Advertisement

VLSI Device Fundamentals

  • J. L. Prince
Part of the Springer Series in Electrophysics book series (SSEP, volume 5)

Abstract

That electronics technology will soon enter a new era, that of Very Large Scale Integration, is clear. In this era the “VLSIC’s” will be integrated systems rather than integrated circuits. Although this differentiation may seem trivial, examination of the economics and the capabilities, and the limitations, of VLSI chips results in the conclusion that profound changes in fabrication, design, and product definition must occur before VLSI chips can become pervasive. Fig. 1 shows the well-known integrated circuit complexity increase with time, known by some as “Moore’s Law” [1,2]. The historical data in this figure, which gives the envelope of integrated circuit complexity growth, shows a doubling of complexity every year up to the present time, with a projected decrease of the rate of growth to a doubling every two years. This decrease in rate of growth is projected as being due to the practical elimination of wasted, or non-functional, space on the silicon chip at or about the 1980 time [1], with no further progress to be made in this area. The projection seems somewhat conservative. More important than the decrease in the complexity growth rate envelope due to this effect, are the possible limitations on the available product spectrum due to a crisis in product definition coupled with the exponentially growing cost of design. The question is just this: will the VLSI chip set consist only of ever-larger memories, and longer-word-length microprocessors, with other functional blocks at the LSI level or below? The answer to this question, and in fact the driving force for VLSI, is implicit in the future systems requirements which will drive the semiconductor industry.

Keywords

Minimum Dimension Very Large Scale Integration Soft Error Specific Contact Resistance Critical Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Moore, IEEE Spectrum 16, No. 4, 30, April 1979.Google Scholar
  2. 2.
    G. E. Moore, Proceedings of the International Electron Device Meeting, 11 (1975).Google Scholar
  3. 3.
    R. N. Gossen, IEEE Spectrum 16, No. 3, 42, March 1979.Google Scholar
  4. 4.
    H.-N. Yu, A. Reisman, G. M. Osburn, and D. L. Critchlow, IEEE J. Solid-State Circuits SG-14, 240 (1979).Google Scholar
  5. 5.
    L. R. Weisberg and L. W. Sumney, 1978 Digest of Papers of the Government Microcircuits Applications Conference, p. 18, Nov. 1978.Google Scholar
  6. 6.
    R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bossons, and A. R. Leblanc, IEEE J. Solid-State Circuits SC-9, 256 (1974).Google Scholar
  7. A. N. Broers and R. H. Dennard, in Semiconductor Silicon, Electrochemical Society, H. R. Huff and R. R. Burgess, eds (1973).Google Scholar
  8. 7.
    S. M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York (1969).Google Scholar
  9. 8.
    J. R. Brews, W. Fichtner, E. H. Nicollian, and S. M. Sze, IEEE Electron Device Lett. EDL-1, 2 (1980).Google Scholar
  10. 9.
    B. Hoeneisen and C.A. Mead, Solid-State Electron. 15, 819 (1972).CrossRefGoogle Scholar
  11. 10.
    R. W. Keyes, Proc. IEEE 63, 740 (1975).CrossRefGoogle Scholar
  12. 11.
    P. A. H. Hart, T. Van’T Hof, and F. M. Klaasen, IEEE J. Solid-State Circuits SC-14, 343 (1979).CrossRefGoogle Scholar
  13. 12.
    G. H. Heilmeier, IEEE Spectrum 16, No. 3, 45, March 1979.Google Scholar
  14. 13.
    R. H. Dennard, F. H. Gaensslen, E.J. Walker and P. W. Cook, IEEE Trans. Electron Devices ED-26, 325 (1979).CrossRefGoogle Scholar
  15. 14.
    P. M. Solomon and D. D. Tang, 1979 IEEE International Solid-State Circuits Conf. Digest of Technical Papers, p. 86, Feb. 1979.Google Scholar
  16. 15.
    F. M. Klaasen, Solid-State Electron. 21, 565 (1978).CrossRefGoogle Scholar
  17. 16.
    B. Hoeneisen and C. A. Mead, Solid-State Electron. 15, 891 (1972).CrossRefGoogle Scholar
  18. 17.
    C. Hart and A. Slob, IEEE J. Solid-State Circuits 7, 346 (1972).CrossRefGoogle Scholar
  19. 18.
    F. M. Klaasen, IEEE Trans. Electron Devices ED-22, 145 (1975).CrossRefGoogle Scholar
  20. 19.
    H. H. Berger and K. Helwig, IEEE J. Solid-State Circuits SC-14, 327 (1979).CrossRefGoogle Scholar
  21. 20.
    S. A. Evans, IEEE J. Solid-State Circuits SC-14, 318 (1979).CrossRefGoogle Scholar
  22. 21.
    B. L. Crowder and S. Zirinsky, IEEE Trans. Electron Devices ED-26, 369 (1979).CrossRefGoogle Scholar
  23. 22.
    J. R. Black, Proc. 12th IEEE Reliab. Phys. Symp., 142 (1974).Google Scholar
  24. 23.
    G. A. Scoggan, B. N. Agarwala, P. O. Peressini, and A. Brouillard, Proc. 13th IEEE Rel. Phys. Symp., 151 (1975).Google Scholar
  25. 24.
    J. C. Blair, P. B. Ghate and C. T. Haywood, Appl. Phys. Letters 17, 281 (1970).CrossRefGoogle Scholar
  26. 25.
    P. B. Ghate, J. C. Blair, and C. R. Fuller, Metalization in Microelectronics, International Conference on Metallurgical Coatings, 28 March -1 April 1977, San Francisco, CA.Google Scholar
  27. 26.
    H. Sello, in Ohmic Contacts to Semiconductors, Electrochemical Society, B. Schwartz, ed. (1969).Google Scholar
  28. 27.
    P. L. Shah, IEEE Trans. Electron Devices ED-26, 631 (1979).CrossRefGoogle Scholar
  29. 28.
    A. J. Learn, J. Electrochemical Soc. 123, 894 (1976).CrossRefGoogle Scholar
  30. 29.
    H. Grinolds and G. Y. Robinson, J. Vac. Sci. Technol. 14, 75 (1977).CrossRefGoogle Scholar
  31. 30.
    C. J. Kircher, J. Appl. Phys. 47, 5394 (1976).CrossRefGoogle Scholar
  32. 31.
    J. T. Wallmark and S. M. Marcus, Proc. IRE 50, 286 (1962).CrossRefGoogle Scholar
  33. 32.
    T. H. May and M. H. Woods, Proc. 16th IEEE Reliab. Phys. Symp., 33 (1978).Google Scholar
  34. 33.
    J. F. Ziegler and W. A. Lanford, 1980 Digest of Technical Papers, International Solid-State Circuits Conf., p. 70, Feb. 1980.Google Scholar
  35. 34.
    E. Sun, J. Moll, J. Berger and B. Alders, 1978 International Electron Devices Meeting Technical Digest, p. 478, Dec. 1978.Google Scholar
  36. 35.
    O. Kudoh, M. Tsurumi, H. Yamanaka, and T. Wada, IEEE J. Solid-State Circuits SC-13, 235 (1978).CrossRefGoogle Scholar
  37. 36.
    T. Toyabe, K. Yamaguchi, S. Asai, and M. S. Mock, IEEE Trans. Electron Devices ED-25, 825 (1978).CrossRefGoogle Scholar
  38. 37.
    H. G. Poon, L. D. Yau, and R. L. Johnston, 1973 International Electron Devices Meeting Technical Digest, p. 156, Dec. 1973.Google Scholar
  39. 38.
    L. D. Yau, Solid-State Electron. 17, 1059 (1974).CrossRefGoogle Scholar
  40. 39.
    P. P. Wang, IEEE Trans. Electron Devices ED-24, 196 (1977).CrossRefGoogle Scholar
  41. 40.
    F. H. Gaensslen, V. L. Rideout and E. J. Walker, 1975 International Electron Devices Meeting Technical Digest, p. 43, Dec. 1975.Google Scholar
  42. 41.
    P. P. Wang, IEEE Trans. Electron Devices ED-25, 779 (1978).CrossRefGoogle Scholar
  43. 42.
    G. Merkel, “Short Channels — Scaled-Down MOSFET’s” in “Processing and Device Modelling for Integrated Circuit Design”, Noordhoff, Leyden, Netherlands, p. 705, (1977).Google Scholar
  44. 43.
    K. N. Ratnakumar, D.J. Bartelink and J. D. Meindl, 1980 IEEE International Solid-State Circuits Conf. Digest of Technical Papers, p. 72, Feb. 1980.Google Scholar
  45. 44.
    G. W. Taylor, IEEE Trans. Electron Devices ED-25, 337 (1978).CrossRefGoogle Scholar
  46. 45.
    S. A. Evans, IEEE J. Solid-State Circuits SC-14, 318 (1979).CrossRefGoogle Scholar
  47. 46.
    S.A. Evans, J. L. Bartelt, B.J. Sloan and G. L. Varnell, IEEE Trans. Electron Devices ED-25, 402 (1978).CrossRefGoogle Scholar
  48. 47.
    J. M. Herman, S. A. Evans and B. J. Sloan, IEEE J. Sloan, IEEE J. Solid-State Circuits SC-12. 150 (1977).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • J. L. Prince

There are no affiliations available

Personalised recommendations