A Continuous System Model of Adrenocortical Function

  • F. E. Yates
  • R. D. Brennan
  • J. Urquhart
  • M. F. Dallman
  • C. C. Li
  • W. Halpern


A central concept of modern physiology is that a system of coupled, connected and interacting biological components has properties beyond those that can be discovered by analysis of the components in isolation. The properties of a system of components depend upon the nature of the individual components, the signals and individual signal flow pathways, and the arrangement of components and paths of communication among them. The objective of modern physiology is to determine the dynamic attributes of a biosystem of interest, and to rationalize these dynamic attributes in terms of particular properties of the components, signals, and connections involved. Because of this objective, modern physiology can be properly designated as systems biology.


Adrenal Gland Corticotropin Release Factor Median Eminence Adrenocortical Function Negative Feedback Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Gann, D. A finite state model for the control of adrenal corticosteroid secretion (in this Volume).Google Scholar
  2. 2).
    Gray, J. S. A physiologist looks at engineering. Science, 140:464, 1963.PubMedCrossRefGoogle Scholar
  3. 3).
    Weisskopf, V. F. The structure of nuclei. In: The Scientific Endeavor, 160, The Rockefeller Institute Press, 1965.Google Scholar
  4. 4).
    Jones, R. W. An engineer looks at physiology. Science, 140:461, 1963.CrossRefGoogle Scholar
  5. 5).
    Yates, F. E. and J. Urquhart. Control of plasma concentrations of adrenocortical hormones. Physiol. Rev., 42:359, 1962.PubMedGoogle Scholar
  6. 6).
    Yates, F. E. Contributions of the liver to steady-state performance and transient responses of the adrenal cortical system. Federation Proceedings (Symposium Issue), 24:723, 1965.Google Scholar
  7. 7).
    Yates, F. E. Control of secretion rates and plasma concentrations of glucocorticoid hormones. In: The Adrenal Cortex (A. Eisenstein, ed.), 133, Little, Brown and Co., Boston, 1967.Google Scholar
  8. 8).
    Gray, W. D. and P. L. Munson. The rapidity of the adrenocorticotropic response of the pituitary to the intravenous administration of histamine. Endocrinology, 48:471, 1951.PubMedCrossRefGoogle Scholar
  9. 9).
    Henkin, R. I. and K. M. Knigge. Effect of sound on the hypothalamic-pituitary-adrenal axis. Am. J. Physiol., 204:710, 1963.Google Scholar
  10. 10).
    Migeon, C. J., F. H. Tyler, J. P. Mahoney, A. A. Florentin, H. Castle, E. L. Bliss and L. T. Samuels. The diurnal variation of plasma levels and urinary excretion of 17-hydroxycorticosteroids in normal subjects, night workers and blind subjects. J. Clin. Endo, and Metab., 16:622, 1956.CrossRefGoogle Scholar
  11. 11).
    Wexler, B. C. Histologic alterations in the adrenal cortex of intact and hypophysectomized rats following ACTH, pitressin and adrenal steroids. Endocrinology, 72:149, 1963.PubMedCrossRefGoogle Scholar
  12. 12).
    Ganong, W. F. The central nervous system and the synthesis and release of adrenocorticotropic hormone. In: Advances in Neuroendocrinology (A. V. Nalbandov, ed.). University of Illinois Press, Urbana, 1963.Google Scholar
  13. 13).
    Hawkins, D. The thermodynamics of purpose. In: Beyond the Edge of Certainty (R. G. Colodny ed.), 102, Prentice-Hall, Englewood Cliffs, N.J., 1965.Google Scholar
  14. 14).
    Yates, F. E. The liver and the adrenal cortex. Gastroenterology, 53:477, 1967.Google Scholar
  15. 15).
    Berliner, D. L. and T. F. Dougherty. Influence of reticuloendothelial and other cells on the metabolic fate of steroids. Ann. N.Y. Acad. Sci., 88: 14, 1960.CrossRefGoogle Scholar
  16. 16).
    Davidson, J. M. and S. Feldman. Cerebral involvement in the inhibition of ACTH secretion by hydrocortisone. Endocrinology, 72:936, 1963.PubMedCrossRefGoogle Scholar
  17. 17).
