Advertisement

Unsteady Turbulent Flows

  • Demetri P. Telionis
Chapter
  • 199 Downloads
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)

Abstract

The problem of turbulence is certainly one of the well-known “unsolved” problems in mechanics. It has challenged some of the most respected scientists of our times. New physical concepts have thus been invented, and the efforts to understand the problems stimulated the development of elegant stochastic theories. However, such methods are far from producing meaningful engineering results for practical problems. The designer still relies on heuristic phenomenological models that may appear almost arbitrary to the rigorous analyst. It is within this framework that we introduce here one more dimension in the problem that further increases its complexity: time dependence.

Keywords

Reynolds Stress Turbulent Boundary Layer Unsteady Flow Eddy Viscosity Random Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, D. E., and Cebeci, T. 1971. In Fluid Dynamics of Unsteady Three-Dimensional and Separated Flows, ed. Marshall, F. D., 202–222.Google Scholar
  2. Acharya, M., and Reynolds, W. C. 1975. “Measurements and Predictions of a Fully Developed Turbulent Channel Flow with Imposed Controlled Oscillations,” Stanford University Technical Report Number TF-8.Google Scholar
  3. Alber, I. E. 1971. AIAA Paper No. 71–203.Google Scholar
  4. Binder, G., and Didelle, H. 1975. “Improvement of Ejector Thrust Augmentation by Pulsating of Flapping Jets,” 2nd Symposium on Jets Pumps and Ejectors and Gas Lift Techniques, Paper No. E2.Google Scholar
  5. Bradshaw, P. 1969. “Calculation of Boundary Layer Development Using the Turbulent Energy Equation, VI. Unsteady Flow,” NPL AERO Rept. 1288.Google Scholar
  6. Bradshaw, P., Ferris, D. H., and Atwell, N. P. 1967. J. Fluid Mech., 28, 593–616.ADSCrossRefGoogle Scholar
  7. Burggraf, O. R. 1973. “Comparative Study of Turbulence Models for Boundary Layers and Wakes,” Aerospace Research Labs Report, ARL TR 74–0031.Google Scholar
  8. Cebeci, T. 1970. AIAA J., 8, 2152–2156.ADSCrossRefGoogle Scholar
  9. Cebeci, T. 1977. Proc. R. Soc. London A 355, 225–238.MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. Cebeci, T. and Carr, L. W. 1978. “A Computer Program for Calculating Laminar and Turbulent Boundary Layers for Two-Dimensional Time-Dependent Flows,” NASA TM 78470.Google Scholar
  11. Cebeci, T., and Keller, H. B. 1972. In Recent Research on Unsteady Boundary Layers, ed. Eichelbrenner, E. A., II, 1072–1105.Google Scholar
  12. Cebeci, T., and Smith, A. M. O. 1968. In Computation of Turbulent Boundary Layers, AFOSR-IFP-Stanford Conference, 1, 346–355.Google Scholar
  13. Charnay, G., and Mathieu, J. 1976. J. Fluids Eng., 98, 278–283.CrossRefGoogle Scholar
  14. Clauser, F. H. 1956. In Advances in Applied Mechanics, Academic Press, Vol. IV, New York.Google Scholar
  15. Cousteix, J., Desopper, A., and Houdeville, R. 1976. “Recherches sur les Couches Limites Turbulentes Instationnaires,” ONERA TP No. 147.Google Scholar
  16. Cousteix, J., Desopper, A., and Houdeville, R. 1977a. “Structure and Development of a Turbulent Boundary Layer in an Oscillatory External Flow,” ONERA TP 14.Google Scholar
  17. Cousteix, J., Desopper, A., and Houdeville, R. 1977b. “Structure and Development of a Turbulent Boundary Layer in an Oscillatory External Flow,” Proceedings of Symposium on Turbulent Shear Flows, Penn State University, University Park, Philadelphia.Google Scholar
  18. Dwyer, H. A., Doss, E. D., and Goldman, A. L. 1970. “A Computer Program for the Calculation of Laminar and Turbulent Boundary Layer Flows,” NACA CR 114366.Google Scholar
  19. Gupta, R. N., and Trimpi, R. L. 1974. “ An Eddy-Viscosity Treatment of the Boundary Layer on a Flat Plate in an Expansion Tube,” Heat Transfer 1974, Jpn. Soc. Meek Eng. Soc. Chem. Eng. Jpn., 2, 339–343.Google Scholar
  20. Houdeville, R., Desopper, A., and Cousteix, J. 1976. “Experimental Analysis of Average and Turbulent Boundary Layer,” ONERA TP, No. 30, also Rech. Aerosp, No. 1976–4.Google Scholar
  21. Houdeville, R., and, Cousteix, J. 1978. “Premiers Resultats a’une Etude sur les Couches Limites Turbulentes en Ecoulement Puisé avec Gradient de Pression Moyen Défavorable,” 15th Colloquium on Applied Aerodynamics, Marseille.Google Scholar
  22. Hussain, A. KM. F., and Reynolds, W. C. 1970. J. Fluid Mech. 41, 241–258.ADSCrossRefGoogle Scholar
  23. Jonsson, I. G., and Carlsen, N. A. 1976. J. Hydraul. Res., 14, 45–60.CrossRefGoogle Scholar
  24. Karlsson, S. K. F. 1959. J. Fluid Mech., 5, 622–636.ADSzbMATHCrossRefGoogle Scholar
  25. Kays, W. M. 1971. ASME Paper No. 71-HF-44.Google Scholar
  26. Kenison, R. C. 1977. “An Experimental Study of the Effect of Oscillatory Flow on Separation Region in a Turbulent Boundary Layer,” AGARD Symposium on Unsteady Aerodynamics, Ottawa.Google Scholar
  27. Klebanoff, P. S. 1954. “Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient,” NACA TN 3178.Google Scholar
  28. Kuhn, G. D., and Nielsen, J. N. 1973. “Studies of an Integral Method for Calculating Time-Dependent Turbulent Boundary Layers,” Nielsen Engineering and Research, Inc., Rept. NEAR TR 57.Google Scholar
  29. Launder, B. E. and Spalding, D. B. 1974. Appl. Mech. Eng., 3, 269–389.zbMATHCrossRefGoogle Scholar
  30. McCroskey, W. J., and Phillipe, J. J. 1975. AIAA J., 3, 71–79.ADSCrossRefGoogle Scholar
  31. Mainardi, H., and Panday, P. K. 1979. “A Study of Turbulent Pulsating Flow in a Circular Pipe,” to appear.Google Scholar
  32. Mainardi, H., Barriol, R., and Panday, P. K. 1979. “Characteristics of an Orifice Plate in Pulsating Flow,” Int. J. Mass Trans., to appear.Google Scholar
  33. Mellor, G., and Herring, H. J. 1973. AIAA J. 11, 590–599.ADSzbMATHCrossRefGoogle Scholar
  34. Nash, J. F. 1972. J. Basic Eng., 94D, 131–141.CrossRefGoogle Scholar
  35. Nash, J. F. 1976. “Further Studies of Unsteady Boundary Layers with Flow Reversal,” NASA CR-2767.Google Scholar
  36. Nash, J. F., and Patel, V. C. 1975. “Calculations of Unsteady Turbulent Boundary Layers with Flow Reversal,” NASA CR-2546.Google Scholar
  37. Nash, J. F., and Scruggs, R. M. 1978. “Unsteady Boundary Layers with Reversal and Separation,” AGARD Symposium on Unsteady Aerodynamics, Ottawa.Google Scholar
  38. Nash, J. F., Carr, L. W., and Singleton, R. E. 1975. AIAA J., 13, 167–172.ADSCrossRefGoogle Scholar
  39. Norris, H. L., III, and Reynolds, W. C. 1975. “Turbulent Channel Flow with a Moving Wavy Boundary,” Stanford University Technical Report Number TF-7.Google Scholar
  40. Patel, M. H. 1977. Proc. R. Soc. London, A 353, 121–144.ADSCrossRefGoogle Scholar
  41. Patel, V. C., and Nash, J. F. 1972. In Recent Research on Unsteady Boundary Layers, ed. Eichelbrenner, E. A. I, 1106–1164.Google Scholar
  42. Patel, V. C., and Nash, J. F. 1975. In Unsteady Aerodynamics, ed., Kinney, R. B., Vol. 1, 1975.Google Scholar
  43. Reynolds, W. C. 1970. “Computation of Turbulent Flows—State-of-the-Art,” Stanford University, Rept. MD-27.Google Scholar
  44. Reynolds, W. C. 1976. In Ann. Rev. Fluid Mech., 8, 183–208.ADSCrossRefGoogle Scholar
  45. Romaniuk, M. S., and Telionis, D. P. 1979. “Turbulence Models for Oscillating Boundary Layers,” AIAA Paper No. 79–0069.Google Scholar
  46. Schachenmann, A. A., and Rockwell, D. A. 1976. J. Fluids Eng. 98, 695–702.CrossRefGoogle Scholar
  47. Shamroth, S. J., and Kreskovsky, J. P. 1974. “A Weak Interaction Study of the Viscous Flow about Oscillating Airfoils,” NASA CR-132425.Google Scholar
  48. Singleton, R. E., and Nash, J. F. 1973. Proc. AIAA Comp. Fluid Dyn. Conf., 84–91.Google Scholar
  49. Soutif, M., Favre-Marinet, M., and Binder, G. 1979. “Diffusion and Periodic Structure of Flapping Jets,” to appear.Google Scholar
  50. Telionis, D. P. 1976. Arch. Mech. 28, 997–1010.zbMATHGoogle Scholar
  51. Telionis, D. P. 1977. “Unsteady Boundary Layers, Separated and Attached,” AGARD Conference Proceedings No. 227, Paper No. 16.Google Scholar
  52. Telionis, D. P. 1979. J. Fluids Eng., 101 29–43.CrossRefGoogle Scholar
  53. Telionis, D. P., and Romaniuk, M. S. 1978. AIAA J., 16, 488–495.ADSzbMATHCrossRefGoogle Scholar
  54. Telionis, D. P., and Tsahalis, D. Th. 1974. AIAA J., 12, 1469–1476.ADSzbMATHCrossRefGoogle Scholar
  55. Telionis, D. P., and Tsahalis, D. Th. 1975. AIAA J., 14, 468–474.ADSCrossRefGoogle Scholar
  56. Thomas, L. C., and Shukla, R. K. 1976. J. Fluids Eng., 98, 27–32.CrossRefGoogle Scholar
  57. Townsend, A. A. 1956. The Structure of Turbulent Shear Flow, Cambridge University Press, London and New York.zbMATHGoogle Scholar
  58. Townsend, A. A. 1961. J. Fluid Mech., 11, 97–120.MathSciNetADSzbMATHCrossRefGoogle Scholar
  59. Van Driest, E. R. 1956. J. Aero. Sci., 23, 1007–1011.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Demetri P. Telionis
    • 1
  1. 1.Department of Engineering Science and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations