Dark and Light Adaptation: Psychophysics

  • Horace B. Barlow
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 4)

Abstract

In the most general sense, dark and light adaptation simply mean getting accustomed to lesser or greater levels of environmental illumination. The importance and efficiency of the mechanisms involved are not obvious subjectively because they function so well. Changes of average luminance by factors of 10, 100, or 1000 occur frequently and pass largely unnoticed; it is only when luminance changes by a much larger factor that we are seriously inconvenienced, either by the temporary blindness resulting from the slowness of regeneration of rhodopsin, or by the unpleasant glare resulting from our inability to reduce our pupil area to the same extent as the domestic cat. Psychophysical measurements show that, though we may not be vividly aware of them, great changes of visual performance nonetheless occur, and the main purpose of this chapter is to describe them.

Keywords

Migration Attenuation Retina Peri Sine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, M., Stiles, W. S.: Saturation of the rod mechanism at high levels of stimulation. Optica Acta 1, 59–65 (1954).CrossRefGoogle Scholar
  2. Alpekn, M., Campbell, F. W.: The behaviour of the pupil during dark-adaptation. J. Physiol. (Lond.) 165, 5P–6P (1962).Google Scholar
  3. Alpekn, M., Fulton, A., Rushton, W. A. H., Torii, S.: Effect of adaptation on the retinal nerve code. Nature (Lond.) 224, 712–713 (1969).CrossRefGoogle Scholar
  4. Alpekn, M., Rttshton, W. A. H., Torii, S.: The attenuation of rod signals by backgrounds. J. Physiol. (Lond.) 206, 209–228 (1970).Google Scholar
  5. Baker, H. D.: Initial stages of dark and light adaptation. J. opt. Soc. Amer. 53, 98–103 (1963).CrossRefGoogle Scholar
  6. Barlow, H. B.: Increment thresholds at low intensities considered as signal noise discriminations. J. Physiol. (Lond.) 136, 469–488 (1957).Google Scholar
  7. Barlow, H. B.: Temporal and spatial summation in human vision at different background intensities. J. Physiol. (Lond.) 141, 337–350 (1958a).Google Scholar
  8. Barlow, H. B.: Intrinsic noise of cones. In: Visual Problems of Colour, Vol. 2, pp. 617–630. London: H. M. Stationery Office 1958b.Google Scholar
  9. Barlow, H. B.: A method of determining the overall quantum efficiency of visual discriminations. J. Physiol. (Lond.) 160, 155–168 (1962a).Google Scholar
  10. Barlow, H. B.: Measurements of the quantum efficiency of discrimination in human scotopic vision. J. Physiol. (Lond.) 160, 169–188 (1962b).Google Scholar
  11. Barlow, H. B.: Slippage of contact lenses and other artifacts in relation to fading and regeneration of supposedly stable retinal images. Quart. J. exp. Psychol. 15, 36–51 (1963).CrossRefGoogle Scholar
  12. Barlow, H. B.: Dark adaptation: a new hypothesis. Vision Res. 4, 47–58 (1964a).PubMedCrossRefGoogle Scholar
  13. Barlow, H. B.: The physical limits of visual discrimination. In: Photophysiology, Vol. 2, pp. 163–202. Giese, A. C. (Ed.) New York: Academic Press 1964b.Google Scholar
  14. Barlow, H. B., Fitzhugh, R., Kuffler, S. W.: Change of organization in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338–354 (1957).Google Scholar
  15. Barlow, H. B., Sparrock, J. M. B.: The role of after-images in dark adaptation. Science 144, 1309–1314 (1964).PubMedCrossRefGoogle Scholar
  16. Blakemore, C. B., Rushton, W. A. H.: Dark adaptation and increment threshold in a rod monochromat, J. Physiol. (Lond.) 181, 612–628 (1965a).Google Scholar
  17. Blakemore, C. B., Rushton, W. A. H.: The rod increment threshold during dark adaptation in normal and rod monochromat. J. Physiol. (Lond.) 181, 629–640 (1965b).Google Scholar
  18. Bornschein, H.: Spontan- und Belichtungsaktivität in Einzelfasern des N. Opticus der Katze. I. Der Einfluß kurzdauernder retinaler Ischämie. Z. Biol. 110, 210–222 (1958).PubMedGoogle Scholar
  19. Bouman, M. A.: History and present status of quantum theory in vision. In: Sensory Communication, Ch. 21, pp. 377–401. Rosenblith, W. (Ed.) Boston: M.I.T. Press 1961.Google Scholar
  20. Brindley, G. S.: The summation areas of human colour-receptive mechanisms at increment threshold. J. Physiol. (Lond.) 124, 400–408 (1954).Google Scholar
  21. Brindley, G. S.: The discrimination of after-images. J. Physiol. (Lond.) 147, 194–203 (1959).Google Scholar
  22. Brindley, G. S., Du Croz, J. J., Rushton, W. A. H.: The flicker fusion frequency of the blue-sensitive mechanism of colour vision. J. Physiol. (Lond.) 183, 497–500 (1966).Google Scholar
  23. Campbell, F. W., Gregory, A. H.: Effect of pupil size on acuity. Nature (Lond.) 187, 1121–1123 (1960).CrossRefGoogle Scholar
  24. Campbell, F. W., Gubisch, R. W.: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).Google Scholar
  25. Campbell, F. W., Rushton, W. A. H.: Measurement of the scotopic pigment in the living human eye. J. Physiol. (Lond.) 130, 131–147 (1955).Google Scholar
  26. Carr, R. E., Ripps, H.: Rhodopsin kinetics and rod adaptation in Oguchi’s disease. Invest. Ophthal. 6, 426–436 (1967).Google Scholar
  27. Carr, R. E., Ripps, H., Siegel, I. M., Weale, R. A.: Rhodopsin and the electrical activity of the retina in congenital night blindness. Invest. Ophthal. 5, 497–507 (1966a).PubMedGoogle Scholar
  28. Carr, R. E., Ripps, H., Siegel, I. M., Weale, R. A.: Visual functions in congenital night-blindness. Invest. Ophthal. 5, 508–514 (1966b).PubMedGoogle Scholar
  29. Clark Jones, R.: Quantum efficiency of human vision. J. opt. Soc. Amer. 49, 645–653 (1959).CrossRefGoogle Scholar
  30. Cohen, A. I.: New evidence supporting the linkage to extracellular space of the outer segment saccules of frog cones but not rods. J. cell Biol. 37, 424–444 (1968).PubMedCrossRefGoogle Scholar
  31. Cone, R. A.: The rat electroretinogram I: contrasting effects of adaptation on the amplitude and latency of the b-wave. J. gen. Physiol. 47, 1089–1105 (1964).PubMedCrossRefGoogle Scholar
  32. Craik, K. J. W.: The effect of adaptation on differential brightness discrimination. J. Physiol. (Lond.) 92, 406–421 (1938).Google Scholar
  33. Craik, K. J. W., Vernon, M. D.: The nature of dark adaptation. Brit. J. Psychol. 32, 64–81 (1941).Google Scholar
  34. Crawford, B. H.: The change of visual sensitivity with time. Proc. roy. Soc. (Lond.) B 123, 69–89 (1937).CrossRefGoogle Scholar
  35. Crawford, B. H.: The effect of field size and pattern on the change of visual sensitivity with time. Proc. roy. Soc. (Lond.) B 129, 94–106 (1940).CrossRefGoogle Scholar
  36. Crawford, B. H.: Photochemical laws and visual phenomena. Proc. roy. Soc. (Lond.) B 133, 63–75 (1946).CrossRefGoogle Scholar
  37. Crawford, B. H.: Visual adaptation in relation to brief conditioning stimuli. Proc. roy. Soc. (Lond.) B 134, 283–302 (1947).CrossRefGoogle Scholar
  38. Daitch, J. M., Green, D. G.: Contrast sensitivity of the human peripheral retina. Vision Res. 9, 947–952 (1969).PubMedCrossRefGoogle Scholar
  39. De Vries, Hl.: The quantum character of light and its bearing upon the threshold of vision, the differential sensitivity and acuity of the eye. Physica 10, 553–564 (1943).CrossRefGoogle Scholar
  40. Donner, K. O., Reuter, T.: The dark adaptation of single units in the frog’s retina and its relation to the regeneration of rhodopsin. Vision Res. 5, 615–632 (1965).PubMedCrossRefGoogle Scholar
  41. Donner, K. O., Reuter, T.: Dark adaptation processes in the rhodopsin rods of the frog’s retina. Vision Res. 7, 17–62 (1967).PubMedCrossRefGoogle Scholar
  42. Dowling, J. E.: Chemistry of visual adaptation in the rat. Nature (Lond.) 188, 114–118 (1960).CrossRefGoogle Scholar
  43. Dowling, J. E.: Neural and photochemical mechanisms of visual adaptation in the rat. J. gen. Physiol. 46, 1287–1301 (1963).PubMedCrossRefGoogle Scholar
  44. Dowling, J. E.: The site of visual adaptation. Science 155, 273–279 (1967).PubMedCrossRefGoogle Scholar
  45. Dowling, J. E., Hubbard, R.: Effects of brilliant flashes on light and dark adaptation. Nature (Lond.) 199, 972–975 (1963).CrossRefGoogle Scholar
  46. DuCroz, J. J., Rushton, W. A. H.: The separation of cone mechanisms in dark adaptation. J. Physiol. (Lond.) 183, 481–496 (1966).Google Scholar
  47. Ernst, W.: The dependence of critical flicker frequency and the rod threshold on the state of adaptation of the eye. Vision Res. 8, 889–900 (1968).PubMedCrossRefGoogle Scholar
  48. Frank, R. N., Dowling, J. E.: Rhodopsin photoproducts: Effects on electroretinogram sensitivity in isolated perfused rat retina. Science 161, 487–489 (1968).PubMedCrossRefGoogle Scholar
  49. Fuortes, M. G. F., Gunkel, R. D., Rushton, W. A. H.: Increment thresholds in a subject deficient in cone vision. J. Physiol. (Lond.) 156, 179–192 (1961).Google Scholar
  50. Green, D. G.: Sinusoidal flicker characteristics of the colour sensitive mechanisms of the eye. Vision Res. 9, 591–601 (1969).PubMedCrossRefGoogle Scholar
  51. Hagins, W. A.: The quantum efficiency of bleaching of rhodopsin in situ. J. Physiol. (Lond.) 129, 22P–23P (1955).Google Scholar
  52. Haig, C.: The course of rod dark adaptation as influenced by the intensity and duration of preadaptation to light. J. gen. Physiol. 24, 735–751 (1941).PubMedCrossRefGoogle Scholar
  53. Hecht, S.: The nature of the sensitivity of animals to light. J. opt. Soc. Amer. 18, 264–286 (1929).CrossRefGoogle Scholar
  54. Hecht, S.: Rods, cones, and the chemical basis of vision. Physiol. Rev. 17, 239–290 (1937).Google Scholar
  55. Hecht, S., Haig, C., Chase, A. M.: The influence of light-adaptation on subsequent dark adaptation of the eye. J. gen. Physiol. 20, 831–850 (1937).PubMedCrossRefGoogle Scholar
  56. Hough, E. A., Ruddock, K. H.: The Purkinje Shift. Vision Res. 9, 313–315 (1969).PubMedCrossRefGoogle Scholar
  57. Kelly, D. H.: Diffusion model of linear flicker repsonses. J. opt. Soc. Amer. 59, 1665–1670 (1969).CrossRefGoogle Scholar
  58. Lythgoe, R. J.: The mechanism of dark adaptation. Brit. J. Ophthal. 24, 21–43 (1940).PubMedCrossRefGoogle Scholar
  59. Maffei, L., Poppele, R. E.: Transient and steady state electroretinal responses. Vision Res. 8, 229–246 (1968).PubMedCrossRefGoogle Scholar
  60. Mckee, S. P., Westheimer, G.: Specificity of cone mechanisms in lateral interaction. J. Physiol. (Lond.) 206, 117–128 (1970).Google Scholar
  61. Naka, K. I., Rushton, W. A. H.: S-potential and dark-adaptation in fish. J. Physiol. (Lond.) 194, 259–269 (1968).Google Scholar
  62. Parinaud, H.: La Vision. Paris: Octave Doin 1898.Google Scholar
  63. Penn, R. D., Hagins, W. A.: Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature (Lond.) 223, 201–205 (1969).CrossRefGoogle Scholar
  64. Pirenne, M. H.: Visual functions in man. In: The Eye, Vol. 2, Ch. 1–11, pp. 3–218. Davson, H. (Ed.) New York-London: Academic Press 1962.Google Scholar
  65. Rose, A.: The relative sensitivities of television pick-up tubes, photographic film, and the human eye. Proc. Inst. Rad. Eng. 30, 293–300 (1942).Google Scholar
  66. Rose, A.: The sensitivity performance of the human eye on an absolute scale. J. opt. Soc. Amer. 38, 196–208 (1948).CrossRefGoogle Scholar
  67. Rushton, W. A. H.: The difference spectrum and the photosensitivity of rhodopsin in the living human eye. J. Physiol. (Lond.) 134, 11–29 (1956).Google Scholar
  68. Rushton, W. A. H.: Physical measurement of cone pigments in the living human eye. Nature (Lond.) 179, 571–573 (1957).CrossRefGoogle Scholar
  69. Rushton, W. A. H.: Dark-adaptation and the regeneration of rhodopsin. J. Physiol. (Lond.) 156, 166–178 (1961a).Google Scholar
  70. Rushton, W. A. H.: Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J. Physiol. (Lond.) 156, 193–205 (1961b).Google Scholar
  71. Rushton, W. A. H.: Cone pigment kinetics in the protanope. J. Physiol. (Lond.) 168, 374–388 (1963).Google Scholar
  72. Rushton, W. A. H.: Flash photolysis in human cones. Photochem. and Photobiol. 3, 561–577 (1964).CrossRefGoogle Scholar
  73. Rushton, W. A. H.: Cone pigment kinetics in the deuteranope. J. Physiol. (Lond.) 176, 38–45 (1965a).Google Scholar
  74. Rushton, W. A. H.: Bleached rhodopsin and visual adaptation. J. Physiol. (Lond.) 181, 645–655 (1965b).Google Scholar
  75. Rushton, W. A. H.: The Ferrier Lecture, 1962. Visual Adaptation. Proc. roy. Soc. (Lond.) B 162, 20–46 (1965c).CrossRefGoogle Scholar
  76. Rushton, W. A. H.: Rod/cone rivalry in pigment regeneration. J. Physiol. (Lond.) 198, 219–236 (1968).Google Scholar
  77. Rushton, W. A. H., Baker, H. D.: Effect of a very bright flash on cone vision and cone pigments in man. Nature (Lond.) 200, 421–423 (1963).CrossRefGoogle Scholar
  78. Rushton, W. A. H., Campbell, F. W., Hagins, W. A., Brindley, G. S.: The bleaching and regeneration of rhodopsin in the living eye of the albino rabbit and of man. Optica Acta 1, 183–190 (1955).CrossRefGoogle Scholar
  79. Rushton, W. A. H., Fulton, A. B., Baker, H. D.: Dark adaptation and the rate of pigment regeneration. Vision Res. 9, 1473–1480 (1969).PubMedCrossRefGoogle Scholar
  80. Rushton, W. A. H., Henry, G. H.: Bleaching and regeneration of cone pigments in man. Vision Res. 8, 617–632 (1968).PubMedCrossRefGoogle Scholar
  81. Rushton, W. A. H., Westheimer, G.: The effect upon the rod threshold of bleaching neighbouring rods. J. Physiol. (Lond.) 164, 318–329 (1962).Google Scholar
  82. Schultze, M.: Zur Anatomie und Physiologie der Retina. Arch. mikr. Anat. 2, 175–286 (1866).CrossRefGoogle Scholar
  83. Stark, L.: Neurological Control Systems. New York: Plenum Press 1968.Google Scholar
  84. Steinberg, R. H.: The rod after-effect in S-potentials from the cat retina. Vision Res. 9, 1345–1356 (1969).PubMedCrossRefGoogle Scholar
  85. Stiles, W. A.: Color vision: The approach through increment-threshold sensitivity. Proc. nat. Acad. Sci. (Wash.) 45, 100–114 (1954).CrossRefGoogle Scholar
  86. Stiles, W. S.: The directional sensitivity of the retina and the spectral sensitivities of the rods and cones. Proc. roy. Soc. (Lond.) B 127, 64–105 (1939).CrossRefGoogle Scholar
  87. Stiles, W. S., Crawford, B. H.: Equivalent adaptation levels in localized retinal areas. In: Report of a Joint Discussion on Vision, pp. 194–211. Physical Society of London: Cambridge: University Press 1932.Google Scholar
  88. Stiles, W. S., Crawford, B. H.: The luminous efficiency of rays entering the eye pupil at different points. Proc. roy. Soc. (Lond.) B 112, 428–450 (1933).CrossRefGoogle Scholar
  89. Tansley, K., Johnson, B. K.: The cones of the grass snake’s eye. Nature (Lond.) 178, 1285–1286 (1956).CrossRefGoogle Scholar
  90. Teller, D. Y., Andrews, D. P., Barlow, H. B.: Local adaptation in stabilized vision. Vision Res. 6, 701–705 (1966).PubMedCrossRefGoogle Scholar
  91. Toyoda, J. I., Nosaki, H., Tomita, T.: Light induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9, 453–463 (1969).PubMedCrossRefGoogle Scholar
  92. Von Kries, J.: Über die Funktion der Netzhautstäbchen. Z. Psychol. Physiol. Sinnesorg. 9, 81–123 (1896).Google Scholar
  93. Wald, G.: Blue-blindness in the normal fovea. J. opt. Soc. Amer. 57, 1289–1301 (1967).CrossRefGoogle Scholar
  94. Walls, G. L.: The Vertebrate Eye and its Adaptive Radiation. Cranbrook Institute of Science, Bloomfield Hills, Michigan 1942. (Republished, Hafner, N. Y. 1963).CrossRefGoogle Scholar
  95. Weinstein, G. W., Hobson, R. R., Dowling, J. E.: Light and dark adaptation in the isolated rat retina, Nature (Lond.) 215, 134–138 (1967).CrossRefGoogle Scholar
  96. Werblin, F. W., Dowling, J. E.: Organization of the retina of the mud puppy, Necturusmaculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355 (1969).PubMedGoogle Scholar
  97. Westheimer, G.: Visual acuity. Ann. Rev. Psychol. 16, 359–380 (1965a).CrossRefGoogle Scholar
  98. Westheimer, G.: Spatial interaction in the human retina during scotopic vision. J. Physiol. (Lond.) 181, 881–894 (1965b).Google Scholar
  99. Westheimer, G.: Spatial interaction in human cone vision. J. Physiol. (Lond.) 190, 139–154 (1967).Google Scholar
  100. Westheimer, G.: Bleached rhodopsin and retinal interaction. J. Physiol. (Lond.) 195, 97–106 (1968).Google Scholar
  101. Westheimer, G.: Rod-cone independence for sensitizing interaction in the human retina. J. Physiol. (Lond.) 206, 109–116 (1970).Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1972

Authors and Affiliations

  • Horace B. Barlow
    • 1
  1. 1.BerkeleyUSA

Personalised recommendations