (Paris) 264, 3041–3044 (1967).Google Scholar
  20. Bittini, M., Gloria, E. M.: On the correlation between absolute thresholds and false alarms. Atti Fond. G. Ronchi 23, 487–514 (1968).Google Scholar
  21. Blackwell, H. R.: Psychophysical thresholds: experimental studies of methods of measurement. The University of Michigan, Engineering Res. Inst. Bull. No. 36, pp. 227 (1953).Google Scholar
  22. Blackwell, H. R.: Neural theories of simple visual discriminations. J. opt. Soc. Amer. 53, 129–160 (1963).CrossRefGoogle Scholar
  23. Blakemore, C. B., Rushton, W. A. H.: Dark adaptation and increment threshold in a rod monochromat. J. Physiol. (Lond.) 181, 612–628 (1965).Google Scholar
  24. Bloch, A. M.: Expériences sur la vision. C. R. Soc. Biol. (Paris) 37, 493–495 (1885).Google Scholar
  25. Blondel, A. M., Rey, J.: Sur la perception des lumières brèves à la limite de leur portée. J. Phys. 1, 530–550 (1911).Google Scholar
  26. Bornschein, H.: Die absolute Lichtschwelle des menschlichen Auges. Eine experimentellvarianzanalytische Kritik ihrer subjektiven Bestimmungsmethoden. Graefes Arch. Ophthal. 151, 446–475 (1951).CrossRefGoogle Scholar
  27. Borsellino, A., Fuortes, G. F.: Response to single photons in visual cells of Limulus. J. Physiol. (Lond.) 196, 507–539 (1968).Google Scholar
  28. Boswell, F. P.: Über die zur Erregung des Sehorgans in der Fovea erforderlichen Energiemengen. Z. Sinnesphysiol. 42, 299–312 (1908).Google Scholar
  29. Bouman, M. A., Blokhuis, E. W. M.: The visibility of black objects against an illuminated background. J. opt. Soc. Amer. 42, 525–528 (1952).CrossRefGoogle Scholar
  30. Bouman, M. A., van den Brink, G.: On the integrate capacity in time and space of the human peripheral retina. J. opt. Soc. Amer. 42, 617–620 (1952).CrossRefGoogle Scholar
  31. Bouman, M. A., van der Velden, H. A.: The two-quanta explanation of the dependence of the threshold values and visual acuity on the visual angle and the time of observation. J. opt. Soc. Amer. 37, 908–919 (1947).Google Scholar
  32. Bouman, M. A., van der Velden, H. A.: The two-quanta hypothesis as a general explanation of the behavior of the threshold values and visual acuity for the several receptors of the human eye. J. opt. Soc. Amer. 38, 570–581 (1948).CrossRefGoogle Scholar
  33. Brindley, G. S.: The Bunsen-Roscoe law for the human eye at very short durations. J. Physiol. (Lond.) 118, 135–139 (1952).Google Scholar
  34. Brindley, G. S.: Physiology of the Retina and the Visual Pathway. London: Arnold 1960.Google Scholar
  35. Brown, K. T., Murakami, M.: A new receptor potential of the monkey retina with no detectable latency. Nature (Lond.) 201, 626–628 (1964).CrossRefGoogle Scholar
  36. Clark, W. C, Blackwell, H. R.: Relations between visibility thresholds for single and double pulses. The University of Michigan, Willow Run Laboratories, Report of Project Michigan No 2, 144–343-T (1959).Google Scholar
  37. Cone, R. A.: Early receptor potential: photoreversible charge displacement in rhodopsin. Science 155, 1128–1131 (1967).PubMedCrossRefGoogle Scholar
  38. Cornsweet, T. N., Pinsker, H. M.: Luminance discrimination of brief flashes under various conditions of adaptation. J. Physiol. (Lond.) 176, 294–310 (1965).Google Scholar
  39. Crouzy, R.: La structure quantique de la lumière et la sensibilité différentielle de l’appareil visuel considéré comme un détecteur de signaux. Thesis, Paris 1963.Google Scholar
  40. Davson, H.: The Eye (Vol. 2, 138–140). New-York-London: Academic Press 1962.Google Scholar
  41. De Groot, S. G.: Seeing in the U.V. Nature (Lond.) 134, 494 (1934).Google Scholar
  42. Denton, E. J., Pirenne, M. H.: The absolute sensitivity and functional stability of the human eye. J. Physiol. (Lond.) 123, 417–442 (1954).Google Scholar
  43. De Vries, H.: The quantum character of light and its bearing upon the threshold of vision, the differential sensitivity and acuity of the eye. Physica 10, 553–564 (1943).CrossRefGoogle Scholar
  44. Dowling, J. E.: Discrete potentials in the dark-adapted eye of the crab Limulus. Nature (Lond.) 217, 28–31 (1968).CrossRefGoogle Scholar
  45. Ernst, W.: The dependence of critical flicker frequency and the rod threshold on the state of adaptation of the eye. Vision Res. 8, 889–900 (1968).PubMedCrossRefGoogle Scholar
  46. Eyster, in Von Kries: Über die zur Erregung des Sehorgans erforderlichen Energiemengen. Z. Sinnesphysiol. 41, 373–394 (1907).Google Scholar
  47. Fechner, G. T.: Elemente der Psychophysik. Leipzig: Breitkopf & Härtel 1860.Google Scholar
  48. Galifret, Y., Piéron, H.: La transmission intraretinienne de l’excitation lumineuse. Ann. Psychol. (Paris) 49, 1–20 (1950).Google Scholar
  49. Garlick, G. F. J., Wright, G. T.: Characteristics of scintillation counters. Proc. phys. Soc. (Lond.) B 65, 415–421 (1952).CrossRefGoogle Scholar
  50. Graham, C. H., Margaria, R.: Area and the intensity-time relation in peripheral retina. Amer. J. Physiol. 113, 299–305 (1935).Google Scholar
  51. Green, D. A., Swets, J. A.: Signal Detection Theory and Psychophysics. New York: Wiley 1966.Google Scholar
  52. Griffin, D. R., Hubbard, R., Wald, G.: The sensitivity of the human eye to infra-red radiation. J. opt. Soc. Amer. 37, 546–554 (1947).CrossRefGoogle Scholar
  53. Hallett, P. E.: Spatial summation. Vision Res. 3, 9–24 (1963).CrossRefGoogle Scholar
  54. Hallett, P. E., Marriott, F. H. C., Rodger, F. C.: The relationship of visual threshold to retinal position and area. J. Physiol. (Lond.) 160, 364–373 (1962).Google Scholar
  55. Hecht, S.: Energy and vision. In: Science in Progress, Series IV, 75–97. New Haven, Conn.: Yale University Press 1945.Google Scholar
  56. Hecht, S., Shlaer, S., Pirenne, M. H.: Energy, quanta, and vision. J. gen. Physiol. 25, 819–840 (1942).PubMedCrossRefGoogle Scholar
  57. Herrick, R. M.: Foveal luminance discrimination as a function of the duration of the decrement or increment in luminance. J. comp. physiol. Psychol. 49, 437–443 (1956).PubMedCrossRefGoogle Scholar
  58. Hillmann, B. M.: Relationship between stimulus size and threshold intensity in the fovea measured at four exposure times. J. opt. Soc. Amer. 48, 422–428 (1958).CrossRefGoogle Scholar
  59. Hubbard, R., Kropf, A.: The action of light on rhodopsin. Proc. nat. Acad. Sci. (Wash.) 44, 130–139 (1958).CrossRefGoogle Scholar
  60. Hughes, G. W., Maffei, L.: On the origin of dark discharge of retinal ganglion cells. Arch. ital. Biol. 103, 45–59 (1965).Google Scholar
  61. Johnson, E. P., Bartlett, N. R.: Effect of stimulus duration on electrical responses of the human retina. J. opt. Soc. Amer. 46, 167–170 (1956).CrossRefGoogle Scholar
  62. Keck, W.: Über die Summation unterschwelliger farbiger Lichtreize. Z. Sinnesphysiol. 57, 159–174 (1937).Google Scholar
  63. Kuffler, S. W., Fitzhugh, R., Barlow, H. B.: Maintained activity in the cat’s retina in light and darkness. J. gen. Physiol. 40, 683–702 (1957).PubMedCrossRefGoogle Scholar
  64. Ludvigh, E., McCarthy, E. F.: Absorption of visible light by the refractive media of the human eye. Arch. Ophthal. 20, 37–51 (1938).CrossRefGoogle Scholar
  65. Marriott, F. H. C.: The foveal absolute threshold for short flashes and small fields. J. Physiol. (Lond.) 169, 416–423 (1963).Google Scholar
  66. Marriott, F. H. C., Morris, V. B., Pirenne, M. H., The minimum flux of energy detectable by the human eye. J. Physiol. (Lond.) 145, 369–373 (1959).Google Scholar
  67. Miller, N. D.: Foveal thresholds for small targets and various pupil diameters in absolute units of energy. J. opt. Soc. Amer. 49, 502 (Abstr.) (1959).Google Scholar
  68. Muntz, W. R. A., Northmore, D. P. M.: Background light, temperature and visual noise in the turtle. Vision Res. 8, 787–800 (1968).PubMedCrossRefGoogle Scholar
  69. Naka, K. I., Rushton, W. A. H.: S-Potential and dark adaptation in fish. J. Physiol. (Lond.) 194, 259–269 (1968).Google Scholar
  70. Østerberg, C.: Topography of the layer of rods and cones in the human retina. Acta Ophthal. Suppl. 6 (1935).Google Scholar
  71. Peyrou, C, Piatier, H.: Emploi des méthodes statistiques dans l’étude de la sensibilité de l’oeil. C. R. Acad. Sci. (Paris) 223, 589–591 (1946).Google Scholar
  72. Piper, H.: Über die Abhängigkeit des Reizwertes leuchtender Objekte von ihrer Flächenbezw. Winkelgröße. Z. Psych. Physiol. Sinnesorg. 32, 98–112 (1903).Google Scholar
  73. Pirenne, M. H.: Rods and cones, and Thomas Young’s theory of colour vision. Nature (Lond.) 154, 741–742 (1944).CrossRefGoogle Scholar
  74. Pirenne, M. H.: Quantum fluctuations at the absolute threshold. In: The Eye, Davson, H. (Ed.), Vol. 2, 155–156. New York-London: Academic Press 1962.Google Scholar
  75. Pirenne, M. H., Marriott, F. H. C.: The quantum theory of light and the psycho-physiology of vision. In: Psychology: A Study of a Science Vol. 1, pp. 288–361. Koch, S. (Ed.) New York: McGraw Hill 1959.Google Scholar
  76. Pirenne, M. H., Marriott, F. H. C., O’Doherty, E. P.: “Individual differences in night-vision efficiency”, with a section on “The frequency of seeing at low illumination” by Hartline, H. K. and McDonald, P. R. Spec. Rep. Ser. Med. Res. Coun., London 294, (1957).Google Scholar
  77. Riccò, A.: Relazione fra il minimo angolo visuale e l’intensità luminosa. Ann. Ottal. 6, 373–479 (1877).Google Scholar
  78. Rodieck, R. W.: Maintained activity of cat retinal ganglion cells. J. Neurophysiol. 30, 1043–1071 (1967).PubMedGoogle Scholar
  79. Rose, A.: The sensitivity performance of the human eye on an absolute scale. J. opt. Soc. Amer. 38, 196–208 (1948).CrossRefGoogle Scholar
  80. Rushton, W. A. H.: The rhodopsin density in the human rods. J. Physiol. (Lond.) 134, 30–46 (1956).Google Scholar
  81. Saïd, F. S„ Weale, R. A.: The variation with age of the spectral transmissivity of the living human crystalline lens. Gerontologia 3, 213–231 (1959).PubMedCrossRefGoogle Scholar
  82. Scholes, J.: Discontinuity of the excitation process in Locust visual cells. Cold Spr. Harb. Symp. quant. Biol. 30, 517–527 (1965).Google Scholar
  83. Stiles, W. S.: The physical interpretation of the spectral sensitivity curve of the eye. In: Transactions of the Optical Convention of the Worshipful Company of Spectacle Makers, pp. 97–107. London: Spectacle Makers’ Comp. 1948.Google Scholar
  84. Swets, J. A.: Is there a sensory threshold? Science 134, 169–177 (1961).CrossRefGoogle Scholar
  85. Swets, J. A., Tanner, W. P., Btrdsall, T. G.: Decision processes in perception. Psychol. Rev. 68, 301–340 (1961).PubMedCrossRefGoogle Scholar
  86. Tanner, W. P., Swets, J. A.: A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954).PubMedCrossRefGoogle Scholar
  87. Thomas, J. G.: Threshold measurements of Mach bands. J. opt. Soc. Amer. 55, 521–524 (1965).CrossRefGoogle Scholar
  88. Treisman, M.: Noise and Weber’s law: the discrimination of brightness and other dimensions. Psychol. Rev. 71, 314–330 (1964).PubMedCrossRefGoogle Scholar
  89. Treisman, M.: A statistical decision model for sensory discrimination which predicts Weber’s law and other sensory laws: some results of a computer simulation. Perc. Psychophys. 1, 203–230 (1966).Google Scholar
  90. Treisman, M.: Personal communication (1967).Google Scholar
  91. Treisman, M., Watts, T. R.: Relation between signal detectability theory and the traditional procedures for measuring sensory thresholds: estimating d’ from results given by the method of constant stimuli. Psychol. Bull. 66, 438–454 (1966).CrossRefGoogle Scholar
  92. Van der Velden, H.: Over het antaal lichtquanta dat nodig es for en licht prickel bij dat menselyk oog. Physica 11, 179–189 (1944).CrossRefGoogle Scholar
  93. Weale, R. A.: Retinal summation and human visual thresholds. Nature (Lond.) 181, 154–156 (1958).CrossRefGoogle Scholar
  94. Weinstein, C, Arnulf, A.: Contribution à l’étude des seuils de perception de l’oeil. Comm. Inst. Opt. Paris 2, 1–43 (1946).Google Scholar
  95. Williams, T. P.: Rhodopsin bleaching: relative effectiveness of high and low intensity flashes. Vision Res. 5, 633–638 (1965).PubMedCrossRefGoogle Scholar
  96. Yeandle, S.: Evidence of quantized slow potentials in the eye of Limulus. Amer. J. Ophthal. 46, part 2, 82–87 (1958).Google Scholar
  97. Zegers, R. T.: Photosensitization in relation to mean and standard deviation values. Psychol. Monogr., General and Applied 73, No. 11, 1–25 (1959).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • E. Baumgardt
    • 1
  1. 1.ParisFrance

Personalised recommendations