Skip to main content

Electron g — 2 and High Precision Determination of α

  • Conference paper
The Hydrogen Atom

Abstract

Recent progress in the Penning trap measurement of the magnetic moment anomaly a of the electron and positron has enabled Dehmelt and coworkers to determine a to a precision of 4 × 10−9, providing the strongest challenge to date to the validity of QED. Calculation of a up to the order α4, where α is the fine structure constant, has now reached the point where the intrinsic theoretical uncertainty is comparable to that of the measurements. Unfortunately rigorous test of QED itself must be postponed until a better value of α becomes available. Pending improved measurement of α, however, one can determine α from theory and the experimental value of a to a precision better than 1 × 10−8, which is much more accurate than the α’s determined from the ac Josephson effect, the quantized Hall effect, or the hyperfine structure of the muonium ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kinoshita, Nuovo Cimento 51B, 140 (1967)

    Article  Google Scholar 

  2. T. Kinoshita, J. Math Phys. 3, 650 (1962)

    Article  ADS  MATH  Google Scholar 

  3. P. Cvitanovic and T. Kinoshita, Phys. Rev. D 10, 4007 (1974)

    ADS  Google Scholar 

  4. P. B. Schwinberg, R. S. Dyck, and H. G. Dehmelt, Phys. Rev. Lett. 47, 1679 (1981)

    Article  ADS  Google Scholar 

  5. T. Kinoshita and W. B. Lindquist, “Improving the theoretical prediction of the electron anomalous magnetic moment,” Cornell preprint CLNS-374, 1977

    Google Scholar 

  6. J. Schwinger, Phys. Rev. 73, 416 (1948);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. Sommerfield, Phys.Rev. 107, 328 (1957);

    Article  ADS  Google Scholar 

  8. A. Petermann, Helv. Phys. Acta 30, 407 (1957)

    Google Scholar 

  9. M. J. Levine, H. Y. Park, and R. Z. Roskies, Phys. Rev. 25, 2205 (1982)

    ADS  Google Scholar 

  10. M. Caffo, S. Turrini, and E. Remiddi, Phys. Rev. D 30, 483 (1984);

    ADS  Google Scholar 

  11. E. Remiddi and S. P. Sorella, Lett. Nuovo Cimento 44, 231 (1985)

    Article  Google Scholar 

  12. H. Strubbe, Comp. Phys. Comm. 8, 1 (1974)

    Article  ADS  Google Scholar 

  13. G. P. Lepage, J. Comp. Phys. 27, 192 (1978)

    Article  ADS  MATH  Google Scholar 

  14. B. E. Lautrup, “An adaptive multidimensional integration technique,” in Proceedings of the Second Colloquium in Advanced Computing Methods in Theoretical Physics, Marseille, 1971, A. Visconti, ed. ( Univ. of Marseille, Marseille, 1971 )

    Google Scholar 

  15. T. Kinoshita and W. B. Lindquist, Phys. Rev. Lett. 47, 1573 (1981)

    Article  ADS  Google Scholar 

  16. E. R. Cohen and B. N. Taylor, Rev. Mod. Phys. 59, 1121 (1987)

    Article  ADS  Google Scholar 

  17. See, for instance, T. Kinoshita in “New Frontiers in High Energy Physics”, B. Kursunoglu et al.,eds. (Plenum, 1978), pp.127–143

    Google Scholar 

  18. R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  19. L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  20. T. Kinoshita and W. B. Lindquist, Phys. Rev. D 27, 886 (1983)

    ADS  Google Scholar 

  21. M. E. Cage et al, presented at the 1988 Conference on Precision Electromagnetic Measurements, Tsukuba, Japan, June 7–10, 1988

    Google Scholar 

  22. E. R. Williams et al, presented at the 1988 Conference on Precision Electromagnetic Measurements, Tsukuba, Japan, June 7–10, 1988

    Google Scholar 

  23. F. G. Mariam et al., Phys. Rev. Lett. 49, 993 (1982)

    Article  ADS  Google Scholar 

  24. M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto, Phys. Lett. B 177, 425 (1986);

    Article  ADS  Google Scholar 

  25. M. I. Eides, S. G. Karshenboim, and V. A. Shelyuto, Phys. Lett. 202, 572 (1988)

    Article  Google Scholar 

  26. V. W. Hughes and G. Z. Putlitz, Comm. Nucl. Part. Phys. 12, 259 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kinoshita, T. (1989). Electron g — 2 and High Precision Determination of α . In: Bassani, G.F., Inguscio, M., Hänsch, T.W. (eds) The Hydrogen Atom. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88421-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88421-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88423-8

  • Online ISBN: 978-3-642-88421-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics