Oscillating Flows with Nonvanishing Mean

  • Demetri P. Telionis
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)


This chapter may be considered a continuation of Chapter 4. It deals with an extension of the theory to flows with a nonvanishing mean. Most of the introductory remarks made in Section 4.1 of the previous chapter are therefore still valid. It is emphasized again that our interest is confined to the response of viscous flows to external disturbances, transient or periodic. No attempt is made to estimate possible interactions of the viscous flow with the external disturbing flow or with vibrations induced to solid surfaces.


Boundary Layer Strouhal Number Frequency Parameter Laminar Boundary Layer Outer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerberg, R. C., and Phillips, J. H., 1972. J. Fluid Mech. 51, 137–157.MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Cousteix, J., Desopper, A., and Houdeville, R., 1977. “Structure and Development of a Turbulent Boundary Layer in an Oscillatory External Flow,” ONERA TP 14; also presented at the Symposium on Turbulent Shear Flows, Penn. State University, Pennsylvania, Apr.Google Scholar
  3. Cebeci, T., 1977. Froc. R. Soc. London A 355, 225–238.MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. Despard, R. A., and Miller, J. A., 1971. J. Fluid Mech., 47, 21–31.ADSCrossRefGoogle Scholar
  5. Farn, C. L. S., and Arpaci, V. S., 1966. AIAA J. 4, 730–732.CrossRefGoogle Scholar
  6. Gersten, K., 1965. “Heat Transfer in Laminar Boundary Layers with Oscillating Outer Flow,” AGARDograph, No. 97, 423–475.Google Scholar
  7. Glauert, M. B., 1956. J. Fluid Mech., 1, 97–110.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Goshal, S., and Goshal, A., 1970. J. Fluid Mech., 43, 465–476.ADSCrossRefGoogle Scholar
  9. Houdeville, R., Desopper, A., and Cousteix, J., 1976. “Experimental Analysis of Average and Turbulent Boundary Layer,” ONERA TP, No. 30, also Rech. Aerosp. No. 1976–4.Google Scholar
  10. Howarth, L., 1938. Proc. R. Soc. London, A 164, 547–549.ADSzbMATHCrossRefGoogle Scholar
  11. Hill, P. G., and Stenning, A. H., 1960. J. Basic Eng., 82, 593–608.CrossRefGoogle Scholar
  12. Illingworth, C. R., 1958. J. Fluid Mech., 3, 471–493.MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. Ishigaki, H., 1971. J. Fluid Mech., 47, 537–546.ADSzbMATHCrossRefGoogle Scholar
  14. Karlsson, S. K. F., 1959. J. Fluid Mech., 5, 622–636.ADSzbMATHCrossRefGoogle Scholar
  15. Kestin, J., Maeder, P., and Wang, H. E., 1961. Appl. Sci. Res., A10, 1–22.CrossRefGoogle Scholar
  16. King, W. S., 1966. AIAA J., 4, 994–1001.zbMATHCrossRefGoogle Scholar
  17. Lam, S. H., and Rott, N., 1960. Theory of Linearized Time-Dependent Boundary Layers, Cornell Univ. GSAE Rep. AFOSR TN-60–1100.Google Scholar
  18. Lighthill, M. J., 1954. Proc. R. Soc. London, 224A, 1–23.MathSciNetADSGoogle Scholar
  19. Lin, C. C., 1956. Proc. 9th Int. Congr. Appl. Mech., Brussels, 4, 155–169.Google Scholar
  20. McCroskey, W. J., 1978. Private communication.Google Scholar
  21. McCroskey, W. J., and Philippe, J. J., 1975. AIAA J., 13, 71–79.ADSCrossRefGoogle Scholar
  22. Morkovin, M. V., Loehrke, R. I., and Fejer, A. A., 1972. In Recent Research of Unsteady Boundary Layers, ed. Eichelbrenner, E. A., 1, 60–128.Google Scholar
  23. Nayfeh, A. H., 1973. Perturbation Methods, Wiley-Interscience, New York.zbMATHGoogle Scholar
  24. Nayfeh, A. H., Telionis, D. P., and Lekoudis, S. G., 1975. Progress Astro Aero., 37, 333–351.Google Scholar
  25. Patel, M. H., 1975. Proc. R. Soc. London, A 347, 99–123.ADSzbMATHCrossRefGoogle Scholar
  26. Romaniuk, M. S., 1978. Ph.D. Thesis, Virginia Polytechnic Institute and State University.Google Scholar
  27. Rott, N., 1956. J. Fluid Mech., 1, 97–110.MathSciNetCrossRefGoogle Scholar
  28. Rott, N., and Rosenweig, M. L., 1960. J. Aero. Sci., 27, 741–747.zbMATHGoogle Scholar
  29. Saric, W. S., and Nayfeh, A. H., 1975. “Nonparallel Stability of Boundary Layers with Pressure Gradients and Suction,” AGARD Conf. Proc. No. 224.Google Scholar
  30. Schlichting, H., 1932. Phys. Z., 33, 327–335.zbMATHGoogle Scholar
  31. Schneck, D. J., and Walburn, F. J., 1976. J. Fluids Eng., 98, 707–714.CrossRefGoogle Scholar
  32. Stuart, J. T., 1966. J. Fluids Mech., 24, 673–687.MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. Stuart, J. T., 1971. In Recent Research of Unsteady Boundary Layers, ed. Eichelbrenner, E. A., 1, 1–46.Google Scholar
  34. Telionis, D. P., and Romaniuk, M. S., 1977. Soc. Eng. Sci. Proc. 12th Annual Meeting, 1169–1180.Google Scholar
  35. Telionis, D. P., and Romaniuk, M. S., 1978. AIAA J., 16, 488–495.ADSzbMATHCrossRefGoogle Scholar
  36. Tokuda, N., and Yang, W. J., 1966. Proc. Third Int. Heat Trans. Conf, 2, 223–232.Google Scholar
  37. Tsahalis, D. Th., and Telionis, D. P., 1974. AIAA J., 12, 1469–1476.ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Demetri P. Telionis
    • 1
  1. 1.Department of Engineering Science and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations