Impulsive Motion

  • Demetri P. Telionis
Part of the Springer Series in Computational Physics book series (SCIENTCOMP)


Impulse is the application of concentrated or distributed forces of large magnitude F for very short periods of time Δt. In mechanics we study the effects of impulses by assuming that the duration of force application tends to zero but the product FΔt remains finite. The motion that results from the application of an impulse is an impulsive motion.


Circular Cylinder Skin Friction Strouhal Number Vortex Sheet Blunt Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A., 1966. J. Comput. Phys., 1, 119.ADSzbMATHCrossRefGoogle Scholar
  2. Bar-Lev, M., and Yang, H. T., 1975. J. Fluid Mech., 48, 33–55.Google Scholar
  3. Belcher, B. J., Burggraf, O. R., Cooke, J. C., Robins, A. J., and Stewartson, K., 1971. In Recent Research of Unsteady Boundary Layers, ed. Eichelbrenner, E. A., 1444–1465.Google Scholar
  4. Blasius, H., 1908. Z. Math. Phys., 56, 1–37.Google Scholar
  5. Blottner, F. G. and Flügge-Lotz, I., 1963. J. de Mecanique, 2, 397–423.Google Scholar
  6. Carlsaw, H. S., and Jaeger, J. C., 1947. Conduction of Heat in Solids, Clarendon Press, London and New York.Google Scholar
  7. Cebeci, T., 1979. J. Comput. Phys., 31, 153–172.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Cheng, S. I., 1957. Q. Appl. Math., 14, 337–352.zbMATHGoogle Scholar
  9. Collins, W. M., and Dennis, S. C. R., 1973a. Q. J. Mech. Appl. Math., 26, 53–75.zbMATHCrossRefGoogle Scholar
  10. Collins, W. M., and Dennis, S. C. R., 1973b. J. Fluid Mech., 60, 105–127.ADSzbMATHCrossRefGoogle Scholar
  11. Dennis, S. C. R., 1972. J. Inst. Math. Its Appl., 10, 105–117.zbMATHCrossRefGoogle Scholar
  12. Dennis, S. C. R., and Staniforth, A. N., 1971. Lecture Notes in Physics, 8, 343.ADSCrossRefGoogle Scholar
  13. Ducoffe, A. L., and White, F. M., 1964. J. Basic Eng., 86, 234–246.CrossRefGoogle Scholar
  14. Dwyer, H. A., 1968a. AIAA J., 6, 2447–2448.ADSCrossRefGoogle Scholar
  15. Dwyer, H. A., 1968b. AIAA J., 6, 1336–1342.ADSzbMATHCrossRefGoogle Scholar
  16. Falkner, V. M., and Skan, S. W., 1931. Philos. Mag., 12, 865–896.zbMATHGoogle Scholar
  17. Fromm, J. E., and Harlow, F. H., 1963. Phys. Fluids, 6, 975–982.ADSCrossRefGoogle Scholar
  18. Goldstein, S., and Rosenhead, L., 1936. Proc. Cambridge Philos. Soc., 32, 392–401.ADSzbMATHCrossRefGoogle Scholar
  19. Görtier, H., 1946. Ing. Arch., 14, 286–305.CrossRefGoogle Scholar
  20. Görtier, H., 1957. Math. Mech., 6, 1–66.MathSciNetGoogle Scholar
  21. Hall, M. G., 1968. Unpublished Mintech Report.Google Scholar
  22. Hall, M. G., 1969a. Ing. Arch., 38, 97–106.zbMATHCrossRefGoogle Scholar
  23. Hall, M. G., 1969b. Proc. R. Soc. London, A 310, 401–414.ADSzbMATHCrossRefGoogle Scholar
  24. Hasimoto, H., 1951. J. Phys. Soc. Jpn., 6, 400–401.MathSciNetADSCrossRefGoogle Scholar
  25. Hirota, I., and Miyakoda, K., 1965. Meteorol. Soc. Jpn. Ser. II, 43, 30.Google Scholar
  26. Howarth, L., 1938. Proc. R. Soc. London, A 164, 547–579.ADSzbMATHCrossRefGoogle Scholar
  27. Howarth, L., 1950. Proc. Cambridge Philos. Soc., 46, 127–140.MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. Ingham, D. B., 1968. J. Fluid Mech., 31, 815.ADSzbMATHCrossRefGoogle Scholar
  29. Jain, P. C., and Rao, K. S., 1969. Phys. Fluids, Suppl. II, 12, 57.ADSzbMATHGoogle Scholar
  30. Kawaguti, M., and Jain, P. C., 1966. J. Phys. Soc. Jpn., 21, 2055.ADSCrossRefGoogle Scholar
  31. Kinney, R. B., and Paolino, M. A., 1974. J. Appl. Mech., 41, 919–924.ADSzbMATHCrossRefGoogle Scholar
  32. Lam, S. H., and Crocco, L., 1959. J. Aerosol. Sci., 26, 54–55.zbMATHGoogle Scholar
  33. Lamb, H., 1932. Hydrodynamics, Cambridge Univ. Press, London and New York.zbMATHGoogle Scholar
  34. Mehta, U. B., 1972. “Starting Vortex Separation Bubbles and Stall—a Numerical Study of Laminar Unsteady Flow Around an Airfoil,” Ph.D. Thesis, Illinois Institute of Technology.Google Scholar
  35. Mehta, U. B., 1977. In Unsteady Aerodynamics, AGARDOgraph, CP 227.Google Scholar
  36. Mehta, U. B., and Lavan, Z., 1975. J. Fluid Mech., 67, 227–256.ADSzbMATHCrossRefGoogle Scholar
  37. Nayfeh, A. H., 1973. Perturbation Methods, Wiley, New York.zbMATHGoogle Scholar
  38. Oudart, A., 1953. Reck Aerosp., 31, 7–12.MathSciNetGoogle Scholar
  39. Payne, R. B., 1958. J. Fluid Mech., 4, 81–86.MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. Prandtl, L., 1904. Uber Flüssigkeitsbewegung bei sehr kleiner Reiburg,” Proc. III Int. Math. Congr., Heidelberg, 484–491.Google Scholar
  41. Presz, W. M., and Heiser, W. M., 1968. Z. Flugwiss., 16, 33–39.zbMATHGoogle Scholar
  42. Proudman, I., and Johnson, K., 1962. J. Fluid Meck, 12, 161–168.MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. Rayleigh, Lord, 1911. Philos. Mag., 6, 697–711.Google Scholar
  44. Richtmyer, R. D. and Morton, K. W., 1967. Difference Methods for Initial Value Problems, Wiley, New York.zbMATHGoogle Scholar
  45. Roache, P. J., 1972. Computational Fluid Dynamics, Hermosa Publishers, Albuquerque.zbMATHGoogle Scholar
  46. Schlichting, H., 1968. Boundary Layer Theory, McGraw-Hill, New York.Google Scholar
  47. Schmall, R. A., and Kinney, R. B. 1974. AIAA J., 12, 1566–1572.ADSzbMATHCrossRefGoogle Scholar
  48. Sears, W. R., 1949. Introduction to Theoretical Hydrodynamics, Cornell Univ. Press, Ithaca.Google Scholar
  49. Schuh, H., 1953. Z. Flugwiss, 1, 122–131.zbMATHGoogle Scholar
  50. Son, J. S. and Hanratty, T. J., 1969. J. Fluid Mech., 35, 369.ADSzbMATHCrossRefGoogle Scholar
  51. Sowerby, L., 1951. Philos. Mag, 42, 16.MathSciNetGoogle Scholar
  52. Sowerby, L., and Cooke, J. C., 1953. J. Mech. Appl. Math., 6, 50–70.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Stewartson, K., 1951. Q. Appl. Math. Meck., 4, 182–198.MathSciNetzbMATHCrossRefGoogle Scholar
  54. Stewartson, K., 1960. Adv. Appl. Mech., 6, 1–37.zbMATHCrossRefGoogle Scholar
  55. Stokes, G. G., 1851. Trans. Cambridge Philos. Soc., 9–11, 8–106.Google Scholar
  56. Stuart, J. T., 1964. In Laminar Boundary Layers, ed. L. Rosenhead, 349–406.Google Scholar
  57. Szymanski, F., 1932. J. Math. Pure Appl., 11, 67.zbMATHGoogle Scholar
  58. Telionis, D. P., and Tsahalis, D. T., 1974a. Acta Astron., 1, 1487–1505.zbMATHCrossRefGoogle Scholar
  59. Telionis, D. P., and Tsahalis, D. T., 1974b. AIAA J., 12, 614–619.ADSzbMATHCrossRefGoogle Scholar
  60. Telionis, D. P., Tsahalis, D. T., and Werle, M. J., 1973. Phys. Fluids, 16, 968–973.ADSzbMATHCrossRefGoogle Scholar
  61. Thoman, D. C., and Szewczyk, A. A., 1969. Phys. Fluids Supply II, 12, 76.ADSzbMATHGoogle Scholar
  62. Thompson, J. F., Shanks, S. P., and Wu, J. C., 1974. AIAA J., 12, 787–794.ADSzbMATHCrossRefGoogle Scholar
  63. Van Dyke, M., 1964. Perturbation Methods in Fluid Mechanics, Academic Press, New York.zbMATHGoogle Scholar
  64. Wang, C. Y., 1967a. J. Math. Phys., 46, 195–202.zbMATHGoogle Scholar
  65. Wang, C. Y., 1967b. J. Appl. Mech., 34, 823–828.ADSzbMATHCrossRefGoogle Scholar
  66. Watson, E. J., 1955. Proc. R. Soc. London, A 231, 104–116.ADSzbMATHCrossRefGoogle Scholar
  67. Weinberg, S., 1967. “The Use of the Hydrogen Bubble Technique to Observe Unsteady Boundary Layers,” MIT Master’s Thesis.Google Scholar
  68. Werle, M. J., and Davis, R. T., 1972. J. Appl. Mech., 39, 7–12.ADSzbMATHCrossRefGoogle Scholar
  69. White, F. M., 1974. Viscous Fluid Flow, McGraw-Hill, New York.zbMATHGoogle Scholar
  70. Williams, J. C., and Rhyne, T. B., 1980. SIAM J. Appl Math., to appear.Google Scholar
  71. Wu, J. C., and Thompson, J. R., 1973. Comput. Fluids, 1, 197–215.zbMATHCrossRefGoogle Scholar
  72. Wundt, H., 1955. Ing. Arch., 23, 212–230.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Demetri P. Telionis
    • 1
  1. 1.Department of Engineering Science and MechanicsVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations