Derivatives and Integrals

  • Wilhelm Flügge


We have differentiated vector components on page 25 and have introduced the comma notation for the derivatives in definition (2.12). In rectilinear coordinates the changes of the vector components indicate the change of the vector. This is no longer so when the coordinates are curvilinear. As a simple example consider Figure 5.1 a. It shows a polar coordinate system and in it three vectors v. The vectors are equal, but their radial components v1 are not and neither are the circumferential components v2. On the other hand, the vectors in Figure 5.1b are different, but they have the same radial component v1 and the same circumferential component v2 = 0.


Vector Field Covariant Derivative Area Element Polar Coordinate System Tensor Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [20]
    E. Madelung, Die mathematischen Hilfsmittel des Physikers (7th ed.) ( Berlin: Springer, 1964 ).Google Scholar
  2. [3]
    L. Brillouin, Les Tenseurs en Mécanique et en Elasticité ( Paris: Masson, 1946 ).MATHGoogle Scholar
  3. [31]
    J. L. Synge and A. Schild, Tensor Calculus ( Toronto: Univ. of Toronto Press, 1949 ).MATHGoogle Scholar
  4. [1]
    R. Arts, Vectors, Tensors, and the Basic Equations of Fluid Mechanics ( Englewood Cliffs, N.J.: Prentice-Hall, 1962 ).Google Scholar
  5. [6]
    C. Eringen, Mechanics of Continua ( New York: Wiley, 1967 ).MATHGoogle Scholar
  6. [2]
    H. D. Block, Introduction to Tensor Analysis (Columbus, Ohio: Merrill, 1962 ).Google Scholar
  7. [30]
    I. S. Sokolnikoff, Tensor Analysis (2nd ed.) ( New York: Wiley, 1964 ).MATHGoogle Scholar
  8. [14]
    G. A. Hawkins, Multilinear Analysis for Students in Engineering and Science ( New York: Wiley, 1963 ).Google Scholar
  9. [18]
    T. Levi-Civrra, The Absolute Differential Calculus ( New York: Hafner, 1926 ).Google Scholar
  10. [35]
    A. P. Wills, Vector Analysis ( New York: Prentice-Hall, 1931 ).MATHGoogle Scholar
  11. [5]
    A. Duscxek and A. Hochrainer, Grundzüge der Tensorrechnung in analytischer Darstellung (Wien: Springer, 1946, 1961, 1955 ), Vol. 1, 2, 3.Google Scholar
  12. [4]
    N. Coburn, Vector and Tensor Analysis ( New York: Macmillan, 1955 ).MATHGoogle Scholar
  13. [13]
    A. E. Green and W. Zerna, Theoretical Elasticity ( Oxford: Clarendon, 1954 ).MATHGoogle Scholar
  14. [17]
    H. Lass, Elements of Pure and Applied Mathematics ( New York: McGraw-Hill, 1957 ).MATHGoogle Scholar
  15. [28]
    A. Schild, “Tensor Analysis,” in W. Flügge (ed.), Handbook of Engineering Mechanics ( New York: McGraw-Hill, 1962 ).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1972

Authors and Affiliations

  • Wilhelm Flügge
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations