The Determination and Interpretation of NMR Spectra of Flavonoids

  • Tom J. Mabry
  • K. R. Markham
  • M. B. Thomas


The application of nuclear magnetic resonance (NMR) spectroscopy to the structure analysis of flavonoids is now well established. Many flavonoid aglycones, in particular isoflavones and highly methylated flavones and flavonols, are sufficiently soluble in the commonly used solvent, deuteriochloroform (CDC13) for direct NMR analysis. However, most naturally occurring flavonoids, including all of the flavonoid glycosides, have low solubility in CDC13; therefore, prior to 1964 most workers were limited to the NMR analysis of the more soluble methyl, ethyl and acetyl derivatives (see for example reference [1]). However, the signals observed for the substituent groups in these derivatives often obscure signals of other protons in the flavonoid.


Nuc1ear Magnetic Resonance Nuc1ear Magnetic Resonance Spectrum Proton Signal Nuclear Magnetic Resonance Spectroscopy Nuc1ear Magnetic Resonance Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    a) Massicot, J., and J.-P. Marthe: Bull. Soc. Chim. France (1962). b) Massicot, J., J.-P. Marthe, and S. Heitz: Bull. Soc. Chim. France 2712 (1963).Google Scholar
  2. 2.
    Waiss, A.C., R. E. Lundin, and D.J. Stern: Tetrahedron Letters 513 (1964).Google Scholar
  3. 3.
    a) Mabry, T.J., J. Kagan, and H. Rösler: Phytochemistry 177, 487 (1965). b) Mabry, T.J., J. Kagan, and H. Rösler: Univ. of Texas Publ. No. 6418 (1964). c) Rösler, H., T. J. Mabry and J. Kagan: Chem. Ber. 98, 2193 (1965).Google Scholar
  4. 4.
    Batterham, T.J., and R.J. Highet: Australian J. Chem. 17, 428 (1964).CrossRefGoogle Scholar
  5. 5.
    a) Grouiller, A.: Bull. Soc. Chim France 2405 (1966). b) Grouiller, A., and H. Pacheco: Bull. Soc. Chim. France 1938 (1967).Google Scholar
  6. 6.
    a) Seikel, M.K., and T. J. M.bry: Tetrahedron Letters 1105 (1965). b) Hörhammer, L., H. Wagner, L. Rosprim, T.J. Mabry, and H. Rösler: Tetrahedron Letters 1707 (1965).Google Scholar
  7. 7.
    Thomas, M. B., and T. J. Mabry: Phytochemistry 7, 787 (1968).CrossRefGoogle Scholar
  8. 8.
    Markham, K. R., W. Rahman, S. Jehan, and T.J. Mabry: J. Heterocyclic Chem. 4, 61 (1967).CrossRefGoogle Scholar
  9. 9.
    Clark-Lewis, J.W., L.M. Jackman, and T.M. Spotswood: Australian J. Chem. 17, 632 (1964).CrossRefGoogle Scholar
  10. 10.
    Markham, K. R., and T. J. Mabry: Tetrahedron 24, 823 (1968).CrossRefGoogle Scholar
  11. 11.
    Rösler, H., T.J. Mabry, M.F. Cranmer, and J. Kagan: J. Org. Chem. 30, 4346 (1965).Google Scholar
  12. 12.
    Horowitz, R.M., and B. Gentili: Chem. Ind. (London) 625 (1966).Google Scholar
  13. 13.
    a) Hillis, W.E., and D.H.S. Horn: Australian J. Chem. 18, 531 (1965). b) Eade, R.A., W.E. Hillis, D.H.S. Horn, and J.J.H. Simes: Australian J. Chem. 18, 715 (1965).Google Scholar
  14. 14.
    Horowitz, R. M.: Abstract and lecture presented at the Seventh Annual Meeting of the Phytochemical Society of North America, Madison, Wisconsin, August, 1967.Google Scholar
  15. 15.
    Wilson, R.G., J.H. Bowie, and Dudley H. Williams: Tetrahedron 24, 1407 (1968).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1970

Authors and Affiliations

  • Tom J. Mabry
    • 1
  • K. R. Markham
    • 1
  • M. B. Thomas
    • 1
  1. 1.The Cell Research Institute and Department of BotanyThe University of Texas at AustinUSA

Personalised recommendations