Advertisement

Metacontrast

  • Naomi Weisstein
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 4)

Abstract

The term visual masking refers to events that occur when two or more stimuli are presented close to each other in time and space (see reviews by Kahneman, 1968, and Raab, 1963; also see Boynton, 1961, and Boynton, chapter 9, this volume). The threshold of one of the stimuli (the target) is raised, or, if the target presentation is suprathreshold, its appearance is changed, by the presence of another stimulus (the mask). The masking stimulus can be presented before, during, or after presentation of the target. What distinguishes masking from other psychophysical effects (such as brightness contrast) is that initia] transients, as opposed to steady-state responses, are measured. Thus, target and/or masks are of brief duration, and the interval between their onsets is a small one. The term forward masking has been used when the mask onset precedes the target onset; the term backward masking has been used when the mask onset follows the target onset. The interval between target and mask onsets will be designated Δt; — Δt will indicate forward masking, and +Δt will indicate backward masking.

Keywords

Apparent Movement Visual Masking Target Luminance Apparent Brightness Visual Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpern, M.: Metacontrast. J. opt. Soc. Amer. 43, 648–657 (1953).CrossRefGoogle Scholar
  2. Alpern, M.: Rod-cone independence in the after-flash effect. J. Physiol. (Lond.) 176, 462–472 (1965).Google Scholar
  3. Alpern, M., Rushton, W.A.H.: The nature of the rise in threshold produced by contrast-flashes. J. Physiol. (Lond.) 189, 519–534 (1967).Google Scholar
  4. Alpern, M., Rushton, W.A.H., Torri, S.: Encoding of nerve signals from retinal rods. Nature (Lond.) 223, 1171–1172 (1969).CrossRefGoogle Scholar
  5. Averbach, E.: The span of apprehension as a function of exposure duration. J. verb. Learning and verb. Beh. 2, 60–64 (1963).CrossRefGoogle Scholar
  6. Battersby, W.S., Wagman, I.H.: Neural limitations of visual excitability. IV. Spatial determinants of retrochiasmal interaction. Amer. J. Psychol. 203, 359–365 (1962).Google Scholar
  7. Baxjmgartner, R.: Kontrastlichteffekte an retinalen Ganglienzellen: Ableitungen vom Tractus opticus der Katze. In: The Visual System: Neurophysiology and Psychophysics. Jung, R., Kornhuber, H. (Eds.). Berlin-Göttingen-Heidelberg: Springer 1961.Google Scholar
  8. Blakemore, C., Campbell, F. W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–260 (1969).Google Scholar
  9. Blanc-Garin, J.: Divers aspects de l’interférence dans le phénomène de masquage latéral. Vision Res. 8, 509–523 (1968).PubMedCrossRefGoogle Scholar
  10. Boynton, R. M.: On-responses in the human visual system as inferred from psychophysical studies of rapid adaptation. Arch. Ophthal. 60, 800–810 (1958).CrossRefGoogle Scholar
  11. Boynton, R. M.: Some temporal factors in vision. In: Sensory Communication. Rosenblith, W. A. (Ed.). Cambridge: M.I.T. Press 1961.Google Scholar
  12. Campbell, F. W., Carpenter, R. H. S., Levinson, J. Z.: Visibility of aperiodic patterns compared with that of sinusoidal gratings. J. Physiol. (Lond.) 204, 283–308 (1969).Google Scholar
  13. Campbell, F. W., Robson, J. G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968).Google Scholar
  14. Cobb, W. A., Dawson, G.D.: The latency and form in man of the occipital potentials evoked by bright flashes. J. Physiol. (Lond.) 152, 108–121 (1960).Google Scholar
  15. Cornsweet, T., Teller, D. Y.: Relation of increment thresholds to brightness and luminance. J. opt. Soc. Amer. 55, 1303–1308 (1965).CrossRefGoogle Scholar
  16. Crawford, B. E.: Visual adaptation to brief conditioning stimuli. Proc. roy. Soc. B 134, 283–302 (1947).CrossRefGoogle Scholar
  17. Cull, P.: General two factor models. Bull. math. Biophys. 29, 405 (1967).PubMedCrossRefGoogle Scholar
  18. Dember, W. N., Purcell, D. G.: Recovery of masked visual targets by inhibition of the masking stimulus. Science 157, 1335–1336 (1967).PubMedCrossRefGoogle Scholar
  19. DeValois, R. L., Pease, P. L.: Contours and contrast: Responses of monkey lateral geniculate nucleus cells to luminance and color figures. Science 171, 694–696 (1971).CrossRefGoogle Scholar
  20. Donchin, E., Lindsley, D.: Visual evoked response correlates of perceptual masking and enhancement. Electroenceph. clin. Neurophysiol. 19, 325–335 (1965).PubMedCrossRefGoogle Scholar
  21. Enroth-Cugell, C., Pinto, L.: Algebraic summation of centre and surround inputs to retinal ganglion cells of the cat. Nature (Lond.) 226, 458–459 (1970).CrossRefGoogle Scholar
  22. Eriksen, C.: Temporal luminance summation effects in forward and backward masking. Perc. Psychophys. 1, 87–92 (1966).CrossRefGoogle Scholar
  23. Eriksen, C., Becker, B. B., Hoffman, J. E.: Safari to masking land: A hunt for the elusive U. Perc. Psychophys. 8, 245–250 (1970).CrossRefGoogle Scholar
  24. Eriksen, C., Colegate, R. L.: Identification of forms at brief durations when seen in apparent motion. J. exp. Psychol. 84, 137–140 (1970).PubMedCrossRefGoogle Scholar
  25. Eriksen, C., Collins, J. F., Greenspon, T.S.: An analysis of certain factors responsible for non-mono-tonic backward masking functions. J. exp. Psychol. 75, 500–507 (1967).CrossRefGoogle Scholar
  26. Eriksen, C., Marshall, P. H.: Failure to replicate a reported U-shaped visual masking function. Psychon. Sci. 15, 195–196 (1969).Google Scholar
  27. Fehrer, E.: Effect of stimulus on retroactive masking. J. exp. Psychol. 71, 612–615 (1966).PubMedCrossRefGoogle Scholar
  28. Fehrer, E., Raab, D. H.: Reaction time to stimuli masked by metacontrast. J. exp. Psychol. 63, 143–147 (1962).PubMedCrossRefGoogle Scholar
  29. Fehrer, E., Smith, E.: Effect of luminance ratio on masking. Perc. mot. Skills 14, 243–253 (1962).CrossRefGoogle Scholar
  30. Frumkes, T. E., Sturr, J. F.: Spatial and luminance factors determining visual excitability. J. opt. Soc. Amer. 58, 1657–1662 (1968).CrossRefGoogle Scholar
  31. Fuortes, M. G. F., Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (Lond.) 172, 239–263 (1964).Google Scholar
  32. Growney, R. L., Weisstein, N.: Metacontrast and some spatial characteristics of human visual receptive fields. Paper delivered at meetings of Midwestern Psychological Association, 1971.Google Scholar
  33. Harmon, L. D., Lewis, K.: Neural modeling. Physiol. Rev. 46, 513–591 (1966).PubMedGoogle Scholar
  34. Heckenmueller, E., Dember, W. N.: A forced-choice indicator for use with Werner’s discring pattern in studies of backward masking. Psychon. Sci. 3, 167–168 (1965a).Google Scholar
  35. Heckenmueller, E., Dember, W. N.: Paradoxical brightening of a masked black disc. Psychon. Sci. 3, 457–458 (1965b).Google Scholar
  36. Householder, A. S.: Equivalence of the theories of nervous excitation of Hill, Monnier, and Rashevsky. Bull. math. Biophys. 6, 79–81 (1944).CrossRefGoogle Scholar
  37. Hubel, D. H., Wiesel, T. N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).Google Scholar
  38. Kahnemann, D.: An onset-onset law for one case of apparent motion and metacontrast. Perc. Psychophys. 2, 577–584 (1967).CrossRefGoogle Scholar
  39. Kahnemann, D.: Method, findings, and theory in studies of visual masking. Psychol. Bull. 70, 404–425 (1968).CrossRefGoogle Scholar
  40. Kelly, D. H.: Theory of Flicker and Transient Responses, I. Uniform Fields. J. opt. Soc. Amer. 61, 537–546 (1971).CrossRefGoogle Scholar
  41. Kolers, P. A.: Intensity and contour effects in visual masking. Vision Res. 2, 277–294 (1962).CrossRefGoogle Scholar
  42. Kolers, P. A.: Some psychological aspects of pattern recognition. In: Recognizing Patterns: Studies in Living and Automatic Systems. Kolers, P.A., Eden, M. (Eds.). Cambridge: M.I.T. Press 1968.Google Scholar
  43. Kolers, P. A., Rosner, B.: On visual masking (metacontrast): Dichoptic observation. Amer. J. Psychol. 73, 2–21 (1960).PubMedCrossRefGoogle Scholar
  44. Kuffler, S.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).PubMedGoogle Scholar
  45. Landahl, H. D.: Mathematical models of neurone interaction. AIEE Special Publication S-134 (Switching Circuit Theory and Logical Design) 1962.Google Scholar
  46. Landahl, H. D.: A neural net model for masking phenomena. Bull. math. Biophys. 29, 227–232 (1967).PubMedCrossRefGoogle Scholar
  47. Levinson, J. Z.: Flicker fusion phenomena. Science 160, 21–28 (1968).PubMedCrossRefGoogle Scholar
  48. Licker, M. D.: Early inhibition and excitation of the retinal ganglion cells. Vision Res. 9, 25–36 (1969).PubMedCrossRefGoogle Scholar
  49. Lyubinskii, I. A., Pozin, N. V., Yakhno, V. P.: An analysis of models of a homogeneous neuron layer with lateral connections. Automation and Remote Control 28, 1565–1576 (1968).Google Scholar
  50. Markoff, J.I.: Thesis, Syracuse University, Syracuse. New York 1969.Google Scholar
  51. Markoff, J.I., Sturr, J.F.: Spatial and luminance determinants of the increment threshold under monop-tic and dichoptic viewing. Abstract. J. opt. Soc. Amer. 59, 1543 (1969).Google Scholar
  52. Matteson, H. H.: Effects of surround size and luminance on metacontrast. J. opt. Soc. Amer. 59, 1461–1468 (1969).CrossRefGoogle Scholar
  53. Matthews, M. L.: Spatial and temporal factors in masking by edges and disks. Perc. Psychophys. 9 (1A), 15–21 (1971).CrossRefGoogle Scholar
  54. Mayzner, M. S., Blatt, M. H., Buchsbaum, W. H., Friedel, R. T., Goodwin, P. E., Kanon, D., Keleman, A., Nilsson, W. D.: A U-shaped backward masking function in vision: A partial replication of the Weisstein and Haber study with two ring sizes. Psychon. Sci. 3, 79–80 (1965).Google Scholar
  55. Nachmias, J., Sachs, M. B., Robson, J. G.: Independent spatial-frequency channels in human vision. J. opt. Soc. Amer. 59, 1538 (1969).Google Scholar
  56. Nakayama, K.: Analysis of visual masking in terms of unit responses in the optic nerve and lateral geniculate body of the cat. Ph. D. Thesis, University of California (1968).Google Scholar
  57. Poggio, G.F., Baker, F.H., Lamarre, Y., Riva, Sanseverino, E.: Afferent inhibition at inputs to visual cortex of cat. J. Neurophys. 32, 892–925 (1969).Google Scholar
  58. Raab, D. H.: Backward masking. Psychol. Bull. 60, 118–129 (1963).PubMedCrossRefGoogle Scholar
  59. Ratliff, F.: Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco: Holden Day 1965.Google Scholar
  60. Rashevsky, N.: Mathematical Biophysics. (Rev. ed.) Chicago: University of Chicago Press 1948.Google Scholar
  61. Robinson, D. N.: Disinhibition of visually masked stimuli. Science 154, 157–158 (1966).PubMedCrossRefGoogle Scholar
  62. Rothberg, J. M.: Simulation of neural nets with some applications to visual information processing. Computers and biomed. Res. 1, 435–451 (1968).CrossRefGoogle Scholar
  63. Rumelhart, D. E.: A multicomponent theory if the perception of briefly exposed visual displays. J. math. Psychol. 7, 191–218 (1970).CrossRefGoogle Scholar
  64. Schiller, P.H.: Single unit analysis of backward visual masking and metacontrast in the cat lateral geniculate nucleus. Vision Res. 8, 855–866 (1968 a).PubMedCrossRefGoogle Scholar
  65. Schiller, P.H.: Single unit analysis of backward and forward masking in the cat lateral geniculate nucleus. Proc. 76th Ann. Conv. Amer. Psychol. Assn. 3, 319–320 (1968b).Google Scholar
  66. Schiller, P.H., Chorover, S. L.: Metacontrast: Its relation to evoked potentials. Science 153, 1398–1401 (1966).PubMedCrossRefGoogle Scholar
  67. Schiller, P.H., Greenfeeld, A.: Visual masking and the recovery phenomenon. Perc. Psychophys. 6, 182–184 (1969).CrossRefGoogle Scholar
  68. Schiller, P.H., Smith, M.: Detection in metacontrast. J. exp. Psychol. 71, 32–46 (1966).PubMedCrossRefGoogle Scholar
  69. Schiller, P.H., Smith, M.: Monoptic and dichoptic metacontrast. Perc. Psychophys. 3, 237–239 (1968).CrossRefGoogle Scholar
  70. Sperling, G.: A model for visual memory tasks. Hum. Factors 5, 19–31 (1963).PubMedGoogle Scholar
  71. Sperling, G.: Model of visual adaptation and contrast detection. Perc. Psychophys. 8 (3), 143–157 (1970).CrossRefGoogle Scholar
  72. Sperling, G., Sondhi, M. M.: Model for visual luminance discrimination and flicker detection. J. opt. Soc. Amer. 58, 1133–1145 (1968).CrossRefGoogle Scholar
  73. Stevens, C. F.: Synaptic Physiology. Proc. IEEE 56, 916–930 (1968).CrossRefGoogle Scholar
  74. Stewart, A. L., Purcell, D. G.: U-shaped masking functions in visual backward masking: Effects of target configuration and retinal position. Perc. Psychophys. 7, 253–256 (1970).CrossRefGoogle Scholar
  75. Stigler, R.: Chronophotische Studien über den Umgebungskontrast. Arch. ges. Physiol. 134, 365–435 (1910).CrossRefGoogle Scholar
  76. Stigler, R.: Metacontrast (demonstration). Arch. int. Physiol. 14, 78 (1913).Google Scholar
  77. Teller, D.Y.: Sensitization by annular surrounds: temporal (masking) transients. Vision Res. in press (1971).Google Scholar
  78. Teller, D.Y., Lindsey, B.: Sensitization by annular surrounds: Individual differences. Vision Res. 10, 1045–1056 (1970).PubMedCrossRefGoogle Scholar
  79. Thomas, J. P.: Linearity of spatial integrations involving inhibitory interactions. Vision Res. 8, 49–60 (1968).CrossRefGoogle Scholar
  80. Uttal, W. R.: On the physiological basis of masking with dotted visual noise. Perc. Psychophys. 7 (6), 321–327 (1970).CrossRefGoogle Scholar
  81. Vaughn, H. G., Jr., Silverstein, L.: Metacontrast and evoked potentials: A reappraisal. Science 160, 207–208 (1968).CrossRefGoogle Scholar
  82. Weisstein, N.: Backward masking and models of preceptual processing. J. exp. Psychol. 72, 232–240 (1966).PubMedCrossRefGoogle Scholar
  83. Weisstein, N.: A Rashevsky-Landahl neural net: Simulation of metacontrast. Psychol. Rev. 75, 494–521 (1968).PubMedCrossRefGoogle Scholar
  84. Weisstein, N.: What the frog’s eye tells the human brain: Single cell analyzers in the human visual system. Psychol. Bull. 72, 157–176 (1969).PubMedCrossRefGoogle Scholar
  85. Weisstein, N.: Neural symbolic activity: A psychophysical measure. Science 168, 1489–1491 (1970).PubMedCrossRefGoogle Scholar
  86. Weisstein, N.: W-shaped and U-shaped functions obtained for monoptic and dichoptic disk-disk masking. Perc. Psychophys. 9 (3A), 275–278 (1971).CrossRefGoogle Scholar
  87. Weisstein, N., Growney, R. L.: Apparent movement and metacontrast: A note on Kahneman’s formulation. Perc. Psychophys. 5, 321–328 (1969).CrossRefGoogle Scholar
  88. Weisstein, N., Haber, R. N.: A U-shaped backward masking function in vision. Psychon. Sci. 2, 75–76 (1965).Google Scholar
  89. Weisstein, N., Jurkens, T., Onderisin, T.: Effect of forced-choice vs. magnitude-estimation measures on the waveform of metacontrast functions. J. opt. Soc. Amer. 60, 978–980 (1970).CrossRefGoogle Scholar
  90. Werner, H.: Studies on contour: I. Qualitative analyses. Amer. J. Psychol. 47, 40–64 (1935).CrossRefGoogle Scholar
  91. Westheimer, G.: Spatial interaction in the human retina during scotopic vision. J. Physiol. (Lond.) 181, 881–894 (1965).Google Scholar
  92. Westheimer, G., Spatial interaction in human cone vision. J. Physiol. (Lond.) 190, 139–154 (1967).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • Naomi Weisstein
    • 1
  1. 1.ChicagoUSA

Personalised recommendations