    Endröczi, E., K. Lissák, and M. Tekeres. Hormonal feedback regulation of pituitary-adrenocortical activity. Acta Physiol. Acad. Sci. Hung., 18: 291, 1960.Google Scholar
  18. 18).
    Dallman, M. F. and F. E. Yates. Anatomical and functional mapping of central neural input and feedback pathways of the adrenocortical system. Mem. Soc. Endocrinology, London, 1967 (in press).Google Scholar
  19. 19).
    Kawai, A. and F. E. Yates. Interference with feedback inhibition of adrenocorticotropin release by protein binding of corticosterone. Endocrinology, 79:1040, 1966.PubMedCrossRefGoogle Scholar
  20. 20).
    Yates, F. E., S. E. Leeman, D. W. Glenister, and M. F. Dallman. Interaction between plasma corticosterone concentration and adrenocorticotropin-releasing stimuli in the rat: evidence for the reset of an endocrine feedback control. Endocrinology, 69:67, 1961.PubMedCrossRefGoogle Scholar
  21. 21).
    Yates, F. E., S. E. Leeman, D. W. Glenister, and M. F. Dallman. Endocrine control systems and the control of them. Trans. Inst. Electrical and Electronic Engineers, Interni Convention Record, Part IX: 118, 1967.Google Scholar
  22. 22).
    Katz, B. Nerve, Muscle and Synapse. McGraw-Hill, New York, 1966.Google Scholar
  23. 23).
    Riggs, D. S. The Mathematical Approach to Physiological Problems, The Williams and Wilkins Co., Baltimore, 1963.Google Scholar
  24. 24).
    Stetten, D., Jr. Relationship of hormone dosage to physiological response. Science, 124:365, 1956.PubMedCrossRefGoogle Scholar
  25. 25).
    Clynes, M. Unidirectional rate sensitivity: a biocybernetic law of reflex and humoral systems as physiologic channels of control and communication. Ann. N.Y. Acad. Sci., 92:946, 1961.PubMedCrossRefGoogle Scholar
  26. 26).
    Dallman, M. F. and F. E. Yates. Dynamic asymmetries in the corticosteroid negative feedback path and distribution-binding-metabolism elements of the adrenocortical system. N.Y. Acad. Sci., 1967 (in press).Google Scholar
  27. 27).
    Keller, N., L. R. Sendelbeck, V. I. Richardson, C. Moore, and F. E. Yates. Protein binding of corticosteroids in undiluted rat plasma. Endocrinology, 79:884, 1966.PubMedCrossRefGoogle Scholar
  28. 28).
    1130 Continuous System Modeling Program (1130-CX-13X), Program Reference Manual, IBM Application Program H20–0282-0.Google Scholar
  29. 29).
    Luetscher, J., C. A. Camargo, R. A. Cheville, E. W. Hanock, A. J. Dowdy, and G. W. Nokes. Conjugation and excretion of aldosterone: testing of models with an analog computer. In: Steroid Dynamics (G. Pincus, T. Nakao and J. F. Tait, eds.), 341, Academic Press, New York, 1966.Google Scholar
  30. 30).
    Tait, J. F. and S. Burstein. In vivo studies of steroid dynamics in man. In: The Hormones (G. Pincus, K. Thimann, and E. Astwood, eds.), Academic Press, New York, 5:441, 1964.Google Scholar
  31. 31).
    Steenburg, R. W., L. L. Smith, W. C. Shoemaker, and F. D. Moore. Observations on the role of the liver in hydrocortisone metabolism. Surg. Gynecol. and Obstet., 111:697, 1960.Google Scholar
  32. 32).
    Plager, J. E., R. Knopp, W. R. Slaunwhite Jr., and A. A. Sandberg. Cortisol binding by dog plasma. Endocrinology, 73:353, 1963.PubMedCrossRefGoogle Scholar
  33. 33).
    Christy, N. P. and R. A. Fishman. Studies of the blood-cerebrospinal fluid barrier to Cortisol in the dog. J. Clin. Invest., 40:1997, 1961.Google Scholar
  34. 34).
    Eik-Nes, K. and L. T. Samuels. Metabolism of Cortisol in normal and “stressed” dogs. Endocrinology, 63:82, 1958.PubMedCrossRefGoogle Scholar
  35. 35).
    Englert, E., Jr., R. M. Nelson, H. Brown, T. W. Nielsen, and S. N. Chou. Effects of changing hepatic blood flow on 17-hydroxycorticosteroid metabolism in dogs. Surgery, 47:982, 1960.PubMedGoogle Scholar
  36. 36).
    Plager, J. E., G. A. Bray, and J. E. Jackson. Pituitary-ACTH response to metopirone and endotoxin administration in the dog. Endocrinology, 72: 876, 1963.PubMedCrossRefGoogle Scholar
  37. 37).
    Kuipers, F., R. S. Ely, and V. C. Kelley. Metabolism of steroids: the removal of exogenous 17-hydroxycorticosterone from the peripheral circulation in dogs. Endocrinology, 62:64, 1958.PubMedCrossRefGoogle Scholar
  38. 38).
    Melby, J. C., R. H. Egdahl, J. L. Story, and W. W. Spink. Production and catabolism of Cortisol following the administration of thyroxine to dogs. Endocrinology, 67:389, 1960.CrossRefGoogle Scholar
  39. 39).
    Thomasson, B. and R. W. Steenburg. Plasma clearance of Cortisol and 11-deoxycortisol in the dog. Am. J. Physiol., 208:84, 1965.PubMedGoogle Scholar
  40. 40).
    Samuels, L. T. The dynamics of steroid hormone distribution in the body, particularly the distribution of Cortisol. In: Steroid Dynamics (G. Pincus, T. Nakao, and J. F. Tait, eds.), 385, Academic Press, New York, 1966.Google Scholar
  41. 41).
    Scheuer, J. and P. K. Bondy. The effect of intravenous Cortisol injections on the plasma Cortisol concentration in man. J. Clin. Invest., 36: 67, 1957.PubMedCrossRefGoogle Scholar
  42. 42).
    Nugent, C. A., H. R. Warner, V. L. Estergreen, and K. Eik-Nes. The distribution and disposal of Cortisol in humans. Proc. 2nd Intern. Cong. Endocrinol., 257, London, 1964.Google Scholar
  43. 43).
    Urquhart, J. Adrenal blood flow and the adrenocortical response to corticotropin. Am. J. Physiol., 209:1162, 1965.PubMedGoogle Scholar
  44. 44).
    Urquhart, J. Adrenal and C. C. Li. Dynamics of adrenocortical secretion, 1967 (in press).Google Scholar
  45. 45).
    Urquhart, J. Adrenal and C. C. Li. Dynamic testing and modelling of the canine adrenocortical secretory response to corticotropin. Ann. N.Y. Acad. Sci., 1967 (in press).Google Scholar
  46. 46).
    Hechter, O. and I. D. K. Halkerson. On the action of mammalian hormones. In: The Hormones (G. Pincus, K. V. Thimann, and E. B. Astwood, eds.), 5:697, Academic Press, New York, 1964.Google Scholar
  47. 47).
    Urquhart, J. Dynamics of ACTH in blood. Fed. Proc, 26:586, 1967 (abstract).Google Scholar
  48. 48).
    Purves, H. D. Cytology of the adenohypophysis, In: The Pituitary Gland (G. W. Harris and B. T. Donovan, eds.), 1:147, University of California Press, Berkeley, 1966.Google Scholar
  49. 49).
    Vernikos-Danellis, J. Effect of rat median eminence extracts on pituitary ACTH content in normal and adrenalectomized rats. Endocrinology, 76:240, 1965.PubMedCrossRefGoogle Scholar
  50. 50).
    Green, J. D. The comparative anatomy of the portal vascular system and the innervation of the hypophysis. In: The Pituitary Gland (G. W. Harris and B. T. Donovan, eds.), 1:127, University of California Press, Berkeley, 1966.Google Scholar
  51. 51).
    Vernikos-Danellis, J. The regulation of the synthesis and release of ACTH. In: Vitamins and Hormones (R. S. Harris, I. G. Wool, and J. A. Loraine, eds.), 23:97, Academic Press, New York, 1965.Google Scholar
  52. 52).
    Smelik, P. G. Failure to inhibit corticotrophin secretion by experimentally induced increases in corticoid levels. Acta Endocrinol, 44:36, 1963.PubMedGoogle Scholar
  53. 53).
    Estep, H. L., D. P. Island, R. L. Ney, and G. W. Liddle. Pituitary-adrenal dynamics during surgical stress. J. Clin. Endo, and Metab., 23:419, 1963.CrossRefGoogle Scholar
  54. 54).
    Hodges, J. R. and M. T. Jones. The effect of injected corticosterone on the release of adrenocorticotrophic hormone in rats exposed to acute stress. J. Physiol., 167:30, 1963.PubMedGoogle Scholar
  55. 55).
    Bajusz, E. and G. Jasmin. Major Problems in Neuroendocrinology. The Williams and Wilkins Co., Baltimore, 1964.Google Scholar
  56. 56).
    Kendall, J. W., Jr. Studies on inhibition of corticotropin and thyrotropin release utilizing microinjections into the pituitary. Endocrinology, 71:452, 1962.CrossRefGoogle Scholar
  57. 57).
    Chowers, I., S. Feldman, and J. M. Davidson. Effects of intrahypothalamic crystalline steroids on acute ACTH secretion. Am. J. Physiol., 205:671, 1963.PubMedGoogle Scholar
  58. 58).
    Corbin, A., G. Mangili, M. Motta, and L. Martini. Effect of hypothalamic and mesencephalic steroid implantations on ACTH feedback mechanisms. Endocrinology, 76:811, 1965.PubMedCrossRefGoogle Scholar
  59. 59).
    deWied, D. The site of the blocking action of dexamethasone on stress-induced pituitary ACTH release. J. Endocrin., 29:29, 1964.CrossRefGoogle Scholar
  60. 60).
    Giulani, G., L. Martini, and A. Pecile. Midbrain section and release of ACTH following stress. Acta Neuroveg. (Wein), 23:21, 1961.CrossRefGoogle Scholar
  61. 61).
    Hedge, G. A., M. B. Yates, R. Marcus, and F. E. Yates. Site of action of vasopressin in causing corticotropin release. Endocrinology, 79:328, 1966.PubMedCrossRefGoogle Scholar
  62. 62).
    Leeman, S. E., D. W. Glenister, and F. E. Yates. Characterization of a calf hypothalamic extract with adrenocorticotropin-releasing properties: evidence for a central nervous system site for corticosteroid inhibition of adrenocorticotropin release. Endocrinology, 70:249, 1962.PubMedCrossRefGoogle Scholar
  63. 63).
    Endröczi, E. K., Lissák, B. Bohus, and S. Kovacs. The inhibitory influence of archicortical structures on pituitary-adrenal function. Acta Physiol. Acad. Sci. Hung., 16:17, 1959.Google Scholar
  64. 64).
    Mandell, A. J., L. F. Chapman, R. W. Rand, and R. D. Walter. Plasma corticosteroids: changes in concentration after stimulation of hippocampus and amydala. Science, 139:1212, 1963.PubMedCrossRefGoogle Scholar
  65. 65).
    Motta, M., G. Mangili, and L. Martini. A short feedback loop in the control of ACTH secretion. Endocrinology, 77:392, 1965.PubMedCrossRefGoogle Scholar
  66. 66).
    Yamamoto, W. S. and W. F. Raub. Models of the regulation of external respiration in mammals. Problems and promises. Computers and Biomed. Res., 1:65, 1967.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1968

Authors and Affiliations

  • F. E. Yates
    • 1
  • R. D. Brennan
    • 2
  • J. Urquhart
    • 3
  • M. F. Dallman
    • 4
  • C. C. Li
    • 5
  • W. Halpern
    • 4
  1. 1.Department of PhysiologyStanford UniversityUSA
  2. 2.International Business Machines CorporationPalo AltoUSA
  3. 3.Department of PhysiologyUniversity of PittsburghUSA
  4. 4.Department of PhysiologyStanford UniversityUSA
  5. 5.Department of Electrical EngineeringUniversity of PittsburghUSA

Personalised recommendations