Advertisement

Eye Movements and Perceived Visual Direction

  • Leonard Matin
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 4)

Abstract

The implicit assumption that visual perception is not susceptible to influences from extraretinal sources1 has held extremely well in the areas of color vision, contour perception, and intensity discrimination. It has permitted the development of theoretical models of considerable generality for treatment of psychophysical phenomena in these areas that are based essentially on reasonable inferences from present knowledge regarding the neurophysiology, photochemistry, and neuroanatomy of the primary visual projection system. As will be indicated below, where this assumption can be reasonably made in the area of space perception some progress has taken place in a search for physiologically-based theoretical mechanisms for treatment of psychophysical data.

Keywords

Visual Direction Retinal Image Fixation Target Retinal Locus Test Flash 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, H. F.: Autokinetic sensations. Psychol. Monogr. 14, 1–45 (1912).Google Scholar
  2. Alpern, M.: Metacontract. J. opt. Soc. Amer. 43, 648–657 (1953).Google Scholar
  3. Andersen, E. E., Weymouth, F. W.: Visual perception and the retinal mosaic. 1. Retinal mean local sign — an explanation of the fineness of binocular perception of distance. Amer. J. Physiol. 64, 591–594 (1923).Google Scholar
  4. Andrews, D. P.: Perception of contours in the central fovea. Nature (Lond.) 205, 1218–1220 (1965).Google Scholar
  5. Andrews, D. P.: Perception of contour orientation in the central fovea, part 1. Short lines. Vision Res. 7, 975–997 (1967a).PubMedGoogle Scholar
  6. Andrews, D. P.: Perception of contour orientation in the central fovea, part II. Spatial integration. Vision Res. 7, 999–1013 (1967b).PubMedGoogle Scholar
  7. Arnulf, A., Dupuy, O.: La transmission des contrastes par le système optique de l’oeil et les seuils des contrastes rétiniens. C. R. Acad. Sci. (Paris) 250, 2757–2759 (1960).Google Scholar
  8. Aubert, H.: Eine scheinbare bedeutende Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Arch. path. Anat. 20, 381–393 (1861).Google Scholar
  9. Aubert, H.: Die Bewegungsempfindung. Arch. ges. Physiol. 39, 347–370 (1886).Google Scholar
  10. Averill, H. L., Weymouth, F. W.: Visual perception and the retinal mosaic. II. The influence of eye-movements on the displacement threshold. J. comp. Psychol. 5, 147–176 (1925).Google Scholar
  11. Baker, K. E.: Some variables influencing vernier acuity. 1. Illumination and exposure time. 2. Wave-length of illumination. J. opt. Soc. Amer. 39, 567–575 (1949).Google Scholar
  12. Barmack, N.: Dynamic visual acuity as an index of eye movement control. Vision Res. 10, 1431–1441 (1970).PubMedGoogle Scholar
  13. Bauermeister, M.: Effect of body tilt on apparent verticality, apparent body position, and their relation. J. exp. Psychol. 67, 142–147 (1964).PubMedGoogle Scholar
  14. Beasley, W. C., Peckham, R. H.: An objective study of cyclotorsion. Psychol. Bull. 33, 741–742 (abstract) (1936).Google Scholar
  15. Beck, J.: Accommodative astigmatism and pattern acuity. Presented at Eastern Psychological Association 1965.Google Scholar
  16. Becker, W., Fuchs, A. F.: Further properties of the human saccadic system: eye movements and correction saccades with and without visual fixation points. Vision Res. 9, 1247–1258 (1969).PubMedGoogle Scholar
  17. Beeler, G. W.: Visual threshold changes resulting from spontaneous saccadic eye movements. Vision Res. 7, 769–775 (1967).PubMedGoogle Scholar
  18. Békésy, G. von: Neural volleys and the similarity between some sensations produced by tones and by skin vibrations. J. acoust. Soc. Amer. 29, 1059–1069 (1957).Google Scholar
  19. Békésy, G. von: Experiments in Hearing. New York: McGraw-Hill 1960.Google Scholar
  20. Békésy, G. von: Sensory Inhibition. Princeton: Princeton Univ. 1967.Google Scholar
  21. Berry, R. N.: Quantitative relations among vernier, real depth, and stereoscopic depth acuities. J. exp. Psychol. 40, 708–801 (1948).Google Scholar
  22. Berry, R. N., Riggs, L. A., Duncan, C. P.: The relation of vernier and depth discriminations to field brightness. J. exp. Psychol. 40, 349–354 (1950).PubMedGoogle Scholar
  23. Biersdorf, W. R., Ohwaki, S., Kozil, D.: The effect of instructions and oculomotor adjustments on apparent size. Amer. J. Psychol. 76, 1–17 (1963).PubMedGoogle Scholar
  24. Bizzi, E.: Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res. 6, 69–80 (1968).PubMedGoogle Scholar
  25. Bizzi, E., Schiller, P.: Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res. 10, 151–158 (1970).Google Scholar
  26. Bouma, H., Andriessek, J. J.: Perceived orientation of isolated line segments. Vision Res. 8, 493–607 (1968).PubMedGoogle Scholar
  27. Bouma, H., Andriessek, J. J.: Induced changes in the perceived orientation of line segments. Vision Res. 10, 333–349 (1970).PubMedGoogle Scholar
  28. Bourdon, B.: La perception visuelle de l’espace. Paris: Librairie C. Reinwald 1902.Google Scholar
  29. Brindley, G. S., Merton, P. A.: The absence of position sense in the human eye. J. Physiol. (Lond.) 153, 127–130 (1960).Google Scholar
  30. Campbell, F. W., Kulikowski, J. J.: Orientational selectivity of the human visual system. J. Physiol. (Lond.) 187, 437–445 (1966).Google Scholar
  31. Campbell, F. W., Kulikowski, J. J., Levinson, J.: The effect of orientation on the visual resolution of gratings. J. Physiol. (Lond.) 187, 427–436 (1966).Google Scholar
  32. Carr, H. A.: The autokinetic sensation. Psychol. Rev. 17, 42–75 (1910).Google Scholar
  33. Cooper, S., Daniel, P. M.: Muscle spindles in human extrinsic eye muscles. Brain 72, 1–24 (1949).PubMedGoogle Scholar
  34. Cooper, S., Daniel, P. M., Wketteridge, D.: Nerve impulses in the brainstem of the goat. Responses with long latencies obtained by stretching the extrinsic eye muscles. J. Physiol. (Lond.) 120, 491–513 (1953).Google Scholar
  35. Cornsweet, T. N.: Determination of the stimuli for involuntary drifts and saccadic eye movements. J. opt. Soc. Amer. 46, 987–993 (1956).Google Scholar
  36. Crone, R., Lunel, H.: Autokinesis and the perception of movement: the physiology of eccentric fixation. Vision Res. 9, 89–102 (1969).PubMedGoogle Scholar
  37. Deckert, G. H.: Pursuit eye movements in the absence of a moving stimulus. Science 143, 1192–1193 (1964).PubMedGoogle Scholar
  38. Ditchburn, R. W.: Eye-movements in relation to retinal action. Optica Acta 1, 171–176 (1955).Google Scholar
  39. Ditchburn, R. W., Ginsborg, B. L.: Vision with a stabilized retinal image. Nature 170, 36–37 (1952).PubMedGoogle Scholar
  40. Dodge, R.: Visual perception during eye movement. Psychol. Rev. 7, 454–465 (1900).Google Scholar
  41. Dodge, R.: The illusion of clear vision during eye movement. Psychol. Bull. 2, 193–199 (1905).Google Scholar
  42. Dodge, R., Travis, R. C., Fox, J. C.: Optic nystagmus III. Characteristics of the slow phase. Arch. Neurol. 24, 21–34 (1930).Google Scholar
  43. Ebenholtz, S.: Some evidence for a comparator in adaptation to optical tilt. J. exp. Psychol. 77, 94–100 (1968).PubMedGoogle Scholar
  44. Eldred, E., Granit, R., Merton, P.: Supraspinal control of the muscle spindles and its significance. J. Physiol. (Lond.) 122, 498–523 (1953).Google Scholar
  45. Fender, D. H., Nye, P. W.: An investigation of the mechanisms of eye movement control. Kybernetik 1, 81–88 (1961).PubMedGoogle Scholar
  46. Fender, D. H., Nye, P. W.: The effects of retinal image motion in a simple pattern recognition task. Kybernetik 2, 192–199 (1962).Google Scholar
  47. Filhene, W.: Über das optische Wahrnehmen von Bewegungen. Z. Sinnesphysiol. 53, 134–145 (1922).Google Scholar
  48. Fiorentini, A., Ercoles, A. M.: Visual direction of a point source in the dark. Atti Fond. G. Ronchi 23, 405–428 (1968).Google Scholar
  49. Ganz, L.: Mechanism of the figurai aftereffects. Psychol. Rev. 73, 128–150 (1966).PubMedGoogle Scholar
  50. Gertz, H.: Über die gleitende (langsame) Augenbewegung. Zeitschrift für Psychologie und Physiologie der Sinnesorgane. Abteilung 2: Z. Sinnesphysiol. 49, 29–58 (1916).Google Scholar
  51. Gibson, J. J.: Adaptation with negative aftereffect. Psychol. Rev. 44, 222–243 (1937).Google Scholar
  52. Gibson, J. J., Radner, M.: Adaptation, after-effect and contrast in the perception of tilted lines. 1. Quantitative studies. J. exp. Psychol. 20, 453–457 (1937).Google Scholar
  53. Gilbert, D.S.: Monocular estimates on distance and direction with stabilized and non-stabilized retinal images. Vision Res. 9, 103–115 (1969).PubMedGoogle Scholar
  54. Graham, C. H.: Depth and movement. Amer. Psychologist 23, 18–26 (1968).Google Scholar
  55. Granit, R.: Receptors and Sensory Perception. New Haven: Yale University Press 1955.Google Scholar
  56. Granit, R.: Effects of stretch and contraction on the membrane of motor neurons. In: Granit, R. (Ed.) Muscular Affrrents and Motor Control. Nobel Symp. 1, 37–50 (1966).Google Scholar
  57. Gregory, R. L.: Eye movements and the stability of the visual world. Nature (Lond.) 182, 1214–1216 (1958).Google Scholar
  58. Hamblin, J. E., Winsor, T. H.: On the resolution of gratings by the astigmatic eye. Opt. Soc. (Lond.) 29, 28–42 (1927–1928).Google Scholar
  59. Harris, C. S.: Perceptual adaptation to inverted, reversed, and displaced vision. Psychol. Rev. 72, 419–444 (1965).PubMedGoogle Scholar
  60. Heinemann, E. R., Tulving, E., Nachmias, J.: The effect of oculomotor adjustments on apparent size. Amer. J. Psychol. 72, 32–45 (1959).Google Scholar
  61. Held, R., Freedman, S. J.: Plasticity in human sensorimotor control. Science 142, 455–462 (1963).PubMedGoogle Scholar
  62. Helmholtz, H. von: Handbuch der Physiologischen Optik. Leipzig: Voss 1866. English translation from Edit. 3, 1925.Google Scholar
  63. Southall, J. P. C. (Ed.): A Treatise on Physiological Optics, 1963, Vol. 3. New York: Dover 1963.Google Scholar
  64. Henderson, D.: Movement perception and the displacement threshold. Perc. Psychophys. 10, 313–320 (1971).Google Scholar
  65. Hering, E.: Der Raumsinn und die Bewegungen des Auges. In: Hermann, L.: Handbuch der Physiologie 3 (Part 1), 1879. English translation, Radde, C. A. (Ed.): Spatial Sense and Movement of the Eye. Amer. J. Optom. 1942.Google Scholar
  66. Hering, E.: Über die Grenzen der Sehschärfe. Ber. Königl. Sachs, ges. Wiss. math.-phys. Kl. Leipzig 20, 16–24 (1899).Google Scholar
  67. Higgins, G. C., Stultz, K. V.: Variation of visual acuity with various test object orientations and viewing conditions. J. opt. Soc. Amer. 40, 135–137 (1950).Google Scholar
  68. Hofmann, F. B., Bielschowsky, A.: Über die der Willkür entzogenen Fusionsbewegungen der Augen. Plügers Arch. ges. Physiol. 80, 20–28 (1900) (quoted in Ogle, 1950).Google Scholar
  69. Holt, E. B.: Eye movement and central anesthesia. Harv. Psychol. Stud. 1, 3–45 (1903).Google Scholar
  70. Howard, I. P., Templeton, W. B.: Visually-induced eye torsion and tilt adaptation. Vision Res. 4, 433–437 (1964).PubMedGoogle Scholar
  71. Howard, I. P., Templeton, W. B.: Human Spatial Orientation. New York: Wiley, 1966.Google Scholar
  72. Hubel, D.H., Wiesel, T. N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).Google Scholar
  73. Hubel, D.H., Wiesel, T. N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).Google Scholar
  74. Irvine, S., Ludvigh, E.: Is ocular proprioceptive sense concerned in vision. Arch. Ophthal. 15, 1037–1049 (1936).Google Scholar
  75. James, W.: The Principles of Psychology. Vol. II. Holt, 1890. Reprinted New York: Dover 1950.Google Scholar
  76. Kahneman, D.: Method, findings, and theory in studies of visual masking. Psychol. Bull. 70, 404–425 (1968).PubMedGoogle Scholar
  77. Keesey, U. T.: Effects of involuntary eye movements on visual acuity. J. opt. Soc. Amer. 50, 769–774 (1960).Google Scholar
  78. Kertesz, A. E., Jones, R. W.: Human cyclofusional response. Vision Res. 10, 891–896 (1970).PubMedGoogle Scholar
  79. Koffka, K.: Principles of Gestalt Psychology. New York: Harcourt 1935.Google Scholar
  80. Köhler, W., Emery, D. A.: Figurai aftereffects in the third dimension of visual space. Amer. J. Psychol. 60, 159–201 (1947).PubMedGoogle Scholar
  81. Köhler, W., Wallach, H.: Figurai aftereffects: an investigation of visual processes. Proc. Amer. Phil. Soc. 88, 269–357 (1944).Google Scholar
  82. Kolers, P. A.: Intensity and contour effects in visual masking. Vision Res. 2, 277–294 (1962).Google Scholar
  83. Kolers, P. A., Rosner, B. S.: On visual masking (metacontrast): dichoptic observation. Amer. J. Psychol. 73, 2–21 (1960).PubMedGoogle Scholar
  84. Kornmüller, A. E.: Eine experimentelle Anaesthesie der äußeren Augenmuskeln am Menschen und ihre Auswirkungen. J. Psychol. Neurol. 41, 354–366 (1930).Google Scholar
  85. Krattskope, J., Cornsweet, T. N., Riggs, L. A.: Analysis of eye movements during monocular and binocular fixation. J. opt. Soc. Amer. 50, 572–578 (1960).Google Scholar
  86. Latour, P. L.: Visual threshold during eye movements. Vision Res. 2, 261–262 (1962).Google Scholar
  87. Leibowitz, H.: Some observations and theory on the variation of visual acuity with the orientation of the test object. J. opt. Soc. Amer. 43, 902–905 (1953).Google Scholar
  88. Lotze, H.: Outline of Psychology. Translated and edited by Ladd, G. T. Boston: Ginn 1886.Google Scholar
  89. Ludvigh, E.: Possible role of proprioception in the extraocular muscles. Arch. Ophthal. 48, 436–441 (1952a).Google Scholar
  90. Ludvigh, E.: Control of ocular movements and visual interpretation of the environment. Arch. Ophthal. 48, 442–448 (1952b).Google Scholar
  91. Ludvigh, E.: Direction sense of the eye. Amer. J. Ophthal. 36, 139–143 (1953).PubMedGoogle Scholar
  92. Mach, E.: Analysis of Sensations. Trans, from first Germ. Ed. (1885) by Williams, C. M., Rev. and Suppl. from fifth Germ. Ed. New York: Dover 1959.Google Scholar
  93. MacKay, D. M.: Elevation of visual threshold by displacement of retinal image. Nature (Lond.) 225, 90–92 (1970).Google Scholar
  94. Marshall, W. H., Talbot, S. A.: Recent evidence for neural mechanisms in vision leading to a general theory of sensory acuity. Biol. Symp. 7, 117–164 (1942).Google Scholar
  95. Matin, E., Clymer, A., Matin, L.: Metacontrast and saccadic suppression. In preparation.Google Scholar
  96. Matin, E., Matin, L., Pola, J., Kowal, K.: The intermittent light illusion and constancy of visual direction during voluntary saccades. Presented at Psychonomic Society 1969.Google Scholar
  97. Matin, L.: Binocular summation at the absolute threshold of peripheral vision. J. opt. Soc. Amer. 52, 1276–1286 (1962).Google Scholar
  98. Matin, L.: Measurement of eye movements by contact-lens techniques: Analysis of measuring systems and some new methodology for three dimensional recording. J. opt. Soc. Amer. 54, 1008–1018 (1964).Google Scholar
  99. Matin, L.: Eye movements and visual direction. Symposium: Problems of sensorimotor control in the C. N. S.: The role of feedback, feedforward and the corollary motor discharge. Amer. Psychol. Assoc. 1968.Google Scholar
  100. Matin, L., Kibler, G.: Acuity of visual direction in the dark for various positions of the eye in the orbit. Perc. Mot. Sk. 22, 407–420 (1966).Google Scholar
  101. Matin, L., Mackinnon, E.: Autokinetic movement: selective manipulation of directional components by image stabilization. Science 143, 147–148 (1964).PubMedGoogle Scholar
  102. Matin, L., Matin, E.: A possible hybrid mechanism for modification of visual direction associated with eye movements — The paralyzed eye experiment reconsidered. In preparation.Google Scholar
  103. Matin, L., Matin, E., Pearce, D. G.: Visual perception of direction when voluntary saccades occur: 1. Relation of visual direction of a fixation target extinguished before a saccade to a flash presented during the saccade. Perc. Psychophys. 5, 65–80 (1969).Google Scholar
  104. Matin, L., Matin, E., Pearce, D. G.: Eye movements in the dark during the attempt to maintain a prior fixation position. Vision Res. 10, 837–857 (1970).PubMedGoogle Scholar
  105. Matin, L., Matin, E., Pola, J.: Detection of vernier offset, eye movements, and autokinetic movement. Presented at Eastern Psychological Association 1968.Google Scholar
  106. Matin, L., Matin, E., Pola, J.: Visual perception of direction when voluntary saccades occur: II. Relation of visual direction of a fixation target extinguished before a saccade to a subsequent test flash presented before the saccade. Perc. Psychophys. 8, 9–14 (1970).Google Scholar
  107. Matin, L., Matin, E., Pola, J.: Visual perception of direction when voluntary saccades occur: III. Relation af visual direction of a fixation target extinguished before a saccade to a test flash after the saccade. In preparation.Google Scholar
  108. Matin, L., Matin, E., Pola, J., Bowen, R.: Relative visual direction of two flashes presented at different times or intensities during a voluntary saccade — retinal constraints in the operation of extra-retinal signals. Presented at Eastern Psychological Association 1971.Google Scholar
  109. Matin, L., Matin, E., Pola, J., Pearce, D. G.: Visual perception of direction for stimuli flashed before, during, and after voluntary saccadic eye movements. Presented at Psychonomic Society 1968.Google Scholar
  110. Matin, L., Pearce, D. G.: Three-dimensional recording of rotational eye movements by a new contact-lens technique. Murry, W. E., Salisbury, P. F. (Ed.): Biomedical Sciences Instrumentation, pp. 79–95. New York: Plenum Press 1964.Google Scholar
  111. Matin, L., Pearce, D. G.: Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science 148, 1485–1488 (1965).PubMedGoogle Scholar
  112. Matin, L., Pearce, D. G., MacKinnon, G. E.: Variation in directional components of autokinetic movement as a function of the position of the eye in the orbit. J. opt. Soc. Amer. 53, 521 (abs.) (1963).Google Scholar
  113. Matin, L., Pearce, D. G., Matin, E., Kibler, G.: Visual perception of direction in the dark: roles of local sign, eye movements, and ocular proprioception. Vision Res. 6, 453–469 (1966).PubMedGoogle Scholar
  114. Matthews, P. B. C.: Muscle spindles and their motor control. Physiol. Rev. 44, 219–288 (1964).PubMedGoogle Scholar
  115. McCollough, C.: Color adaptation of edge-detectors in the human visual system. Science 149, 1115–1116 (1965).PubMedGoogle Scholar
  116. McIlwain, J. T., Buser, P.: Receptive fields of single cells in the cat’s superior colliculus. Exp. Brain Res., 5, 314–325 (1968).PubMedGoogle Scholar
  117. McLaughlin, S. C.: Parametric adjustment in saccadic eye movements. Perc. Psychophys. 2, 359–362 (1967).Google Scholar
  118. Merton, P. A.: The silent period in a muscle of the human hand. J. Physiol. (Lond.) 114, 183–198 (1951).Google Scholar
  119. Merton, P. A.: The accuracy of directing the eyes and the hand in the dark. J. Physiol. (Lond.) 156, 555–577 (1961).Google Scholar
  120. Merton, P. A.: Human position sense and sense of effort. Symp. Soc. exp. Biol. 18, 387–400 (1964).PubMedGoogle Scholar
  121. Mlkelian, H., Held, R.: Two types of adaptation to an optically-rotated visual field. Amer. J. Psychol. 77, 257–263 (1964).Google Scholar
  122. Miller, E. F., II.: Counterrolling of the human eyes produced by head tilt with respect to gravity. Acta Oto-Laryng. 54, 479–501 (1962).Google Scholar
  123. Mitchell, D. E.: A review of the concept of Panum’s fusional areas. Amer. J. Ophthal. 43, 387–401 (1966).Google Scholar
  124. Morant, R. B., Beller, H. K.: Adaptation to prismatically rotated visual fields. Science 148, 530–531 (1965).PubMedGoogle Scholar
  125. Morant, R. B., Mistovich, M.: Tilt after-effects between the vertical and horizontal axes. Perc. Mot. Sk. 10, 75–81 (1970).Google Scholar
  126. Müller, G. E.: Über das Aubertsche Phänomen. Z. Sinnesphysiol. 49, 109–244 (1916).Google Scholar
  127. Nachmias, J.: Two-dimensional motion of the retinal image during monocular fixation. J. opt. Soc. Amer. 49, 901–908 (1959).Google Scholar
  128. Nachmias, J.: Meridional variations in visual acuity and eye movements during fixation. J. opt. Soc. Amer. 50, 569–571 (1960).Google Scholar
  129. Ogilvie, J. C., Taylor, M. M.: Effect of orientation on the visibility of fine wire. J. opt. Soc. Amer. 48, 628–629 (1958).Google Scholar
  130. Ogle, K.N.: The binocular depth contrast phenomenon. Amer. J. Psychol. 59, 111–126 (1946).PubMedGoogle Scholar
  131. Ogle, K.N.: Researches in Binocular Vision. Philadelphia: W.B. Saunders 1950.Google Scholar
  132. Ogle, K.N.: Stereoscopic depth perception and exposure delay between images to the two eyes. J. opt. Soc. Amer. 53, 1296–1304 (1963).Google Scholar
  133. Ogle, K.N., Ellerbrock, V. J.: Cyclofusional movements. Arch. Ophthal. 36, 700–735 (1946).PubMedGoogle Scholar
  134. Ogle, K.N., Weil, M. P.: Stereoscopic vision and the duration of the stimulus. Arch. Ophthal. 59, 4–17 (1958).Google Scholar
  135. Onley, J. W., Volkmann, J.: The visual perception of perpendicularity. Amer. J. Psychol. 71, 504–516 (1958).PubMedGoogle Scholar
  136. Oscarsson, O., Rosen, I.: Short-latency projections to the cat’s cerebral cortex from skin and muscle afférents in the contralateral forelimb. J. Physiol. (Lond.) 182, 164–184 (1966).Google Scholar
  137. Osgood, C. E., Heyer, A. W., Jr.: A new interpretation of figurai after-effects. Psychol. Rev. 59, 98–118 (1952).PubMedGoogle Scholar
  138. Oyster, C. W., Barlow, H. B.: Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841–842 (1967).PubMedGoogle Scholar
  139. Palmer, D. A.: Measurement of the horizontal extent of Panum’s area by a method of constant stimuli. Optica Acta 8, 151–159 (1961).Google Scholar
  140. Pearce, D.: Consistency of individual patterns of autokinetic direction. Perc. Mot. Sk. 23, 1119–1123 (1966).Google Scholar
  141. Pearce, D., Matin, L.: The measurement of autokinetic speed. Can. J. Psychol. 20, 160–172 (1966).Google Scholar
  142. Pearce, D., Matin, L.: Variation of the magnitude of the horizontal-vertical illusion with retinal eccentricity. Perc. Psychophys. 6, 241–243 (1969).Google Scholar
  143. Pearce, D., Porter, E.: Changes in visual sensitivity associated with voluntary saccades. Psychon. Sci. 19, 225–227 (1970).Google Scholar
  144. Pettigrew, J. D., Nikara, T., Bishop, P. O.: Responses to moving slits by single units in cat striate cortex. Exp. Brain Res. 6, 373–390 (1968).PubMedGoogle Scholar
  145. Pola, J.: Visual direction of a flash presented during or following saccades of variable length to an 8° peripheral target. Presented at Eastern Psychologial Association 1971.Google Scholar
  146. Puckett, J. D., Steinman, R. M.: Tracking eye movements with and without saccadic correction. Vision Res. 9, 695–703 (1969).PubMedGoogle Scholar
  147. Raab, D. H.: Backward Masking. Psychol. Bull. 60, 118–129 (1963).PubMedGoogle Scholar
  148. Rashbass, C.: The relationship between saccadic and smooth tracking eye movements. J. Physiol. (Lond.) 159, 326–338 (1961).Google Scholar
  149. Ratlife, F.: Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco: Holden-Day 1965.Google Scholar
  150. Richards, W.: Saccadic suppression. J. opt. Soc. Amer. 59, 617–623 (1969).Google Scholar
  151. Riggs, L. A., Armington, J. C., Ratliff, F.: Motions of the retinal image during fixation. J. opt. Soc. Amer. 44, 315–321 (1954).Google Scholar
  152. Riggs, L. A., Ratliff, F., Cornsweet, J., Cornsweet, T. N.: The disappearance of steadily fixated visual test objects. J. opt. Soc. Amer. 43, 495–501 (1953).Google Scholar
  153. Robinson, D. A.: The mechanics of human saccadic eye movement. J. Physiol. (Lond.) 174, 245–264 (1964).Google Scholar
  154. Robinson, D. A.: The mechanics of human smooth pursuit eye movement. J. Physiol. (Lond.) 180, 569–591 (1965).Google Scholar
  155. Rochlin, A. M.: The effect of tilt on the visual perception of parallelness. Amer. J. Psychol. 68, 223–236 (1955).PubMedGoogle Scholar
  156. Rock, I.: The Nature of Perceptual Adaptation. New York: Basic Books 1966.Google Scholar
  157. Rose, J. R., Mountcastle, V. B.: Touch and Kinesthesis. In: Handbook of Physiology: Sect. 1. Neurophysiology, Vol. 1. Field, J., Magoun, H., Hall, V. E. (Eds.) Amer. Physiol. Soc, Wash., D. C. Ch. 17, 409–415 (1959).Google Scholar
  158. Schaefer, K.-P.: Mikroableitungen im Tectum opticum des frei beweglichen Kaninchens: Ein experimenteller Beitrag zum Problem des Bewegungssehens. Arch. Psychiat. Nerv. 208, 120–146 (1966).Google Scholar
  159. Schaefer, K.-P.: Neuronale Entladungsmuster im Tectum opticum des Kaninchens bei passiven und aktiven Eigenbewegungen. Arch. Psychiat. Nerv. 209, 101–125 (1967).Google Scholar
  160. Schöne, H.: Über den Einfluß der Schwerkraft auf die Augenrollung und auf die Wahrnehmung der Lage im Raum. Z. vergl. Physiol. 46, 57–87 (1962).Google Scholar
  161. Sekuler, R. W., Rubin, E. L., Cttshman, W. H.: Selectivities of human visual mechanisms for direction of movement and contour orientation. J. opt. Soc. Amer. 58. 1146–1150 (1968).Google Scholar
  162. Sherrington, C. S.: Observations on the sensual role of the proprioceptive nerve supply of the extrinsic ocular muscles. Brain 41, 332–343 (1918).Google Scholar
  163. Shortess, G. K., Krattskopf, J.: Role of involuntary eye movements in stereoscopic acuity. J. opt. Soc. Amer. 51, 555–559 (1961).Google Scholar
  164. Siebeck, R.: Wahrnehmungsstörung und Störungswahrnehmung bei Augenmuskellähmungen. Graefes Arch. Ophthal. 155, 26–34 (1954).Google Scholar
  165. Skavenski, A.: Mechanisms underlying control of eye position in the dark. Ph. D. Dissertation, University of Maryland, 1970.Google Scholar
  166. Skavenski, A., Steinman, R. M.: Control of eye position in the dark. Vision Res. 10, 193–203 (1970).PubMedGoogle Scholar
  167. Smith, V. C.: Scotopic and photopic functions for visual band movement. Vision Res. 9, 293–304 (1969a).PubMedGoogle Scholar
  168. Smith, V. C.: Temporal and spatial interactions involved in the band movement phenomenon. Vision Res. 9, 665–676 (1969b).PubMedGoogle Scholar
  169. Stark, L., Vossius, G., Young, L. R.: Predictive control of eye tracking movements. Institute of Radio Engineers. Transactions on Human Factors in Electronics HFE-3, 52–57, 1962.Google Scholar
  170. St-Cyr, G. J., Fender, D. H.: Nonlinearities of the human oculomotor system: time delays. Vision Res. 9, 1491–1503 (1969).PubMedGoogle Scholar
  171. Sterling, P., Wickelgren, B. G.: Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol., 32, 1–15 (1969).PubMedGoogle Scholar
  172. Stigler, R.: Chronothotische Studien über den Umgebungskontrast. Pflügers Arch. ges. Physiol. 134, 365–435 (1910).Google Scholar
  173. Stoper, A. E.: Vision during pursuit movement: the role of oculomotor information. Ph. D. Dissertation. Brandeis University, 1968.Google Scholar
  174. Sulzer, R. L.: A determination of several functions relating sensitivity of perception of parallelness to stimulus dimensions. Ph. D. dissertation, Duke University, 1954.Google Scholar
  175. Sulzer, R. L., Zener, K.: A quantitative analysis of relations between stimulus determinants and sensitivity of the visual perception of parallelness. Amer. Psychologist 8, 444 (1953).Google Scholar
  176. Taub, E., Berman, A.: Movement and learning in the absence of sensory feedback. In: The Neuropsychology of Spatially Oriented Behavior. Freedman, S. (Ed.), Ch. 11, pp. 173–192. Homewood: Dorsey 1968.Google Scholar
  177. Taub, E., Ellman, S., Berman, A.: Deafferentation in monkeys: effect on conditioned grasp response. Science 151, 593–594 (1966).PubMedGoogle Scholar
  178. Veniar, F.: Difference thresholds for shape distortion of geometrical squares. J. Psychol. 26, 461–476 (1948).Google Scholar
  179. Volkmann, F.: Vision during voluntary saccadic eye movements. J. opt. Soc. Amer. 52, 571–578 (1962).Google Scholar
  180. Volkmann, F., Schick, A. M. L., Riggs, L. A.: Time course of visual inhibition during voluntary saccades. J. opt. Soc. Amer. 58, 562–569 (1968).Google Scholar
  181. Walls, G. L.: Factors in human visual resolution. J. opt. Soc. Amer. 33, 487–505 (1943).Google Scholar
  182. Weisstein, N.: What the frog’s eye tells the human brain: single cell analyzers in the human visual system. Psychol. Bull. 72, 157–176 (1969).PubMedGoogle Scholar
  183. Werner, H.: Studies on contour: 1. Qualitative analyses. Amer. J. Psychol. 47, 40–64 (1935).Google Scholar
  184. Werner, H.: Dynamics in depth perception. Psychol. Monogr. 49, 1–127 (1937).Google Scholar
  185. Westheimer, G.: Eye movement responses to a horizontally moving visual stimulus. Arch. Ophthal. 52, 932–941 (1954).Google Scholar
  186. Westheimer, G., Conover, D. W.: Smooth eye movements in the absence of a moving visual stimulus. J. exp. Psychol. 47, 283–284 (1954).PubMedGoogle Scholar
  187. Weymouth, F. W.: Visual sensory units and the minimal angle of resolution. Amer. J. Ophthal. 46, 102–113 (1958).PubMedGoogle Scholar
  188. Weymouth, F. W.: Stimulus orientation and threshold: an optical analysis. Amer. J. Ophthal. 48, 6–10 (1959).Google Scholar
  189. Weymouth, F. W., Andersen, E. E., Averill, H. H.: Retinal mean local sign: a new view of the relation of the retinal mosaic to visual perception. Amer. J. Physiol. 63, 410–411 (1923).Google Scholar
  190. Whitteridge, R.: The effect of stimulation of intrafusal muscle fibres on sensitivity to stretch of extraocular muscle spindles. Quart. J. exp. Physiol. 44, 385–393 (1959).PubMedGoogle Scholar
  191. Witkin, H. A., Asch, S. E.: Studies in space orientation: III. Perception of the upright in the absence of a visual field. J. exp. Psychol. 38, 603–614 (1948).PubMedGoogle Scholar
  192. Woellner, R. C., Graybiel, A.: Reflex ocular torsion in healthy males. Proj. NM. 17.01.11 Subtask 1, Rep. No. 47. U. S. Nav. Sch. aviat. Med., Pensacola, Fla., 1958.Google Scholar
  193. Wurtz, R. H., Goldberg, M. E.: Superior colliculus cell responses related to eye movements in awake monkey. Science 171, 82–84 (1971).PubMedGoogle Scholar
  194. Zuber, B. L., Stark, L.: Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Exp. Neurol. 16, 65–79 (1966).PubMedGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • Leonard Matin
    • 1
  1. 1.New YorkUSA

Personalised recommendations