Continuum Mechanics of Media with Interfaces

  • Ladislav V. Berka
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 59)


The basis for the description of the mechanical properties of materials is the definition of a model representing the characteristic quality of real materials. The first step in the analysis of the quality of any mechanical system is the definition of a geometrical model, represented in the branch of materials by a structural model. With respect to their structure materials can be divided into two groups, namely simple, with one physical /atomic or molecular/ level of a structure, and complex, with the structure on a level of particles and continuous or discontinuous phases.

This paper is concerned with a model of non-homogeneous materials with interfaces, i.e. with the polycrystalline structure. It derives quantities describing materials with volume and surface inhomogeneities and shows the procedure for deriving the equations of continuum mechanics for materials with such a structure.


Strain Tensor Deformation Model Rotation Vector Polycrystalline Structure Cosserat Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature References

  1. /1/.
    Kittel, Ch., Introduction to Solis State Physics, Chapter 1, J. Wiley, New York /1956/Google Scholar
  2. /2/.
    Underwood, E.E., Quantitative Stereology, Chapter 1, Addison-Wesley Publ. Comp. Massachusetts /1970/Google Scholar
  3. /3/.
    Berka, L., Acta Stereologica,Vol. 6, No. 1. /1987/p. 95 - 102Google Scholar
  4. /4/.
    Saxl, I., Stoyan, D., Metallic Materials, 23, 3 /1985/, p. 298 - 307Google Scholar
  5. /5/.
    Saltykov, A.S., Stereometric metallography, Metallurgizdat,Moscow /1970/Google Scholar
  6. /6/.
    Stoyan, D., Mecke, J. Stochastische Geometrie, Akademie-Verlag, Berlin 1983Google Scholar
  7. /7/.
    Berka, L., Acta Technica 5, p. 568-581, Czechoslovak Acad. Sci. /1972/Google Scholar
  8. /8/.
    Shermergor, T.D., Theory of Elasticity of Micro-non-homogeneous Media, Izd. Nauka, Fiziko-Mat. Lit., Moscow/1977/Google Scholar
  9. /9/.
    Voigt, W., Lehrbuch der Kristallphysik, Teubner, Leipzig und Berlin /1910/Google Scholar
  10. /10/.
    Reuss, A., Zeitschrift für Angew. Math. und Mech., 9, 49, /1929/MATHGoogle Scholar
  11. /11/.
    Hashin Appl. Mech. Rev. 17, No.1, p.1 /1964/Google Scholar
  12. /12/.
    Kröner, Z., Phys. 151, No. 4, p. 504 /1958/Google Scholar
  13. /13/.
    Zener, C., Phys. Rev. 69, p. 128 1945Google Scholar
  14. /14/.
    Hall, E.O., Proc. Phys. Soc. London, B 64, p. 747 /1951/ADSCrossRefGoogle Scholar
  15. /15/.
    Petch, N.J., J. Iron Steel Inst., 174, p. 25 1953Google Scholar
  16. /16/.
    Beevers, C.J., Fatigue Thresholds, Emas Wasley, 1., p. 257 /1982/Google Scholar
  17. /17/.
    Lukas, P., Kunz, L., Metallic Materials /Kovové materidly/ 25, 5, p. 622 - 637 /1987/Google Scholar
  18. /18/.
    Rovinskij, B.M., Sinajskij, V.M., Some Problems of Strength of Solids, USSR Acad. Press Moscow /1958/Google Scholar
  19. /19/.
    Dawson, T.H., PhD. Thesis, The John Hopkins University, Baltimore /1968/Google Scholar
  20. /20/.
    Berka, L., J. Mat. Sci. 17 /1982/, p. 1508 1512Google Scholar
  21. /21/.
    Berka, L., Rúzek, M., J. Mat. Sci. 19 /1984/, p. 1486 - 1495ADSCrossRefGoogle Scholar
  22. /22/.
    Berka, L., Acta Technica 2, p.147-160, Czechoslov.Acad.Sci. /1985/Google Scholar
  23. /23/.
    Green, A.E., Zerna, W., Theoretical Elasticity, Ch.2., Clarendon Press, Oxford /1954/Google Scholar
  24. /24/.
    Nowacki, W., Theory of Elasticity, Ch.l1,-Warsaw /1970/Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1990

Authors and Affiliations

  • Ladislav V. Berka
    • 1
  1. 1.Institut of Theoretical and Applied MechanicsCzechoslovak Academy of SciencesPrague 2Czech Republic

Personalised recommendations