Advertisement

Developmental Rhythms

  • T. Petrén
  • A. Sollberger

Abstract

During the last decades a wealth of data has accumulated on biological rhythms, not least the 24-hour cycle [66] In spite of this, little is known about the internal mechanisms of its control by external factors. We know that both the phasing and frequency can be manipulated under suitable conditions and that such mechanisms are remarkably universal, applying within the range from unicellular organisms and plants to higher vertebrates. We do not know exactly how the control is exerted. This depends on the high complexity of the process, which involves multichannel information carried by highly nonlinear structures and an interaction of spontaneous biological oscillators in the target with the input periods. Biological rhythms are no forced oscillations; instead the organism actively selects what information in the input it chooses to react to, amplifies this and then interacts with it; sometimes almost creating a coupled oscillator situation. It is this handling of the information in the input which is but poorly understood.

Keywords

Chick Embryo Diurnal Rhythm Liver Glycogen High Vertebrate Biological Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Abels, H.: Jahreszeitlidie Geburtsgewichtsschwankungen. Mschr. Kinderheilk. 37, 33 (1927).Google Scholar
  2. [2]
    Aschoff, J., and J. Meyer-Lohmann: Angeborene 24-Stunden-Periodik beim Klicken. Pflüger’s Arch. 260, 170 (1954).PubMedCrossRefGoogle Scholar
  3. [3]
    Aserinsky, E., and N. Kleitmann: Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 118, 273 (1953).PubMedCrossRefGoogle Scholar
  4. [4]
    Bacq, Z. M.: Sur l’existence d’un rythme nycthemeral de metabolisme chez le coq. Ann. Physiol. 5, 497 (1929).Google Scholar
  5. [5]
    Baldwin, S. P., and S. C. Kendeigh: Physiology of the temperature of birds. Cleveland Mus. Nat. Hist. Sci. Publ. 3, 1 (1932).Google Scholar
  6. [6]
    Barnwell, F. H.: A solar daily variation in oxygen consumption of the embryonated egg. Proc. Soc. exp. Biol. Med. 105 /2, 312 (1960).PubMedGoogle Scholar
  7. [7]
    Barrot, H. G., J. C. Fritz, E. M. Pringle, and H. W. Titus: Heat production and gaseous metabolism of young male chickens. J. Nutr. 15, 145 (1938).Google Scholar
  8. [8]
    Bautzmann, H., R. Schröder, and E. Dunker: Amnionmotoric and rocking movements of the embryo in the hens’ egg. Anat. Anz. 108 (1960).Google Scholar
  9. [9]
    Bühler, C., and H. Hetzer: Inventar der Verhaltensweisen des ersten Lebensjahres. Jena: Fischer 1927.Google Scholar
  10. [10]
    Burckhard, E., L. Dontcheff, and C. Kayser: Le rythme nycthéméral chez le pigeon. Ann. Physiol. 9, 303 (1933).Google Scholar
  11. [11]
    Caspers, H.: Mondumlauf und Fortpflanzungsrhythmik bei Tieren. Forsch. Fortschr. 24/(7–8), 89 (1948).Google Scholar
  12. [12]
    Charles, E.: The hour of birth, a study of the distribution of times of onset of labour and of delivery throughout the 24-hour period. Brit. J. prey. soc. Med. 7, 43 (1953).Google Scholar
  13. [13]
    Cloudsley-Thompson, J. L.: Studies in diurnal rhythms III. Ann. Mag. Nat. Hist. Ser. 12, 705 (1953).CrossRefGoogle Scholar
  14. [14]
    Dement, W., and N. Kleitman: Incidence of eye motility during sleep in relation to varying EEG pattern. Fed. Proc. 14, 37 (1955).Google Scholar
  15. [15]
    Deporte, J. V.: The prevalent hour of still-birth. Amer. J. Obst. Gyn. 23 /1 (1932).Google Scholar
  16. [16]
    Derer, L.: Concealed macroperiodicity in the reactions of the human organism. Rev. Czech. Med. 2, 4 (1956).Google Scholar
  17. [17]
    Elfvin, L. G., T. Petren, and A. Sollberger: Influence of some endogenous and exogenous factors on diurnal glycogen rhythm in chicken. Acta anat. 25, 286 (1955).PubMedCrossRefGoogle Scholar
  18. [18]
    Folk, G. E. JR.: Modification by light of 24-hour activity of white rats. Proc. Iowa Acad. Sci. 66, 399 (1959).Google Scholar
  19. [19]
    Gesell, A.: Infant and child in the culture of today. Yale: Yale Univ. Press 1943.Google Scholar
  20. [20]
    Gofferje, F.: Die Tagesschwankungen der Körpertemperatur beim gesunden und beim kranken Säugling. Jb. Kinderheilk. 68, 131 (1908).Google Scholar
  21. [21]
    Gottlieb, G.: Prenatal auditory sensitivity in chickens and ducks. Science 147, 1596 (1965).PubMedCrossRefGoogle Scholar
  22. [22]
    Guthmann, H., U. Bienhüls: Wehenbeginn, Geburtsstunde und Tageszeit. Mschr. Geburtshilf. Gyn. 103, 337 (1936).Google Scholar
  23. [23]
    Gyllenswärd, A.: The rhythm of body temperature in children, studied with continuous registration. Acta paediat. 40, 83 (1951).CrossRefGoogle Scholar
  24. [24]
    Hamburger, V., and M. Balaban: Observations and experiments on spontaneous rhythmical behaviour in the chick embryo. Develop. Biol. 7, 533 (1963).CrossRefGoogle Scholar
  25. [25]
    Harker, J. E.: The physiology of diurnal rhythms. Cambridge: Univ. Press 1964.Google Scholar
  26. [26]
    Hauenschild, C.: Neue experimentelle Untersuchungen zum Problem der Lunarperiodizität. Naturwissenschaften 43, 361 (1956).CrossRefGoogle Scholar
  27. [27]
    Hellbrügge, T.: The development of circadian rhythms in infants. CSH Symp. quant. Biol. 25, New York 1960.Google Scholar
  28. [28]
    Heusner, A., and J. P. Zahnd: Etude de la consommation d’oxygene de l’embryon de poulet au cours du nycthémére. Séances Soc. Biol. 157, 1498 (1963).Google Scholar
  29. [29]
    Hiebel, G., and C. Kayser: Le rythme nycthéméral de l’activité et de la calorification ciez l’embryon de poulet et le jeune poulet. C. R. Soc. Biol. 143, 864 (1949).Google Scholar
  30. [30]
    Horn, J.: Zu welcher Tageszeit fängt die Geburt an und wann schließt sie ab? Norsk Mag. Laegevidensk. 1910.Google Scholar
  31. [31]
    Huntington, E.: Mainspring of civilization. New York: Mentor Books MT 248, 1959.Google Scholar
  32. [32]
    Jenny, E.: Tagesperiodische Einflüsse auf Geburt und Tod. Schweiz. med. Wschr. 63, 15 (1933).Google Scholar
  33. [33]
    Johnson, C. G., and L. R. Taylor: Periodism and energy summation with special reference to flight rhythms in aphids. J. exp. Biol. 34, 209 (1957).Google Scholar
  34. [34]
    Jundell, I.: Über die nykthemeralen Temperaturschwankungen im ersten Lebensjahr des Menschen. Jb. Kinderheilk. 59, 521 (1904).Google Scholar
  35. [35]
    Kaiser, I. H., and F. Halberg: Circadian periodic aspects of birth. Ann. N. Y. Acad. Sci. 98, 1056 (1962).CrossRefGoogle Scholar
  36. [36]
    Katz, G.: Arstidsvariationen av prematurfrekvensen. Nord. Med. 50 /48 (1953).Google Scholar
  37. [37]
    Kleitman, N.: Sleep and wakefulness. Chicago: Univ. Chicago Press 1939 and 1963.Google Scholar
  38. [38]
    The evolutionary theory of sleep and wakefulness. Perspect. Biol. Med. 7, 169 (1964).Google Scholar
  39. [39]
    T. G. Engelmann: Sleep characteristics of infants. J. appl. Physiol. 6, 269 (1953).PubMedGoogle Scholar
  40. [40]
    The development of the diurnal (24-hour) sleep-wakefulness rhythm in the infant. Acta med. scand. suppl. 307, 106 (1955).Google Scholar
  41. [41]
    S. Titelbaum, and H. Hoffmann: The establishment of the diurnal temperature cycle. Amer. J. Physiol. 119, 48 (1937).Google Scholar
  42. [42]
    Kovar, B., and G. Beregszaszi: On the 24-hour rhythm of heat production in premature infants. Acta ped. Acad. Sci. Hung. 4, 23 (1963).Google Scholar
  43. [43]
    Kovar, W. R., and R. J. Taylor: Is spontaneous abortion a seasonal problem. J. Obst. Gynec. 16, 350 (1960).Google Scholar
  44. [44]
    Lange, J. F.: Über die Entwicklung einer Tagesperiodik verschiedener Körperfunktionen unter besonderer Berücksichtigung der Pulsfrequenz, der Schlaf-Wachverteilung und der Körpertemperatur. Diss. München, 1957.Google Scholar
  45. [45]
    Langendorfp, L., u. W. Papperitz: Über die Wirkung einer einzeitig verabreichten Röntgendosis auf das Knochenmark der weißen Maus. Strahlenther. 65, 624 (1939).Google Scholar
  46. [46]
    Larks, S. D.: Fetal electrocardiography. Springfield, Ill.: Thomas 1961.Google Scholar
  47. [47]
    Malek, J., J. Gleich, and V. Maly: Characteristics of the daily rhythm of menstruation and labor. Ann. N. Y. Acad. Sci. 98, 1042 (1962).Google Scholar
  48. [48]
    Meerlo,J. A.: Rhythm in babies and adults. Arch. gen. Psychiat. 5, 169 (1961).Google Scholar
  49. [49]
    Menzel, W.: Menschliche Tag-Nacht-Rhythmik und Schichtarbeit. Basel: Schwabe 1962.Google Scholar
  50. [50]
    Möllerström, J., and A. Sollberger: The 24-hour rhythm of metabolic processes in diabetes; Citric acid in the urine. Acta med. scand. 160, 25 (1958).PubMedCrossRefGoogle Scholar
  51. [51]
    New York Academy of Sciences: Photo-neuro-endocrine effects in circadian systems with particular reference to the eye. Ann. N. Y. Acad. Sci. 117, 1 (1964).Google Scholar
  52. [52]
    Nicholson, A. J.: The self-adjustment of populations to change. CSH Symp. Quant. Biol. 22, New York 1957.Google Scholar
  53. [53]
    Otto, W.: Jahreszeit und Geburtenfrequenz. Z. ges. Hyg. Grenzgeb. 5, 106 (1959).Google Scholar
  54. [54]
    Petrén, T.: Weitere Untersuchungen über den Tagesrhythmus von Hühnerembryonen und Kücken. Acta med. scand. suppl. 307, 42 (1955).PubMedGoogle Scholar
  55. [55]
    U. A.Sollberger: Die 24-Stunden-Rhythmik des Leberglykogens bei Hühnerembryonen und Küken verschiedenen Alters nebst Studien über die Unabhängigkeit der Rhythmik von äußeren Faktoren. Acta med. scand. suppl. 278, 54 (1953).PubMedGoogle Scholar
  56. [56]
    Pittendrigh, C. S., and V. G. Bruce: Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. In WITHROW: Photoperiodism and related phenomena. Amer. Ass. adv. Sci. 55, Washington 1959.Google Scholar
  57. [57]
    Pratt, D. M.: Analysis of population development in Daphnia at different temperatures. Biol. Bull. 85, 116 (1943).CrossRefGoogle Scholar
  58. [58]
    Roberts, S. K.: Photoreception and entrainment of cockroach activity rhythm. Science 148, 958 (1965).PubMedCrossRefGoogle Scholar
  59. [59]
    Rutenfranz, J.: The development of circadian system functions during infancy and childhood. Rep. 39th Ross Conf. Ped. Res. Ross Lab., Ohio, 1961.Google Scholar
  60. [60]
    Seckel, H. P. G., and K. Kato: Development of the diurnal cycle of liver function in nursing rats. Arch. Pathol. 25, 347 (1938).Google Scholar
  61. [61]
    Slobodkin, L. B.: Conditions for population equilibrium. Ecology 36 /3, 530 (1955).CrossRefGoogle Scholar
  62. [62]
    Sollberger, A.: Studies of temporal variations in biological variates, suppl. Rep. 5th Conf. Soc. Biol. Rhythm, ACO-Print, Stockholm 1960.Google Scholar
  63. [63]
    General properties of biological rhythms. Ann. N. Y. Acad. Sci. 98 /4, 757 (1962).Google Scholar
  64. [64]
    Biologische Rhythmen in der Medizin. Hippokrates 34 /16, 629 (1963).Google Scholar
  65. [65]
    The control of circadian glycogen rhythms. Ann. N. Y. Acad. Sci. 117 /1, 519 (1964).Google Scholar
  66. [66]
    Biological rhythm research. Amsterdam: Elsevier 1965.Google Scholar
  67. [67]
    Sonesson, B.: Förlossningsfrekvensen under olika ârstider. Svensk Läkartidning 55 /31, 1966 (1956).Google Scholar
  68. [68]
    Sterling, T. D.: Seasonal variation in the birth of the mentally deficient. Am. J. Publ. Health 50, 955 (1960).Google Scholar
  69. [69]
    Stier, J. B.: Spontaneous activity of mice. J. gen. Psychol. 4, 67 (1930).CrossRefGoogle Scholar
  70. [70]
    Tietze, K.: On the problem of seasonal fluctuations in the dates of birth and conception. Ther. Gegenwart 102, 955 (1963).PubMedGoogle Scholar
  71. [71]
    Utida, S.: Population fluctuation, an experimental and theoretical approach. CHS Symp. Quant. Biol. 22, New York 1957.Google Scholar
  72. [72]
    Withrow, R. B.: Photoperiodism and related phenomena in plants and animals. Am. Ass. Adv. Sci., publ. 55, Washington 1959.Google Scholar
  73. [73]
    Wolf, E.: Die Aktivität der japanischen Tanzmaus und ihre rhythmische Verteilung. Z. vergl. Physiol. 11, 321 (1930).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • T. Petrén
    • 1
  • A. Sollberger
    • 2
  1. 1.Department of AnatomyCaroline InstituteStockholm 60Sweden
  2. 2.Metabolic WardHighland View HospitalClevelandUSA

Personalised recommendations