Oscillations with Zero Mean

  • Demetri P. Telionis
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)


To many fluid dynamicists the term “oscillation” and perhaps the term “fluctuation” usually imply the random unsteady motion found in turbulence. In this monograph we shall reserve these terms for unsteady periodic motions, generated externally by virtue of some imposed disturbing mechanism. Such disturbances can be generated by fluctuation of the solid boundaries themselves or unsteadiness contained in the free stream. In this and the next chapter, we examine the mathematical models that describe the response of viscous laminar flows to such external disturbances. Unsteadiness appears mathematically in the boundary and initial conditions. The development therefore is totally foreign to the study of hydrodynamic instabilities and their eventual conversion to turbulence, phenomena that are generated and sustained with almost no external interference.


Reynolds Number Circular Cylinder Oscillatory Flow Curve Pipe Outer Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrade, E. N., 1931. Proc. R. Soc. London, A 134, 445.ADSCrossRefGoogle Scholar
  2. Benjamin, T. B., 1959. J. Fluid Mech., 6, 101–205.MathSciNetGoogle Scholar
  3. Bertelsen, A. F., 1974. J. Fluid Mech., 64, 589–597.ADSCrossRefGoogle Scholar
  4. Carrière, Z., 1929. J. Phys. Radium, 10, 198.CrossRefGoogle Scholar
  5. Dvorak, V., 1874. Ann. Phys. Lpz., 151, 634.ADSGoogle Scholar
  6. Faraday, M., 1831. Trans. R. Soc. London, 121, 229.Google Scholar
  7. George, C. B., and Sleath, J. F. A., 1979. J. Hydraul. Res., 303–313.Google Scholar
  8. Haddon, E. W., and Riley, N., 1979. Q. J. Mech. Appl. Math., 32, 263–282.CrossRefGoogle Scholar
  9. Hall, P., 1973. “Some Unsteady Viscous Flows and Their Stability,” Ph.D. Thesis, London University.Google Scholar
  10. Hallauer, W. L., 1974. “Nonlinear Mechanical Behavior of the Cochlea,” Ph.D. Dissertation, Stanford University.Google Scholar
  11. Holtsmark, J., Johnsen, I., Sikkeland, T., and Skavlem, S., 1954. J. Acoust. Soc. Am., 26, 26–39.MathSciNetADSCrossRefGoogle Scholar
  12. Knight, D. W., 1978. J. Hydraul. Div., 104, 839–855.Google Scholar
  13. Lighthill, M. J., 1964. In Laminar Boundary Layers, ed. Rosenhead, L., Oxford Press, London and New York.Google Scholar
  14. Longuet-Higgins, M. S., 1953. Philos. Trans. R. Soc. A 245, 535–581.MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Longuet-Higgins, M. S., 1970. J. Fluid Mech., 42, 701–720.ADSzbMATHCrossRefGoogle Scholar
  16. Lyne, W. H., 1971a. J. Fluid Mech., 45, 13–31.ADSzbMATHCrossRefGoogle Scholar
  17. Lyne, W. H., 1971b. J. Fluid Mech., 50, 33–48.ADSzbMATHCrossRefGoogle Scholar
  18. Rayleigh, Lord, 1876. Philos. Mag., 5, 257.Google Scholar
  19. Rayleigh, Lord, 1883. Philos. Trans. A 175, 1–21.Google Scholar
  20. Rayleigh, Lord, 1894. Theory of Sound, second edition, Macmillan, New York.zbMATHGoogle Scholar
  21. Riley, N., 1965. Mathematica, 12, 161–175.MathSciNetGoogle Scholar
  22. Riley, N., 1967. J. Inst. Math. Appl. 3, 419–434.zbMATHCrossRefGoogle Scholar
  23. Riley, N., 1975. SIAM Rev., 17, 274–297.ADSzbMATHCrossRefGoogle Scholar
  24. Rott, N., 1964. In Theory of Laminar Flows, ed. Moore, F. K., Princeton Univ. Press, Princeton, New Jersey, pp. 412–438.Google Scholar
  25. Schlichting, H., 1932. Phys. Z., 33, 327–335.zbMATHGoogle Scholar
  26. Schneck, D. J., and Walburn, F. J., 1976. J. Fluids Eng., 98, 707–714.CrossRefGoogle Scholar
  27. Sleath, J. F. A., 1970. J. Fluid Mech., 42, 111–123.ADSCrossRefGoogle Scholar
  28. Sleath, J. F. A., 1972. J. Marine Res., 30, 295–304.Google Scholar
  29. Sleath, J. F. A., 1974. J. Marine Res., 32, 13–24.Google Scholar
  30. Sleath, J. F. A., 1976. J. Hydraul. Res., 14, 69–81.CrossRefGoogle Scholar
  31. Sleath, J. F. A., 1980. Private communication.Google Scholar
  32. Stokes, G. G., 1847. Trans. Cambridge Philos. Soc., 8, 441–452.Google Scholar
  33. Stokes, G. G., 1851a. Trans. Cambridge Philos. Soc., 9, Pt. II, 8–106; see also, Math. Phys., 3, 1–441.ADSGoogle Scholar
  34. Stokes, G. G., 1851b. Trans. Cambridge Philos. Soc., 9, 20–21.Google Scholar
  35. Stuart, J. T., 1963. In Laminar Boundary Layers, Clarendon, Oxford, pp. 349–408.Google Scholar
  36. Stuart, J. T., 1966. J. Fluid Mech., 24, 673–687.MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. Stuart, J. T., 1972. In Recent Research of Unsteady Boundary Layers, ed. Eichelbrenner, E. A., Laval University Press, Quebec, Canada 2, 1–59.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Demetri P. Telionis
    • 1
  1. 1.Department of Engineering Science and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations