Language Translations as Bi-Variate Distributions of Coding Symbols

  • Gustav Herdan
Part of the Kommunikation und Kybernetik in Einzeldarstellungen book series (COMMUNICATION, volume 4)


In this part we consider the bi-variate distribution of language symbols for coding a message. Translating from one language into another may be conceived as having that structure. Every such translation can be regarded as an instance of double coding. The identical message is expressed in two different language codes. It is first encoded in the ‘original’ language, from which the translator has to decode it previous to encoding it into that of the ‘translation’.


Word Length Language Translation Conditioned Entropy Random Partitioning Vocabulary Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hartley, R.V. L.: Transmission of Information, Bell System Technical Journal, p. 535, July 1928.Google Scholar
  2. 12]
    Shannon, C. E.: The Mathematical Theory of Communication, Bell System Technical Journal XXVII, 379 (1948).Google Scholar
  3. [3]
    Shannon, C. E. and W. Weaver: The Mathematical Theory of Communication. Urbana 1949.Google Scholar
  4. [4]
    Gabor, D.: Lectures on Communication Theory, Techn. Rep. No. 238, Massachusetts Inst, of Technol., 1952.Google Scholar
  5. [5]
    Barnard, G. A.: The Theory of Information, J. Roy. Stat. Soc. Ser. B, XIII, 46–59 (1951).Google Scholar
  6. [6]
    Walther, A.: Probleme im Wechselspiel von Mathematik und Technik, Ztschr. V. D. I. 96, 137 (1954).Google Scholar
  7. [7]
    Walther, A.: Mathematisches Denken u. mathematische Geräte in ihrer gegenseitigen Beeinflussung, Mathem.-Physik. Semesterberichte I, 169 (1950).Google Scholar
  8. [8]
    Meyer-Eppler, W.: Informationstheorie. Die Naturwissenschaf ten 39, 341 (1952).CrossRefGoogle Scholar
  9. [9]
    Born, M.: Atomic Physics. London and Glasgow 1938.Google Scholar
  10. [10]
    Schrödinger, E.: Statistical Thermo-Dynamics. Cambridge 1936.Google Scholar
  11. [11]
    Herdan, G.: Language in the light of Information Theory, Parts I and II, Metron XVII, No. 1–2 (1953),Google Scholar
  12. [11a]
    Herdan, G.: Language in the light of Information Theory, Parts I and II, Metron XVII, No. 3–4 (1955).Google Scholar
  13. [12]
    Herdan, G.: “An inequality relation between Yule’s’ Characteristic K’ and Shannon’s ‘Entropy H”. J. Appl. Maths, and Physics IX, Pt. 1, 69–73 (1958).CrossRefGoogle Scholar
  14. [13]
    Herdan, G.: Type-Token Mathematics, 182–191. The Hague (1960).Google Scholar
  15. [14]
    Meyer-Eppler, W.: Grundlagen und Anwendungen der Informationstheorie. Berlin-Göttingen-Heidelberg 1959.Google Scholar
  16. [15]
    Dewey, G.: Relative Frequency of English Speech Sounds. Cambridge 1923.Google Scholar
  17. [16]
    Herdan, G.: Calculus of Linguistic Observations, 129–131. The Hague 1962.Google Scholar
  18. [17]
    Elderton, W. P.: A few statistics on the length of English words, J. Roy. Stat. Serie A, 62, 436–445 (1944).Google Scholar
  19. [18]
    Kaeding, F. W.: Häufigkeitswörterbuch der Deutschen Sprache. Berlin-Steglitz 1897.Google Scholar
  20. [19]
    French, N. S., C.W. Carter Jr. and W. Koenig Jr.,: The words and sounds of telephone conversations, Bell System Technical Journal, IX, 290 (1930).Google Scholar
  21. [20]
    Jespersen, O.: Growth and Structure of the English Language. Leipzig 1930.Google Scholar
  22. [21]
    Trubetzkoy, N. S.: Essai d’une Théorie des Oppositions Phonologiques, I. de Psychologie 33, 5–18 (1936).Google Scholar
  23. [22]
    Menzerath, P.: Die Architektonik des Deutschen Wortschatzes, Phonetische Stud. 3 (1954).Google Scholar
  24. [23]
    Shannon, C. E.: Prediction and Entropy of Printed English, Bell System Technical Journal 30, 50 (1951).Google Scholar
  25. [24]
    Herdan, G.: Informationstheoretische Analyse als Werkzeug der Sprachforschung. Die Naturwissenschaften 41, 293–295 (1954).CrossRefGoogle Scholar
  26. [25]
    Flaubert, G.: Madame Bovary. Paris 1857.Google Scholar
  27. [25a]
    Flaubert, G.: Madame Bovary, translated by Eleanor Marx-Aveling. London 1928.Google Scholar
  28. [26]
    Lichtenberg, G. С.: Erklärungen zu Hogarths Kupferstichen, in Gottingischer Taschenkalender. Göttingen 1784–1796.Google Scholar
  29. [27]
    Lichtenbergs Commentaries on Hogarth’s Engravings. Translated from German by Innes and Gustav Herdan. London 1965.Google Scholar
  30. [28]
    Čapek, К.: Hovory s T. G. Masarykem. Praha 1937.Google Scholar
  31. [29]
    Čapek, К.: President Masaryk tells his story. Translation. London 1934.Google Scholar
  32. [30]
    Tolstoy, L. N.: “Детство, отрочество, юыоегЬ”. Moscow 1851–1855.Google Scholar
  33. [31]
    Tolstoy, L. N.: Childhood, Boyhood and Youth, translated by C.J. Hogarth. London 1912.Google Scholar
  34. [32]
    Tolstoy, L. N.: “Воина и Мир”. Moscow 1866–1869.Google Scholar
  35. [33]
    Tolstoy, L. N.: War and Peace, translated by L. and A. Maude. Oxford 1933.Google Scholar
  36. [34]
    Nasvytis, A.: Die Gesetzmäßigkeiten kombinatorischer Technik. Berlin-Göttingen-Heidelberg 1953.Google Scholar
  37. [35]
    Eddington, A. S.: The Nature of the Physical World, 7. ed. Cambridge 1931.Google Scholar
  38. [36]
    Auerbach, F.: Die Weltherrin und ihr Schatten. Jena 1913.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1966

Authors and Affiliations

  • Gustav Herdan
    • 1
  1. 1.University of BristolUSA

Personalised recommendations