Advertisement

Unsteady Separation

  • Demetri P. Telionis
Chapter
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)

Abstract

The study of viscous phenomena and, in particular, boundary layers has interested investigators for a variety of reasons. It is often necessary to know the distribution of skin friction and heat transfer across the interface of fluids and solids. In internal fluid mechanics this information and the properties of viscous regions per se, for example, velocity profiles, flow rates, and perhaps the effects of viscosity on mixing and chemical reactions, is a final goal in itself. However, in external fluid dynamics it is necessary to consider the interaction between the viscous layer and the outer inviscid flow. This interaction is most violent if separation occurs.

Keywords

Skin Friction Stagnation Point Unsteady Flow Singular Behavior Vortex Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Lev, M., and Yang, H. T., 1975. J. Fluid Mech., 48, 33–55.Google Scholar
  2. Belcher, B. J., Burggraf, O. R., Cooke, J. C., Robins, A. J., and Stewartson, K., 1972. In Recent Research of Unsteady Boundary Layers, ed. Eichelbrenner, E. A., 1444–1465.Google Scholar
  3. Blasius, H., 1908. Z. Math. Phys., 56, 1–37.Google Scholar
  4. Bodonyi, R. J., and Stewartson, K., 1977. J. Fluid Mech., 79, 669–688.ADSzbMATHCrossRefGoogle Scholar
  5. Bradshaw, P., 1979. AIAA J., 17, 790–793.ADSzbMATHCrossRefGoogle Scholar
  6. Brown, S. N., and Stewartson, K., 1969. In Annual Review of Fluid Mechanics, ed. Sears, W. R., 1, 45–72.Google Scholar
  7. Buckmaster, J., 1973. J. Eng. Math., 7, 223–230.zbMATHCrossRefGoogle Scholar
  8. Carter, J. E., 1974. AIAA Paper No. 74–583.Google Scholar
  9. Catherall, D., and Mangier, K. W., 1966. J. Fluid Mech., 26, 163–182.ADSCrossRefGoogle Scholar
  10. Cebeci, T., 1978. AIAA J., 16, 1305–1306.ADSzbMATHCrossRefGoogle Scholar
  11. Cebeci, T., 1979. J. Comput. Phys., 31, 153–172.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. Cebeci, T., and Wilson, W. B., 1972. J. Basic Eng., 94, 697–698.CrossRefGoogle Scholar
  13. Clements, R. R., and Maull, D. J., 1975. Prog, in Aero. Sci., 16, 129–146.ADSCrossRefGoogle Scholar
  14. Collins, W. M., and Dennis, J. C. R., 1973. J. Fluid Mech., 60, 105–128.ADSzbMATHCrossRefGoogle Scholar
  15. Cousteix, J., Houdeville, R., and Desopper, A., 1977. In Unsteady Aerodynamics, AGARD-CP-227.Google Scholar
  16. Crimi, P., and Reeves, B. L., 1972. “A Method for Analyzing Dynamic Stall of Helicopter Rotor Blades,” NASA CR-2009; also AIAA Paper No. 72–0037.Google Scholar
  17. Danberg, J. E., and Fansler, K. S., 1974. “An Investigation of the Moore-Rott-Sears Criterion for Laminar Boundary Layer Separation,” Tech. Rep. No. 172, University of Delaware, Newark.Google Scholar
  18. Danberg, J. E., and Fansler, K. S., 1975. AIAA J., 13, 110–112.ADSzbMATHCrossRefGoogle Scholar
  19. Dean, W. R., 1950. Proc. Cambridge Philos. Soc., 46, 293–306.MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. Deffenbaugh, F. D., and Marshall, F. J., 1976. AIAA J., 14, 908–913.ADSzbMATHCrossRefGoogle Scholar
  21. Despard, R. A., and Miller, J. A., 1971. X Fluid Mech., 47, 21–31.ADSGoogle Scholar
  22. Dwyer, H. A., and Sherman, F. R., 1979. AIAA Paper No. 79–1518.Google Scholar
  23. Fage, A., and Johansen, F. C., 1928, Phil. Mag., 7, 417–436.Google Scholar
  24. Fansler, K. S., and Danberg, J. E., 1977. AIAA J., 15, 274–276.ADSCrossRefGoogle Scholar
  25. Goldstein, S., 1948. J. Mech. Appl. Math., 1, 43–69.zbMATHCrossRefGoogle Scholar
  26. Goldstein, S., and Rosenhead, L. 1936. Proc. Cambridge Philos. Soc., 32, 392–401.ADSzbMATHCrossRefGoogle Scholar
  27. Hayasi, N, 1962. J. Phys. Soc. Jpn., 17, 194–203.MathSciNetADSCrossRefGoogle Scholar
  28. Howarth, L., 1938. Proc. R. Soc. London, A 164, 547–579.ADSzbMATHCrossRefGoogle Scholar
  29. Inger, G. R., 1974. AIAA Paper No. 74–582.Google Scholar
  30. Inger, G. R., and Swean, R. F., 1973. “Vectored Injection into Non-Adiabatic Boundary Layer Flows Including Incipient Separation,” Virginia Polytechnic Institute Eng. Rep. VPI-Aero-003.Google Scholar
  31. Klemp, J. B., and Acrivos, A., 1971. J. Fluid Mech., 53, 177–191.ADSCrossRefGoogle Scholar
  32. Klineberg, J. M., and Steger, J. L., 1974. AIAA Paper No. 74–94.Google Scholar
  33. Koromilas, C. A., and Telionis, D. P., 1980. J. Fluid Mech., 97, 347–384.ADSCrossRefGoogle Scholar
  34. Landau, L. D., and Lifshitz, E. M., 1959. Fluid Mechanics, Pergamon, New York.Google Scholar
  35. Lin, C. C., 1956. In Proc. 9th Int. Congr. Appl. Mech., Brussels, 4, pp. 155–169.Google Scholar
  36. Ludwig, G. R., 1964. “An Experimental Investigation of Separation from a Moving Wall,” AIAA Paper No. 64–6.Google Scholar
  37. McCroskey, W. J., 1977. J. Fluids Eng., 99, 8–38.CrossRefGoogle Scholar
  38. Mehta, U. B., 1972. “Starting Vortex, Separation Bubbles and Stall—A Numerical Study of Laminar Unsteady Flow Around an Airfoil,” Ph.D. Thesis, Illinois Institute of Technology, Chicago.Google Scholar
  39. Mehta, U. B., 1977. “Dynamic Stall of an Oscillating Airfoil,” in Unsteady Aerodynamics, AGARD Conference Proceedings CP-227, Paper No. 23.Google Scholar
  40. Mehta, U. B., and Lavan, Z., 1975. J. Fluid Mech., 67, 227–256.ADSzbMATHCrossRefGoogle Scholar
  41. Mezaris, T. B., and Telionis, D. P., 1980. AIAA Paper No. 80–1420.Google Scholar
  42. Moore, F. K., 1958. In Boundary Layer Research, ed. Görtier, H., Springer, New York, pp. 296–311.Google Scholar
  43. Nash, J. F., Carr, L. W., and Singleton, R., 1975. AIAA J., 13, 167–172.ADSCrossRefGoogle Scholar
  44. Nenni, J. P., 1976. “An Asymptotic Approach to the Separation of Two-Dimensional Laminar Boundary Layers,” Ph.D. Thesis, Cornell Univ., Ithaca, New York.Google Scholar
  45. O’Brien, V., 1975. AIAA J., 13, 415–416.ADSCrossRefGoogle Scholar
  46. Prandtl, L., 1904. “Über Flüssigkeitsbewegung bei sehr kleiner Reibung,” Proc. III Int. Math. Congr., Heidelberg, 484–491.Google Scholar
  47. Proudman, I., and Johnson, K., 1962. J. Fluid Mech., 12, 161–168.MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. Riley, N., 1975. SIAM Rev., 17, 274–297.ADSzbMATHCrossRefGoogle Scholar
  49. Rott, N., 1956. Q. J. Appl. Math., 13, 444–451.MathSciNetzbMATHGoogle Scholar
  50. Sarpkaya, T., 1975. J. Fluid Mech., 68, 109–128.ADSzbMATHCrossRefGoogle Scholar
  51. Sarpkaya, T., 1979. J. Appl. Mech., 46, 241–258.ADSCrossRefGoogle Scholar
  52. Sarpkaya, T., and Schoaff, R. L., 1979. AIAA J., 17, 1193–1200.ADSCrossRefGoogle Scholar
  53. Sears, W. R., 1956. J. Aero Sci., 23, 490–499.MathSciNetzbMATHGoogle Scholar
  54. Sears, W. R., 1975. AIAA J., 14, 216–220.ADSCrossRefGoogle Scholar
  55. Sears, W. R., and Telionis, D. P., 1972. In Recent Research of Unsteady Boundary Layers, ed. Eichelbrenner, E. A., 1, 404–447.Google Scholar
  56. Sears, W. R., and Telionis, D. P., 1975. SIAM J. Appl. Math., 28, 215–235.ADSzbMATHCrossRefGoogle Scholar
  57. Shen, S. F., 1968. In Adv. Appl. Mech., ed. Yih, C. S., 18, 177–220.Google Scholar
  58. Shen, S. F., and Nenni, J. P., 1975. In Unsteady Aerodynamics, ed. Kinney, R. B., 1, 245–259.Google Scholar
  59. Stewartson, K., 1970. J. Fluid Mech., 44, 247–364.CrossRefGoogle Scholar
  60. Tani, I., 1958. Aero-Res. Inst. Univ. Tokyo, Rep. No. 331.Google Scholar
  61. Telionis, D. P., 1970. “Boundary Layer Separation,” Ph.D. Thesis, Cornell Univ., Ithaca, New York.Google Scholar
  62. Telionis, D. P., 1975. In Unsteady Aerodynamics, ed. Kinney, R. B., 1, 155–190.Google Scholar
  63. Telionis, D. P., 1979. J. Fluids Eng., 101, 29–43.CrossRefGoogle Scholar
  64. Telionis, D. P., 1980. “Analytical Methods for Prediction of Laminar Boundary Layers,” in Special Course on Unsteady Aerodynamics AGARD Report No. 679. AGARD Lecture Series, Brussels.Google Scholar
  65. Telionis, D. P., and Koromilas, C. P., 1978. In Nonsteady Fluid Dynamics, eds. Crow, D. E., and Miller, J. A., 21–32.Google Scholar
  66. Telionis, D. P., and Tsahalis, D. Th., 1974a. Acta Astron., 1, 1487–1505.zbMATHCrossRefGoogle Scholar
  67. Telionis, D. P., and Tsahalis, D. Th., 1974b. AIAA J., 12, 614–619.ADSzbMATHCrossRefGoogle Scholar
  68. Telionis, D. P., and Werle, M. J., 1972. “Boundary-Layer Separation from Moving Boundaries,” Virginia Polytechnic Institute Eng. Rep., VPI-E-72–13.Google Scholar
  69. Telionis, D. P., and Werle, M. J., 1973. J. Appl. Mech., 40, 369–374.ADSzbMATHCrossRefGoogle Scholar
  70. Telionis, D. P., Tsahalis, D. Th., and Werle, M. J., 1973. Phys. Fluids, 16, 968–973.ADSzbMATHCrossRefGoogle Scholar
  71. Tollmien, W., 1946. Rep. Aeros. Res. Coun., London, No. 9739.Google Scholar
  72. Tsahalis, D. Th., 1977. AIAA J., 15, 561–566.ADSzbMATHCrossRefGoogle Scholar
  73. Van Dommelen, L. L., and Shen, S.-F., 1977. “The Laminar Boundary Layer in Lagrangian Description,” XIII Biennial Fluid Mechanics Symposium, Olsztyn-Kortowo, Poland.Google Scholar
  74. Vidal, R. J., 1959. “Research on Rotating Stall in Axial Flow Compressors; Part III. Experiments on Laminar Separation from a Moving Wall,” Wright Air Dev. Cent. Tech. Rep. 59–75.Google Scholar
  75. Wang, K. C., 1979. “Unsteady Boundary Layer Separation,” Martin Marietta Report, MML TR79–16C.Google Scholar
  76. Werle, M. J., and Davis, R. T., 1972. J. Appl. Mech., 39, 7–12.ADSzbMATHCrossRefGoogle Scholar
  77. Williams, J. C., 1977. In Annual Review of Fluid Mechanics, ed. Van Dyke, M., Wehausen, J. V., Lumley, J. L., 9, 113–144.Google Scholar
  78. Williams, J. C., 1981, private communication.Google Scholar
  79. Williams, J. C., and Johnson, W. D., 1974a. AIAA J., 12, 1388–1393.ADSzbMATHCrossRefGoogle Scholar
  80. Williams, J. C., and Johnson, W. D., 1974b. AIAA J., 12, 1427–1429.ADSzbMATHCrossRefGoogle Scholar
  81. Williams, J. C., and Johnson, W. D., 1975. In Unsteady Aerodynamics, ed. Kinney, R. B., 1, 261–282.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Demetri P. Telionis
    • 1
  1. 1.Department of Engineering Science and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations