Advertisement

Mathematical preliminaries and some general principles

  • Lothar Collatz
Part of the Die Grundlehren der Mathematischen Wissenschaften book series (GL, volume 60)

Abstract

In this chapter we collect together some mathematical results which will be needed later and state some general approximation principles which are applicable in all the following chapters.

Keywords

General Principle Remainder Term Boundary Method Interpolation Formula Homogeneous Boundary Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Following E. KAMKE: Math. Z. 48 67–100 (1942), who called the two types of boundary condition “wesentlich” and “restlich”.Google Scholar
  2. BIEZENO-GRAMMEL: Technische Dynamik, Vol. I, 2nd ed., p. 136, Berlin 1953 uses a different terminology; from mechanical ideas he derives the terms “geometrische” and “dynamische” for boundary conditions in second-and fourth-order problems corresponding to our “essential” and “suppressible”, respectively.Google Scholar
  3. For the whole of this section see, for example, G. Schulz: Formelsammlung zur praktischen Mathematik. Sammlung Göschen, Vol. 1110. Leipzig and Berlin 1945Google Scholar
  4. FR. A. Willers: Methoden der praktischen Analysis, 2nd ed. Berlin 1950, particularly p. 76 et seq.Google Scholar
  5. Steffensen, J. F.: Interpolation, p. 29. Baltimore 1927.Google Scholar
  6. Different proofs are given by S. Hermite: OEuvres 3, 438 (1912).Google Scholar
  7. Kowalewski, G.: Dtsch. Math. 6, 349–351 (1942).MathSciNetGoogle Scholar
  8. Obreschkoff, N.: Abh. Preuss. Akad. Wiss., Math.-naturw. Kl. 1940, Nr. 4, 1–20.Google Scholar
  9. Pflanz, E.: Z. Angew. Math. Mech. 28, 167–172 (1948).MathSciNetMATHCrossRefGoogle Scholar
  10. Beck, E.: Z. Angew. Math. Mech. 30, 84–93 (1950).Google Scholar
  11. Cf., for example, H. V. Mangoldtand K. Knopf: Einführung in die Höhere Mathematik, Vol. II, 10th ed., p. 355. Stuttgart 1947.Google Scholar
  12. 2.
    See, for instance, H. V. Mangoldtand K. Knopf: Einführung in die Höhere Mathematik, Vol. III, 10th ed., p. 346. Stuttgart 1948.Google Scholar
  13. 1.
    Galerkin, B. G.: Reihenentwicklungen für einige Fälle des Gleichgewichts von Platten und Balken. Wjestnik Ingenerow Petrograd 1915, H. 10 [Russian].Google Scholar
  14. Hencky, H.: Eine wichtige Vereinfachung der Methode von RITZ zur angenäherten Behandlung von Variationsaufgaben. Z. Angew. Math. Mech. 7, 80–81 (1927).MATHGoogle Scholar
  15. Duncan, W. J.: The principles of the Galerkin method. Rep. and Mem. No.1848 (3694)Google Scholar
  16. Duncan, W. J.: The principles of the Galerkin method.Aero. Res. Comm. 1938, 24 pp.Google Scholar
  17. 1.
    Novo2ilov, V. V.: On an approximate method of solution of boundary problems for ordinary differential equations. Akad. Nauk Sssr. Prikl. Mat. Meh. 16, 305–318 (1952)MathSciNetGoogle Scholar
  18. Russian]. [Reviewed in Math. Rev. 13, 993 (1952); also in Zbl. Math. 46, 343.] Novozn.ov gives particular prominence to least-squares and collocation.Google Scholar
  19. 1.
    Banach, ST.: Théorie des opérations linéaires. Warsaw 1932. Recent impression New York 1949, p. 11.Google Scholar
  20. 1.
    Kantorovicx, L.: The method of successive approximations for functional equations. Acta Math. 71, 63–97 (1939).MathSciNetCrossRefGoogle Scholar
  21. Weissinger, J.: Zur Theorie und Anwendung des Iterationsverfahrens. Math. Nachr. 8, 193–212 (1952).MathSciNetMATHCrossRefGoogle Scholar
  22. 1.
    Another general method based on functional analysis has been investigated by P. C. Rosenbloom: The method of steepest descent. Proc. Symp. Appl. Math. VI, New York-Toronto-London 1956, pp. 127–176.Google Scholar
  23. 2.
    Kurepa, L.: Tableaux ramifiés d’ensembles, espaces pseudo-distanciés. C. R. 198, 1563–1565 (1934).Google Scholar
  24. Schroder, J.: Nichtlineare Majoranten beim Verfahren der schrittweisen Näherung. Arch. Math. 7, 471–484 (1956).CrossRefGoogle Scholar
  25. Neue Fehlerabschätzungen für verschiedene Iterationsverfahren. Z. Angew. Math. Mech. 36, 168–181 (1956).Google Scholar
  26. Über das Newtonsche Verfahren. Arch. Rational Mechanics 1, 154–180 (1957).Google Scholar
  27. Das Iterationsverfahren bei allgemeinerem Abstandsbegriff. Math. Z. 66, 111–116 (1956).Google Scholar
  28. 1.
    Schauder, J.: Zur Theorie stetiger Abbildungen in Funktionalräumen. Math. Z. 26, 47–65 (1927) and notes thereto 417–431.Google Scholar
  29. Leray, J., and J. SCHAUDER: Topologie et équations fonctionelles. Ann. Sci. École norm. sup. 51, 45–78 (1934).Google Scholar
  30. 2.
    Rothe, E.: Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen. Comp. Math. 5, 117–197 (1938).Google Scholar
  31. 3.
    Another criterion which includes our Theorem 1 is given by A. OSTROwsET: ÍJber die Determinanten mit überwiegender Hauptdiagonale. Comm. Math. Hely. 10, 69–96 (1937).Google Scholar
  32. 1.
    COLLATZ, L.: Aufgaben monotoner Art. Arch. Math. 3, 373 (1952).MathSciNetCrossRefGoogle Scholar
  33. Collatz, L.: Aufgaben monotoner Art. Arch., Math. Z. 53, 149–161 (1950).Google Scholar
  34. Runge, C., and H. KÖnig: Numerisches Rechnen. Berlin 1924.Google Scholar
  35. Lindow, M.: Numerische Infinitesimalrechnung. Berlin and Bonn 1928. SCARBOROUGH, JAMES B.: Numerical mathematical analysis. 416 pp., in particular Ch.s XIGoogle Scholar
  36. XIII. Baltimore and London 1930.Google Scholar
  37. Levy, H., and E. A. Baggot: Numerical studies in differential equations, Vol. 1. London 1934.Google Scholar
  38. Kamee, E.: Differentialgleichungen, Lösungsmethode und Lösungen, Vol. 1, Ch.A § 8: Numerische, graphische und instrumentelle ntegrationsverfahren, 3rd ed. 666 pp. Leipzig 1944Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1960

Authors and Affiliations

  • Lothar Collatz
    • 1
  1. 1.HamburgGermany

Personalised recommendations