Skip to main content

Boundary-value problems in ordinary differential equations

  • Chapter
The Numerical Treatment of Differential Equations

Part of the book series: Die Grundlehren der Mathematischen Wissenschaften ((volume 60))

  • 519 Accesses

Abstract

The basis of the finite-difference method is the replacement of all derivatives occuring by the corresponding difference quotients; this is applicable to any problem in differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. This method of solving systems of linear equations had already been used by GAUSS when it was taken up by PH. L. SEIDEL: Munch. Akad. Abh. 1874, 81–108; its convergence was investigated later by R. V.

    Google Scholar 

  2. Misesand H. Pollaczekgeiringer: Praktische Verfahren der Gleichungsauflösung. Z. Angew. Math. Mech. 9, 62–77 (1929), and in recent years it has been applied to a very wide range of problems and also expounded in two books by R. V.

    Google Scholar 

  3. Southwell: Relaxation methods in engineering science, a treatise on approximate computation. London: Oxford University Press 1943;

    Google Scholar 

  4. Relaxation methods in theoretical physics, a continuation of the treatise. London: Oxford University Press 1946, 248pp.;

    Google Scholar 

  5. D. N. DeG. Allen: Relaxation methods. New York 1954, 257pp. See also our Ch. V, § 1. 6.

    Google Scholar 

  6. See, for instance, Perron, O.: Algebra, Vol. I, p. 92. 3rd ed. Berlin and Leipzig 1951, or Aitken, A. C.: Determinants and matrices, 6th ed. p. 41. London: Oliver and Boyd 1949.

    Google Scholar 

  7. Schr. Math. Sem. u. Inst. Angew. Math. Univ. Berlin 3, 1–34 (1935)

    Google Scholar 

  8. E. Pflanz: Über die Bildung finiter Ausdrücke für die Lösung linearer Differentialgleichungen. Z. Angew. Math. Mech. 17, 296–300 (1937).

    Article  Google Scholar 

  9. Expressions for non-equidistant pivotal points are given by E. Pflanz: Allgemeine Differenzenausdrücke für die Ableitungen einer Funktion y (x) Z. Angew. Math. Mech. 29, 379–381 (1949)•

    Google Scholar 

  10. Householder, A. S.: Principles of numerical analysis, p. 194. New York:

    Google Scholar 

  11. Mcgraw-Hill 1953. We do not imply that the method described here for solving differential equations is directly due to Hermite.

    Google Scholar 

  12. By using the associated Green’s function E. J. NYSTRÖM: Zur numerischen Lösung von Randwertaufgaben bei gewöhnlichen Differentialgleichungen. Acta Math. (Stockh.) 76, 157–184 (1944), has developed a special Hermitian method

    Google Scholar 

  13. A variant of the Hermitian method originally due to Numerovhas been applied to the special equation y“= q (x) y (cf. G. Stracke: Bahnbestimmung der Planeten and Kometen, § 77 Berlin 1929). In this method a system of equations

    Google Scholar 

  14. Following a somewhat differently derived method due to H. Sassenfeld: Ein Summenverfahren für Rand-und Eigenwertaufgaben linearer Differentialgleichungen. Z. Angew. Math. Mech. 31, 240–241 ( 1951

    Article  MathSciNet  MATH  Google Scholar 

  15. R. ZurmÜhl: Praktische Mathematik für Ingenieure und Physiker, 2nd ed. p. 447 et seq. Berlin-Göttingen-Heidelberg 1957.

    Google Scholar 

  16. These, together with formulae for differential equations of the fourth order, are to be found in R. ZurmÜhl: Praktische Mathematik für Ingenieure und Physiker, 2nd ed. Berlin-Göttingen-Heidelberg 1957.

    Google Scholar 

  17. For many boundary-value problems of monotonic type error estimates can be obtained in a quite different way which does not require knowledge of bounds for the higher derivatives; cf. L. CoLLATZ: Aufgaben monotoner Art. Arch. Math. 3, 375 (1952), in which a numerical example with error limits is also given.

    Google Scholar 

  18. Applications of perturbation methods to eigenvalue problems can be found in the following papers: Meyer Zur Capellen, W.: Methode zur angenäherten Lösung von Eigenwertproblemen mit Anwendungen auf Schwingungsprobleme. Ann. Phys. (5) 8, 297–352 (1931).

    Google Scholar 

  19. Genäherte Berechnung von Eigenwerten. Ing.-Arch. 10, 167–174 (1939).

    Google Scholar 

  20. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 113, 600–619 (1936)

    Article  MathSciNet  Google Scholar 

  21. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 114, 677–685 (1937)

    Article  MathSciNet  Google Scholar 

  22. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 116 555–570 (1939)

    Google Scholar 

  23. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 117, 356–382 (1940)

    Article  MathSciNet  Google Scholar 

  24. Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 118, 462–484 (1942).

    Article  MathSciNet  Google Scholar 

  25. Nagy, B. v. Sz.: Perturbations des transformations autoadjointes dans l’espace de Hilbert. Comm. Math. Helv. 19, 347–366 (1946).

    Article  Google Scholar 

  26. Perturbations des transformations linéaires fermées. Acta Sci. Math. Szeged 14, 125–137 (1951).

    Google Scholar 

  27. SchrÖder, J.: Fehlerabschätzungen zur Störungsrechnung bei linearen Eigenwertproblemen mit Operatoren eines Hilbertschen Raumes. Math. Nachr. 10, 113–128 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  28. Fehlerabschätzungen zur Störungsrechnung für lineare Eigenwertprobleme bei gewöhnlichen Differentialgleichungen. Z. Angew. Math. Mech. 34, 140–149 (1954) (with a summary of results in a directly applicable form).

    Google Scholar 

  29. Schafke, Fr. W.: Über Eigenwertprobleme mit 2 Parametern. Math. Nachr. 6, 109–124 (1951).

    Article  MathSciNet  Google Scholar 

  30. Verbesserte Konvergenz- und Fehlerabschätzungen für die Störungsrechnung. Z. Angew. Math. Mech 33, 255–259 (1953).

    Google Scholar 

  31. Walter Ritz, born 22 February 1878 in Sion (Switzerland) in the Rhone valley, son of the artist Raphael Ritz, studied in Zürich, then in Göttingen, where in 1902 he obtained his doctor’s degree under Voigt; he then worked in. Leyden under H. A. Lorentz, in Paris under A. Cotton, in Tübingen under F. Paschen and in 1908 went back to Göttingen, where he died on the 7 July 1909. After a poorly healed pleurisy in 1900 his zeal for his scientific work was continually in conflict with consideration for his state of health, until eventually his health was sacrificed. (Obituary by Pierre Weiszin W. Ritz: Gesammelte Werke. Paris 1911.)

    Google Scholar 

  32. Habilitationsschrift von Ritz über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 135, H. 1 (1908).

    Google Scholar 

  33. Ann. Phys., Lpz. 28, 737 (1909).

    Google Scholar 

  34. Cf., for example, G. GrÜsz: Variationsrechnung, p. 11. Leipzig 1938

    Google Scholar 

  35. R. Courant: Differential and Integral Calculus Vol. II, p. 495 et seq. London: Blackie 1936.

    MATH  Google Scholar 

  36. Error estimates for RITZ’S method can be found in Nicolas Kryloff: Les méthodes de solution approchée des problèmes de la physique mathématique. Mémorial. Sci. Math., Paris 49 (1931).

    Google Scholar 

  37. Of the numerous shorter papers by KRYLOFF on error estimates of this kind we mention without giving their titles just a few published in the C. R. Acad. Sci., Paris 180, 1316–1318 (1925)

    Google Scholar 

  38. Of the numerous shorter papers by KRYLOFF on error estimates of this kind we mention without giving their titles just a few published in the C. R. Acad.Sci., Paris 181, 86–88 (1925)

    Google Scholar 

  39. Of the numerous shorter papers by Kryloffon error estimates of this kind we mention without giving their titles just a few published in the C. R. Acad.Sci., Paris 183, 476–479 (1926)

    Google Scholar 

  40. Of the numerous shorter papers by KRYLOFF on error estimates of this kind we mention without giving their titles just a few published in the C. R. Acad.Sci., Paris 186, 298–300

    Google Scholar 

  41. Of the numerous shorter papers by KRYLOFF on error estimates of this kind we mention without giving their titles just a few published in the C. R. Acad.Sci., Paris 422–425 (1928).

    Google Scholar 

  42. See, for example, T. Pöschl: Über eine mögliche Verbesserung der Ritzschen Methode. Ing.-Arch. 23, 365–372 (1955).

    Article  MathSciNet  Google Scholar 

  43. Kamke, E.: Math. Z. 48, 70 (1942).

    Article  MathSciNet  Google Scholar 

  44. Weser, C.: Z. Angew. Math. Mech. 21, 310–311 (1941).

    Article  MathSciNet  Google Scholar 

  45. An example of the application of this technique to a non-linear problem can be found in U. T. BÖDewadt: Die Drehströmung über festem Grunde. Z. Angew. Math. Mech. 20, 241–253 (1940).

    Article  Google Scholar 

  46. For example, R. Courantand D. Hilbert: Methods of mathematical physics, Vol. I, 1st English ed. New York: Interscience Publishers, Inc. 1953

    Google Scholar 

  47. Collatz, L.: Eigenwertaufgaben mit technischen Anwendungen. Leipzig 1949.

    Google Scholar 

  48. A more general theorem has been established by H. Wlelandt: Das Iterations-verfahren bei nicht selbstadjungierten Eigenwertaufgaben. Math. Z. 50, 93–143 (1944).

    Article  MathSciNet  Google Scholar 

  49. Fewer restrictive assumptions are made by E. Stiefeland H. Ziegler: Natürliche Eigenwertprobleme. Z. Angew. Math. Phys. 1, 111–138 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  50. Cf. the comparison theorem in L. Collatz: Eigenwertaufgaben, § 8. Leipzig 1949; this deals with the case in which the differential expression M is the same in both problems but the extension to the more general case considered here is immediate.

    Google Scholar 

  51. For the special eigenvalue problems the enclosure theorem for the first eigen-value was proved by ‘G. Temple: The computatipn of characteristic numbers and characteristic functions. Proc. Lond. Math. Soc. (2) 29, 257–280 (1929).

    Article  Google Scholar 

  52. This method is due to F. Kieszling: Eine Methode zur approximativen Berechnung einseitig eingespannter Druckstäbe mit veränderlichem Querschnitt. Z. Angew. Math. Mech. 10, 594–599 (1930).

    Google Scholar 

  53. Wielandt, H.: Ein Einschließungssatz für charakteristische Wurzeln normaler Matrizen. Arch. Math. 1, 348-352 (1949)

    Google Scholar 

  54. Fiat-Review, Naturforschung und Medizin in Deutschland 1939–1946, 2, 98 (1948).

    Google Scholar 

  55. An older formulation was given by K. Friedrichsand G. Horvay: The finite Stieltjes momentum problem. Proc. Nat. Acad. Sci., Wash. 25, 528— 534 (1939)

    Google Scholar 

  56. H. BÜckner: Die praktische Behandlung von Integralgleichur}gen (Ergebnisse der Angew. Mathematik, H. 1). Berlin-Göttingen-Heidelberg 1952.

    Google Scholar 

  57. A comprehensive presentation based on the techniques of functional analysis is given by N. Aronszajn: Study of eigenvalue problems. The Rayleigh-Ritz and the Weinstein methods for approximation of eigenvalues. Dept. of Math. Oklahoma Agricultural and Mechanical College. Stillwater 1949. 214 pp.

    Google Scholar 

  58. Error estimates for self-adjoint full-definite eigenvalue problems have been obtained by G. Bertram: Zur Fehlerabschätzung für das Ritzsche Verfahren bei Eigenwertaufgaben. Diss. 56pp. Hannover 1950

    Google Scholar 

  59. Other estimates and investigations of the rate of convergence can be found in L. V. Kantorovichand V. I. Krylov: Näherungsmethoden der Höheren Analysis, pp. 226–329. Berlin 1956.

    Google Scholar 

  60. Kamke, E.: Über die definiten selbstadjungierten Eigenwertaufgaben IV. Math. Z. 48, 67–100 (1942).

    Google Scholar 

  61. Collatz, L.: Z. Angew. Math. Mech. 19, 228 (1939).

    Google Scholar 

  62. Gramme, R.: Ein neues Verfahren zur Lösung technischer Eigenwertprobleme. Ing.-Arch. 10, 35-46 (1939). GRAMMEL derives the equations in a different way.

    Google Scholar 

  63. Practical examples are worked out by E. Maier: Biegeschwingungen von spannungslos verwundenen Stäben, insbesondere von Luftschraubenblättern. Ing.Arch. 11, 73–98 (1940).

    Google Scholar 

  64. See also R. Grammel: Viper die Lösung technischer Eigenwertprobleme. VDI-Forsch.-Heft, Gebiet Stahlbau 6, 36–42 (1943).

    Google Scholar 

  65. See L. Collarz: Eigenwertaufgaben. Leipzig 1949. pp. 144 and 191.

    Google Scholar 

  66. N. J. Lehmann: Beiträge zur numerischen Lösung linearer Eigenwertprobleme. Z. Angew. Math. Mech. 29, 341— 356 (1949)

    Google Scholar 

  67. N. J. Lehmann: Beiträge zur numerischen Lösung linearer Eigenwertprobleme. Z. Angew. Math. Mech. 30, 1–16 (1950).

    Google Scholar 

  68. Another method is given by A. Fraenkle: Ing.-Arch. 1, 499-526 (1930), specifically “Methode II”, p. 510 et seq.

    Google Scholar 

  69. A method of minimized iterations has been devised by C. Lanczos: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45, 255–282 (1950).

    Google Scholar 

  70. Developed for integral equations by G. Wiarda: Integralgleichungen unter besonderer Berücksichtigung der Anwendungen, p. 126. Leipzig 1930.

    Google Scholar 

  71. Developed for integral equations by H. BÜCkner: Ein unbeschränkt anwendbares Iterationsverfahren für Fredholmsche Integralgleichungen. Math. Nachr. 2, 304–313 (1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Collatz, L. (1960). Boundary-value problems in ordinary differential equations. In: The Numerical Treatment of Differential Equations. Die Grundlehren der Mathematischen Wissenschaften, vol 60. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88434-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88434-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88436-8

  • Online ISBN: 978-3-642-88434-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics