Skip to main content

The Brain Stem Reticular Core—An Integrative Matrix

  • Conference paper

Abstract

Through the substance of the core of the brain stem runs a continuous column of neurons and fibers known as the reticular formation. This system bridges the gap, both spatially and phylogenetically, between spinal reflexive levels and the great telencephalic tissue masses (cerebral cortices) which apparently represent the most mature expression of neural function. Compared to the latter, the reticular core is archaic both historically and histologically. However, despite the absence of a rigorously stated structural theme and an axial location, sheltered from direct contact with any primary sensory input, the system is now known to exert a remarkable range of control upon the neuraxis and upon the organism as a whole. These functions include: determination of operational modes; gating of all sensory influx; participation at all levels of cortical function, including read out for cortical differentiative and comparative processes; gain manipulation of motor output; multilevel control over most visceral functions; and the active manipulation of a spectrum of states of consciousness from deep coma to maximal vigilance. This panoramic range of activities suggests that the reticular core serves a keystone role in brain function and combines, perhaps in larval form, the prototype of every neural process. If so, it should serve as a convenient paradigm upon which brain system models may be shaped.

Supported by grants from National Institutes of Neurological Diseases and Blindness, U.S. Public Health Service.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas, R. C. and V. J. Wilson. Marking single neurons by staining with intracellular recording microelectrodes. Science, 151:1538–1539, 1966.

    Article  PubMed  CAS  Google Scholar 

  2. Tasaki, I., E. H. Polley and F. Orrego. Action potentials from individual elements in cat geniculate and striate cortex. J. Neurophysiol., 17:454–474, 1954.

    PubMed  CAS  Google Scholar 

  3. Scheibel, M. E. and A. B. Scheibel. Structural substrates for integrative patterns in the brain stem reticular core. In: Reticular Formation of the Brain (H. Jasper et al., ed.). 31–55, Little, Brown and Co., Boston, 1958.

    Google Scholar 

  4. Ariens Kappers, C. U. Three Lectures on Neurobiotaxis. Levin and Muns-gaard, Copenhagen, 1928.

    Google Scholar 

  5. Ramon-Moliner, E. and W. J. H. Nauta. The isodendritic core of the brain stem. J. Comp. Neurol, 126:311–336, 1966.

    Article  PubMed  CAS  Google Scholar 

  6. Scheibel, M. E. and A. B. Scheibel. Discussion, in a symposium on dendrites. Electroenceph. Clin. Neurophysiol., Suppl. no. 10:43–50, 1958.

    Google Scholar 

  7. Globus, A. and A. B. Scheibel. Pattern and field in cortical structure. I. The rabbit. J. Anat. 1966 (in press).

    Google Scholar 

  8. Tauc, L. and H. M. Gerschenfeld. A cholinergic mechanism of inhibitory transmission in a molluscan nervous system. J. Neurophysiol., 25:236–262, 1962.

    PubMed  CAS  Google Scholar 

  9. Westrum, L. E., L. E. White Jr. and A. A. Ward. Morphology of the experimental epileptic focus. J. Neurosurg., 21:1033–1046, 1964.

    Article  PubMed  CAS  Google Scholar 

  10. Eyzaguirre, G. and S. W. Kuffler. Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. Gen. Physiol., 39:87–119, 1955.

    Article  PubMed  CAS  Google Scholar 

  11. Scheibel, M. E. and A. B. Scheibel. On neural mechanisms for self-knowledge and commend. In: First Congress on the Information System Sciences (E. M. Bennett, ed.). Air Force Research Proceedings, 1963.

    Google Scholar 

  12. Galambos, R. Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol., 19:424–437, 1956.

    PubMed  CAS  Google Scholar 

  13. Cajal, S. Ramony. Histologie du système nerveux de l’homme et des vertébrés. Vols. I and II. A. Maloine, Paris, 1909–1911.

    Google Scholar 

  14. Nelson, P. G. and K. Frank. Extracellular potential fields of single spinal motoneurons. J. Neurophysiol., 27:913–927, 1964.

    CAS  Google Scholar 

  15. Nelson, P. G. Interaction between spinal motoneurons of the cat. J. NeurophysioL, 29:275–287, 1966.

    PubMed  CAS  Google Scholar 

  16. Adey, R. W., J. P. Segundo and R. B. Livingstone. Corticofugal influences on intrinsic brain stem conduction in cat and monkey. J. Neurophysiol., 20:1–18, 1957.

    PubMed  CAS  Google Scholar 

  17. Magni, F. and W. D. Willis. Identification of reticular formation neurons by intracellular recording. Arch. Ital. Biol., 101:681–702, 1963.

    PubMed  CAS  Google Scholar 

  18. Moruzzi, G. and H. W. Magoun. Brain stem reticular formation and activation of the EEG. Electroenceph. Clin. Neurophysiol., 1:455–473, 1949.

    PubMed  CAS  Google Scholar 

  19. Lindsley, D. B., J. W. Bowden and H. W. Magoun. Effect upon the EEG of acute injury to the brain stem activating system. Eleciroenceph. Clin. Neurophysiol., 1:475–486, 1949.

    CAS  Google Scholar 

  20. Eldred, E., R. Granit and P. A. Merton. Supraspinal control of the muscle spindles and its significance. J. Physiol. (London), 122:498–523, 1953.

    CAS  Google Scholar 

  21. Bell, C., G. Sierra, N. Buendia and J. P. Segundo. Sensory properties of units in mesencephalic reticular formation. J. Neurophysiol., 27:961–987, 1964.

    PubMed  CAS  Google Scholar 

  22. Scheibel, M. E. and A. B. Scheibel. The response of reticular units to repetitive stimuli. Arch. Ital. Biol., 103:279–299, 1965.

    PubMed  CAS  Google Scholar 

  23. Segundo, J. P., T. Takenaka and H. Encalo. Properties of bulbar reticular neurons. II. An intracellular study of their electrophysiology, in general and in relation to somatic sensory events. J. Neurophysiol., 1966 (in press).

    Google Scholar 

  24. de Robertis, E. Electron microscope and chemical study of binding sites of brain biogenic amines. In: Biogenic Amines. (W. Himwich and H. Himwich, eds.). 118–136, Pergamon Press, Inc., New York, 1964.

    Chapter  Google Scholar 

  25. Scheibel, M. E. and A. B. Scheibel. Periodic sensory nonresponsiveness in reticular neurons. Arch. Ital. Biol., 103:300–316, 1965.

    PubMed  CAS  Google Scholar 

  26. Scheibel, M. E. and A. B. Scheibel. Neurons and neuroglia cells as seen with the light microscope. In: Biology of Neuroglia (W. Windle, ed.). 5–23, Charles C Thomas, Springfield, Illinois, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. D. Mesarović

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag New York Inc.

About this paper

Cite this paper

Scheibel, M.E., Scheibel, A.B. (1968). The Brain Stem Reticular Core—An Integrative Matrix. In: Mesarović, M.D. (eds) Systems Theory and Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-88343-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-88343-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-88345-3

  • Online ISBN: 978-3-642-88343-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics